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Abstract—Alerts are critical for detecting anomalies in large-
scale cloud systems, ensuring reliability and user experience.
However, current systems generate overwhelming volumes of
alerts, degrading operational efficiency due to ineffective alert
life-cycle management. This paper details the efforts of Company-
X to optimize alert life-cycle management, addressing alert fa-
tigue in cloud systems. We propose AlertGuardian, a framework
collaborating large language models (LLMs) and lightweight
graph models to optimize the alert life-cycle through three
phases: Alert Denoise uses graph learning model with virtual
noise to filter noise, Alert Summary employs Retrieval Augmented
Generation (RAG) with LLMs to create actionable summary, and
Alert Rule Refinement leverages multi-agent iterative feedbacks to
improve alert rule quality. Evaluated on four real-world datasets
from Company-X’s services, AlertGuardian significantly mitigates
alert fatigue (94.8% alert reduction ratios) and accelerates fault
diagnosis (90.5% diagnosis accuracy). Moreover, AlertGuardian
improves 1,174 alert rules, with 375 accepted by SREs (32%
acceptance rate). Finally, we share success stories and lessons
learned about alert life-cycle management after the deployment
of AlertGuardian in Company-X.

Index Terms—Alert Life-Cycle, Alert Reduction, Cloud Sys-
tems

I. INTRODUCTION

Cloud systems, such as Microsoft Azure, Amazon AWS,
and Tencent Cloud, provide critical services to users world-
wide. Ensuring their reliability is paramount to prevent user
dissatisfaction and revenue loss. However, failures, such as
unexpected interruptions or service level degradation, are
inevitable in complex cloud environments [1]-[4]. To detect
and address these failures promptly, modern cloud systems
employ comprehensive monitoring mechanisms that continu-
ously track the health of services, generating diverse moni-
toring data (e.g., key performance indicators (KPIs)) [5]-[8].
Site Reliability Engineers (SREs) leverage their expertise and
historical monitoring data to configure alert rules [9]-[12].
When monitoring data meets these rule conditions, alerts are
triggered to notify SREs for inspection and mitigation.

Although alert systems have evolved significantly from
their humble beginnings, they continue to present substantial
challenges that hinder operational effectiveness across orga-
nizations [13]-[18]. As cloud systems grow more complex
and interconnected, the sheer volume of alerts generated by
monitoring systems has reached unprecedented levels. Modern
monitoring infrastructures generate thousands of alerts daily,
creating an overwhelming deluge of notifications that often
obscure critical issues rather than illuminating them. This
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Fig. 1: The process of alert life-cycle management.

phenomenon, commonly referred to as “alert fatigue” [19],
has become a significant impediment to operational efficiency
across industries. The fundamental problem of alert fatigue
lies in poor alert life-cycle management (§ II-B). As shown in
Fig. 1, the alert life-cycle encompasses Alert Rule Generation,
Alert Firing, Alert Handling and Alert Rule Refinement. Ex-
isting alert systems, such as Prometheus Alertmanager [20],
focus primarily on alert rule configuration and alert firing,
neglecting the quality of rules and alerts. This leads to poorly
managed rules and frequent alert storms.

Recent efforts in alert denoising [17], [21]-[23] attempt
to reduce SRE burden by identifying noise and correlat-
ing alerts during the Alert Handling stage. However, with
the proliferation of alert attribute combinations, traditional
denoising methods struggle to adapt to modern alert com-
plexity (§ II-C1). Even after denoising, alerts typically flag
deviations without providing the essential context needed to
understand their implication or root causes. This contextual
vacuum forces SREs to engage in time-consuming inves-
tigations, combining fragmented information from disparate
sources to construct a coherent understanding of the under-
lying problem (§ II-C2). Moreover, real-world systems also
experience dynamic changes in traffic patterns and operating
environments, making static rules prone to persistent false
alarms. Optimizing rules manually requires extensive expert
knowledge and is labor-intensive, underscoring the need for
intelligent automated solutions (§ II-C3).

AlertGuardian. To address the limitations of existing alert
systems, this paper presents the alert life-cycle management
practices at Company-X, a leading Internet service provider
with hundreds of millions of users. We introduce Alert-
Guardian, a framework collaborating large language models
(LLMs) and lightweight graph models to optimize the alert
life-cycle. To meet real-time analysis demands, AlertGuardian
first leverages graph learning model with the virtual noise to
denoise alerts, accommodating variable attributes and filter-
ing noise effectively (§ III-A). It then integrates Retrieval-



Augmented Generation (RAG) with LLMs based on internal
knowledge (e.g., system documents, alert rule explanations,
incident tickets) to transform cryptic alerts into comprehensive
narratives that provide both what and why of emerging issues
(§ 1II-B). Additionally, to thoroughly address alert noise, an
offline multi-agent workflow with iterative feedback optimizes
rules through deduplication, threshold adjustments, and tem-
poral analysis (§ II-C).

Results. We conduct a comprehensive study on four real-
world datasets from representative services (gaming, office,
media, and education) at Company-X (§ IV). Experimental
results show that AlertGuardian achieves high alert reduction
ratios (93.82% to 95.50%) across all systems, significantly
outperforming baseline methods. Moreover, AlertGuardian
provides high-quality alert summaries (98.5% action accuracy)
that reduce failure diagnosis overhead. AlertGuardian also
improves 1,174 alert rules, with 375 accepted by SREs (32%
acceptance rate). The denoise module has been deployed
at Company-X for more than one year, with summary and
rule refinement modules in pilot use for over three months.
The deployment of AlertGuardian offers practical insight for
addressing alert fatigue in large-scale cloud systems.

Contribution. This paper makes following contributions.

« We propose addressing alert storm from an alert life-cycle
perspective, and share practical experiences from Company-
X, providing valuable insights for future research and im-
plementations in alert systems.

e We propose AlertGuardian, a novel framework that collab-
orates LLMs and lightweight graph models to optimize the
alert life-cycle management in practice.

o We evaluate AlertGuardian on four real-world datasets from
Company-X, demonstrating robust performance and practi-
cal impact across industrial workloads.

II. BACKGROUND AND MOTIVATION
A. Background

Alert mechanisms are fundamental to monitoring systems,
enabling timely anomaly detection in cloud systems. We first
introduce the background about alert management.

Alert Rules define conditions under which notifications are
triggered, typically based on expressions written in a query
language such as Prometheus Query Language (PromQL) [24]
and LogsQL [25]. These rules periodically evaluate a spec-
ified query against a data source from monitor databases
(e.g., Promethuse [12]), retrieving monitor data for analysis.
As examples in Fig. 2, an alert rule comprises four core
components: (1) a query that selects the dataset to evaluate,
with syntax dependent on the data source (e.g., PromQL
for Prometheus); (2) a condition, such as a threshold, that
must be satisfied to activate the alert (e.g., CPU Ultilization
> 80%); (3) an evaluation interval and duration, determining
how frequently the rule is checked (e.g., 1 minute) and how
long the condition must persist to trigger an alert instance; (4)
some annotations provide extra details for alert responders to
help them understand potential issues.

alert: KubernetesPodNotHealthy
expr: sum by (pod) (kube_pod_status{phase=~"Pending|Unknown|Failed"}) > 0
for: 5m

timestamps= 1742561006;

alert="KubernetesPodNotHealthy”;
/ pod=*pod-1”

timestamps= 1742561009;
alert="ContainerHighCPUUsage”;
pod="pod-2”; container="container-1";

annotations:
summary: Kubernetes pod not healthy (instance {{ $instance }})
description: Pod {{ $pod }} is unhealthy {{ $value }} for a long time

alert: KubernetesPodNotRunning
expr: sum by (pod, ns) (kube_pod_status{phase=~!"Running"}) > 0

timestamps=1742561012;
alert="KubernetesPodNotRunning”;
for: 5m pod="pod-17; namespace="ns-1
annotations:
timestamps= 1742561069; Alert-4
alert="ContainerHighCPUUsage”;
pod="pod-2”; container="container-1";

summary: Kubernetes Pod not running (instance {{ $instance }})
description: Pod {{ $pod }} in a non-running state { $value }} for a long time

alert: ContainerHighCPUUsage
expr: (sum(rate(container_cpu_usage_seconds_total{container!=""}[5m)) by

timestamps= 1742561129;
alert="ContainerHighCPUUsage”;
pod="pod-2”; container="container-1";
namespace=*ns-2"

(pod, container, ns) / sum(container_spec_cpu_quota(container!=""}
Jcontainer_spec_cpu_period{container!=""}) by (pod, container, ns) * 100) > 40
for: 1m

timestamps= 1742561089;
alert="ContainerHighCPUUsage”;
pod="pod-6”; container="container-2";
namespace="ns-2”

annotations:

summary: Container High CPU utilization (instance {{ $instance }})

description: Container CPU utilization is above 60%

Alert Rules
Fig. 2: Examples of alert rules and alert instances.

Alert Instances (hereafter referred to simply as “alert”)
are fired when the condition of alert rules is met. Each
alert is identified by a unique set of attribute pairs, en-
abling the system to differentiate among multiple alerts
triggered by the same rule. As examples in Fig. 2,
an alert rule monitoring pod CPU usage could produce
alerts with attribute sets {alert="PodHighCPUUsage",
pod="pod-1"} and {alert="PodHighCPUUsage",
pod="pod-2"}, representing distinct events due to differing
pod attribute. The attribute facilitates searching, silencing, and
routing of notifications, ensuring precise alert management.
Furthermore, annotations, which are another set of key-value
pairs, provide contextual details (e.g., alert explanation) to aid
responders in diagnosing and resolving issues.

Alert Life-Cycle Management covers the entire process
from alert rule creation to alert firing, handling, and feedback,
ensuring continuous monitoring and optimization of alerts. As
illustrated in Fig. 1, alert management generally follows a
cyclical progression comprising four stages:

Alert Instances

@ Alert Rule Generation. In this phase, alert rules are estab-
lished to monitor various data sources, including metrics,
logs, and traces stored in monitoring databases. These rules
are often configured by SREs to detect potential failures.

@ Alert Firing. Once the monitor data meet designated rules,
the alerting system fires the corresponding alerts. This
step forms a logical bridge between passive monitoring
and active response, converting raw measurements into
actionable signals. The design of thresholds and conditions
here is crucial, as it directly influences both the volume and
the fidelity of triggered alerts.

® Alert Handling. Following the firing of alerts, they are
routed to SRE teams or automated workflows for thorough
investigation. During this stage, SREs review the alerts to
determine root causes, assess severity, and execute remedia-
tion plans. Detailed logging of all diagnostic and corrective
actions is essential for knowledge retention, collaboration,
and post-incident analysis. By efficiently triaging and ad-
dressing alerts, organizations can minimize downtime and
optimize resource allocation.

@ Alert Rule Refinement. Insights gleaned from the alert
handling process inform the continuous refinement of alert
rules. By analyzing patterns of false positives, false nega-
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tives, and duplicate notifications, teams can adjust thresh-
olds or query parameters. This iterative practice reduces
alert fatigue by eliminating noisy alerts while retaining
sufficient sensitivity to capture anomalies.

B. Problems in Our Existing Alert Management System

Our institution, a large-scale Internet company (hereafter
referred to as Company-X), maintains extensive cloud infras-
tructures to support a variety of globally popular products with
hundreds of millions of users. These products span multiple
domains, including gaming, office productivity, and education.
In an effort to manage the alerts generated by more than
200 distinct systems, our SRE team at Company-X built an
in-house alert system. This platform facilitates the creation
of alert rules, firing of alerts, and routing of notifications to
relevant teams, thereby alleviating some of the operational
load on SREs. However, as our systems continue to grow in
both size and complexity, several significant limitations have
surfaced in the existing alert management framework.

To better understand these issues, we collected nine days
worth of alert data and all alert rules from more than 200
systems in Company-X, producing a dataset that exceeds 20
GB of alert and 200,000 alert rules in total. In the following,
we show the key problems revealed by this investigation.

1) Problem 1: Frequent Alert Storms: According to the
experience of our SRE team, they are inundated daily by alert
storms that generate an overwhelming volume of notifications
in short timeframes. This phenomenon not only increases the
risk of missing critical alerts due to cognitive overload, but also
exacerbates the potential for alert fatigue, wherein genuinely
critical signals can be overlooked amid a deluge of non-critical
ones. As shown in Fig. 3, more than 70% systems fire at least
200 alerts per minute on average, resulting in daily alert counts
that can exceed 288,000 per system. Such high-frequency
alerts strain SREs and delay diagnosis and remediation.

To better determine which alerts warrant reduction, we
correlated system incident records with detailed alert data. The
results reveal a marked discrepancy between the number of
actual failures and total alerts: some systems generate tens of
thousands of daily alerts without experiencing any failures.
Further investigation indicates that many of these alerts rep-
resent mere “noise”, triggered independently of failures. They
can be classified into two main categories:

o Persistent Alerts remain active whether or not the system
is functioning normally. As shown in Fig. 4, a high volume
of these alerts recurs daily without any concrete anomalies
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in the system. Typically, they arise from overly sensitive
thresholds in alert rules (e.g., a threshold is set so low that
normal fluctuations are flagged as anomalies), resulting in
continuous false positives.

o Periodic Alerts emerge at regular intervals, leading to
recurring alert storms. For example, as depicted in Fig. 5,
scheduled night-time restarts on a particular host cause a
surge in alerts each day. Because these restarts are not
indicative of failures, these alerts similarly constitute noise.

Such noisy alerts consume SRE resources during the Alert
Handling phase, hampering effective diagnosis. Consequently,
a dedicated denoising step is essential to filter out irrelevant
alerts while retaining those associated with system failures.
2) Problem 2: Low-quality Alert Rules: To investigate the
root causes behind frequent alert storms, we analyzed the alert
rules responsible for triggering these alerts. Our findings reveal
that the system contains an overwhelming number of alert
rules. For example, as shown in Fig. 4, system A alone has
59,607 active alert rules. A primary contributor to excessive
alert noise lies in the low quality of these rules, which are
manually created and suffer from two major deficiencies:

o Functionally Redundant Rules. Due to the lack of stan-
dardized rule design guidelines, multiple alert rules within
Company-X often overlap in functionality. For instance,
Rule-1 and Rule-2 in Fig. 2 both aim to detect whether
a pod is not in the Running state, yet they are implemented
separately and generate distinct alerts. In addition, different
engineers can define rules using varying combinations of
attributes (e.g., pod, namespace, container), resulting
in duplicate alerts that differ only in attribute values.

« Inappropriate Static Thresholds. Alert rules in Company-
X frequently rely on fixed thresholds (e.g., a CPU utilization
threshold of 40% as shown in Fig. 2), which do not adapt
to dynamic system behaviors or workload variations. As a
result, these rigid thresholds often lead to false positives
(i.e., normal fluctuations being misclassified as anomalies)
which ultimately flood SREs with irrelevant alerts.

These issues highlight the urgent need for a Alert Rule
Refinement process to eliminate redundancy, adapt thresholds
to evolving environments, and reduce unnecessary alert noise.

C. Why Our Existing Alert Systems Do Not Help?

1) Limitation 1: Obsolete Alert Denoising Mechanism:
In our existing Alert Management System, the alert denoising
module predominantly handles alerts defined by fixed attribute
combinations [17], [21], [23]. The primary denoising strategy
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relies on pairwise co-occurrence frequencies among monitored
entities, which was adequate for earlier simplistic systems.
However, as the number of managed systems increases and
their underlying architectures become more complex, alerts in
Company-X now encompass significantly broader and more
diverse attributes (see Fig. 6). Consequently, the prolifera-
tion of attribute combinations exacerbates the issue of low
pairwise co-occurrence frequencies, with many alert entities
co-occurring only a few times (see Fig. 7). In addition to
the high volume of attribute combinations, certain attributes,
such as IP addresses and Pod IDs, have extensive value
ranges. As illustrated in Fig. 8, over 90% of attributes possess
more than 200 potential values, exceeding the capability of
the current denoising approach to handle such large-scale
variability. As illustrated in Fig. 8, over 90% of attributes
possess more than 200 potential values, which exceeds the
current denoising approach’s capability to handle such large-
scale variability, leading to Problem 1 (§1I-B1). Therefore,
a more adaptable alert denoising method is imperative, one
capable of accommodating the vast number of attributes and
their increasingly diverse value distributions.

2) Limitation 2: Missing Alert Summary Process: Even
after denoising, individual systems can still generate numerous
alerts that require further interpretation. In current practice,
these alerts are listed one by one and missing an overarching
narrative or aggregated view. Moreover, these individual alerts
flag deviations from normal patterns without providing the
essential context needed to understand their significance or
root causes. This contextual vacuum forces SREs to engage
in time-consuming investigations, manually correlating frag-
mented information from disparate sources, such as system
documents, alert explanations, and incident tickets, to un-
derstand underlying issues. The heavy reliance on human
expertise creates bottlenecks in the diagnosis process, delaying
resolution. To address this, an automated alert summarization
module is needed to translate cryptic alerts into actionable in-
sights, leveraging internal knowledge (e.g., system documents,
alert rule explanations, incident tickets) to provide a coherent
summarization explaining what the issue is, why it occurred,
and how to resolve it.

3) Limitation 3: Missing Alert Rule Refinement Process:
In addition to the challenges encountered during alert handling,
our current system suffers from limited alert rule management
(§ II-B2). Once an alert rule is generated in Company-X, it is
often considered valid indefinitely, lacking an iterative Alert
Refinement phase in its lifecycle. However, real-world systems
frequently undergo changes in traffic patterns and operating
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environments, rendering static rules increasingly susceptible to
persistent false alarms. Because SREs are often preoccupied
with real-time production incidents, there is little opportunity
to feed operational insights (e.g., diagnosis result) back into
rule design and maintenance, leading to a gradual decline in
overall alert policy effectiveness.

III. EXPERIENCE OF DESIGNING ALERTGUARDIAN

To overcome the limitations of our alert system (§II-C), we
propose a new alert system, named AlertGuardian, designed to
manage the entire alert life-cycle. Fig. 9 shows the overview of
AlertGuardian, comprising three key phases: () Alert Denoise
(§ 1II-A) filters out high-frequency and periodic alerts based
on a graph model, cutting down on noise in real-time. ) For
remaining important alerts, Alert Summary (§ 11I-B) provides
concise summaries (e.g., potential causes and recommended
solutions) for on-call engineers based on a RAG-enhanced
LLM. @) For noisy alerts, Alert Rule Refinement (§ 111-C)
optimizes rules for noisy alerts as an offline task based a RAG-
enhanced LLM and multi-agent workflow, driving continuous
improvement of alert rule quality.

A. Alert Denoise

To address the obsolete alert denoising mechanism identified
in our existing system (§II-C1), this study proposes a graph
learning model to effectively handle the vast number of
alert attributes and their increasingly diverse attribute value
distributions. Instead of leveraging LLM, we opted for a
traditional lightweight model for two key reasons: (1) Cost
Efficiency: Our systems generate a massive number of alerts
daily (§II-B1), and using LLM would incur significant token
costs, making it economically unfeasible. (2) Inference Speed:
The inherent latency of LLMs, stemming from their autore-
gressive, token-by-token generation process and substantial
computational overhead, presents a critical bottleneck [26].
When processing high-volume alert streams, this latency



makes it infeasible to meet the stringent requirements of real-
time diagnosis.

1) Alert Preprocess: For the given alert dataset, we initially
segment it into discrete 1-minute time windows to facilitate
analysis. Notably, certain alert rules incorporate a pre-defined
duration. For example, alerts triggered by Rule-1 in Fig. 2,
if unresolved, persist as active for 5 minutes post-firing. To
accurately represent this persistence, we duplicated these alerts
across the subsequent 5 time windows following their initial
occurrence. To isolate noisy alerts from important ones, we
introduce a virtual noisy alert, fired every minute to emulate
persistent noise patterns. The core intent behind mandating
the virtual noisy alert’s presence each minute is to pinpoint
real alerts exhibiting high co-occurrence frequencies with it.
These alerts are likely indicative of persistent noise (e.g., false
positives from heartbeat checks) that requires exclusion.

For time window ¢, we construct a relationship matrix M;
to quantify the co-occurrence frequency among the alerts. If
alert u and alert v co-occur in this window, the corresponding
element M;[u,v] is marked as 1; otherwise, it is 0. Spanning
the time windows from 1 to 7, we obtain a sequence of T
co-occurrence matrices, denoted {Mj, Ms,...,M;}. These
matrices are subsequently aggregated to form a statistical co-
occurrence matrix M, encapsulating the co-occurrence rela-
tionships among alerts over the entire period. This aggregation
yields a sparse matrix M, offering a concise representation of
alert co-occurrence suitable for further analysis.

Subsequently, we seek to derive embeddings for the alerts
to support advanced modeling efforts. Directly computing
embeddings for all alert presents challenges due to their vast
quantity. To address this, we compute embeddings for individ-
ual alert attributes and derive each alert’s embedding by aggre-
gating its constituent attribute embeddings. However, certain
attributes, such as Pod ID, possess extensive value spaces and
primarily function as entity identifiers rather than indicators
of anomalous behavior. Directly embedding these attributes
would necessitate processing an excessive number of values,
thereby diluting the focus on features pertinent to anomalies.
To counter this, we anonymize such identifier attributes by
converting their values to a standardized format, “ANON_"
appended with the attribute name (e.g., “ANON_POD_ID”).
This anonymization reduces the cardinality of attribute values,
allowing the algorithm to prioritize computational resources on
features directly associated with system anomalies.

2) Graph Learning Model Training: Alerts in a system
exhibit complex temporal and content-based relationships [27].
AlertGuardian model temporal correlation using graph struc-
tures, where alerts are nodes, and virtual noisy nodes connect
to all alerts to simulate persistent alerts. For each node pair
(u,v), edge attributes are defined by co-occurrence frequency
k and total occurrence count ¢ across all time points. To
address content correlation, we adopt a unique attribute-value
encoding approach to capture similarity among alerts. Unlike
traditional bag-of-words encoding [28], we assign a unique
code to each attribute-value pair without considering seman-
tics, focusing on identical pairs. Specifically, we sequentially
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Fig. 10: Example of alert denoise process.

encode attribute-value pairs based on their dataset appearance
order. For two alerts, if they share more identical attribute-
value pair codes, they are considered more similar.

Our model GraphGuardian integrates Large-Scale Informa-
tion Network Embedding (LINE) [29] with the Transformer
architecture [30] to capture local and global alert relationships.
LINE directly utilizes the co-occurrence frequency of alerts to
learn embeddings. If two alert nodes are frequently directly
connected (high co-occurrence count), their embedding vectors
will be very close in space. This is local structural information
based on “first-order” and ‘“‘second-order” proximity. Trans-
former analyzes all attribute-value pair codes of an alert simul-
taneously through its self-attention mechanism. It is capable
of learning more complex higher-order dependencies that go
beyond simple pairwise co-occurrences.This ability allows it
to understand the global contextual information within an alert.

For alert pairs (u, v), embeddings h,, and h,, are generated,
with similarity measured by the squared cosine distance:

hy-hT \?
d hu7 hv) - (1 - ’U«v) 3 (1)
( TealTia]

where distance d(h,,, h,) — 0 indicates high dissimilarity and
d(hy, h,) — 1 indicates high similarity.

To handle low-frequency alerts, we use maximum likelihood
estimation (MLE) as the loss function, which is less sensi-
tive to infrequent alerts than traditional methods (e.g., mean
squared error (MSE), mean absolute error (MAE)). MLE treats
co-occurrence frequency as a binomial distribution, optimizing
parameters by maximizing the likelihood:

Binomial(k, ¢, p) = (;) (1 —p)ek, )

where p = d(hy,h,). We chose the binomial distribution
because it is less sensitive to low-frequency events, which is
very important in our sparse data scenario. The loss is the
negative logarithm of the probability mass function:

loss = — log(Binomial(k, ¢, p)). 3)

We use the Adam optimizer [31] for efficient parameter
updates, combining stochastic gradient descent with adaptive
learning rates and momentum. In each iteration, a random alert
pair is processed, with the Transformer capturing global de-
pendencies and LINE preserving local connectivity. Minimiz-
ing MLE loss improves model performance and generalization.

3) Model inference: During online inference, our graph-
based model processes incoming alerts to distinguish critical
alerts from noise in real-time. AlertGuardian measures the
similarity between alert and virtual alerts based on node-to-
node associations, as detailed in Eq. 1. The higher similarity
indicates a higher likelihood of being a noise. To determine



noisy alerts, we introduce a similarity threshold 6 € [0,1].
Alerts with d(hy, hy,,.) > 0 are classified as noise, while
others are deemed important. A higher 6 increases precision
by filtering more alerts, but risks missing critical ones, while a
lower 6 improves recall at the cost of retaining more noise. In
practice, a default 6 value of 0.7 is recommended. This value
strikes a balance by classifying alerts with a moderately high
similarity to the virtual noisy node as noise, while preserving
alerts with a lower similarity as potentially critical. Fig. 10
shows an example of an alert denoise process.

Deployment Experience 1: A virtual persistent noisy
alert identifies persistent noise patterns via co-occurrence
analysis. Anonymizing high-cardinality attributes reduces
computational overhead, focusing on anomaly features.

B. Alert Summary

Even after the denoising stage, AlertGuardian can still
produce multiple critical alerts (e.g., more than a dozen),
posing a risk of overwhelming SREs. As shown in Limitation 2
(§ II-C2), individual alerts flag deviations from normal patterns
without providing the essential context needed to understand
their implications or root causes. To address this limitation,
Alert Summary module employs RAG to incorporate internal
knowledge (e.g., system documents, alert rule explanations, in-
cident tickets) of Company-X into an LLM, thereby generating
concise yet actionable alert summaries (e.g., fault explanations,
localization, and resolutions).

Why LLM? LLMs are sophisticated neural networks, ex-
tensively trained to comprehend and generate text with high
contextual awareness. Their key advantage for alert contextu-
alization lies in their natural language processing capabilities,
which enable them to interpret technical alert data and translate
it into coherent, human-readable narratives, highlighting both
symptoms and potential causes. This bridge between machine-
generated outputs and human operators significantly acceler-
ates comprehension and response.

Why Connect LLMs to RAG? LLMs have static, general-
purpose knowledge, but lack access to private operational
insights (e.g., alert rule definitions or tailored troubleshooting
steps) of Company-X. While fine-tuning an LLM for alert
summary is possible, it demands significant computational
resources, domain-specific datasets, and risks becoming out-
dated or overfitted. In contrast, RAG provides a straightfor-
ward alternative: it embeds relevant internal documents in
a vector database and retrieves Top-K related excerpts to
contextualize the LLM prompts dynamically [32]. Because
Company-X already hosts a mature RAG system for SRE
queries, AlertGuardian simply reuses this existing infrastruc-
ture. Considering the real-time nature of diagnosis, we employ
the general LLM model Deepseek V3 [33] instead of reasoning
model for faster inference speed.

Once Alert Denoise module (§III-A) produces its refined
alert set, Alert Summary module proceeds as follows:

(1) Per-Alert Retrieval: For each critical alert in a one-
minute window, a RAG query uses its attributes (e.g.,
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Fig. 11: Multi-agent workflow of Alert Rule Refinement.

rule, component) to retrieve relevant chunks (e.g., alert
rule explanation, incident tickets).

(2) Context Fusion: Chunks are filtered for relevance and
augmented with a cached system context summary (e.g.,
recent system state).

(3) LLM Actionability and Summary: LLM evaluates action-
ability across the batch, analyzing alerts, knowledge frag-
ments, and relationships (e.g., temporal or causal). If an
alert is deemed non-actionable (e.g., transient anomaly),
the system remains silent, requiring no SRE intervention.
Conversely, actionable alerts yield a consolidated fault
summary that describes the root cause, an explanation, a
proposed solution, and references to pertinent knowledge.

This pipeline applies chain-of-thought reasoning [34]. Upon

determining an alert to be actionable, the module outputs a

structured report encompassing:

o Alerts. Lists up to five alerts most relevant to the current

diagnostic process.

« Root Cause. Root cause component leading to the anomaly.

« Explanation. A rationale underpinning the fault diagnosis.

« Solution. Concrete remediation steps for the root cause.

« Reference. Pertinent knowledge link to documents.

Deployment Experience 2: By leveraging RAG, Alert
Summary dynamically retrieves internal knowledge, en-
abling context-aware summaries without costly fine-tuning.

C. Alert Rule Refinement

To overcome Limitation 3 (§II-C3), Alert Rule Refinement
module optimizes rules responsible for noise alerts identified
by denoising module (§III-A). This process reduces recurring
noise while maintaining sensitivity to critical alerts. Rather
than creating new rules, which could introduce syntax errors or
inaccuracies due to LLM randomness [11], the module refines
existing rules using the LLM capacity, leveraging alert context
and current rule definitions for enhanced precision.

Multi-Agent Workflow. As shown in Fig. 11, Alert-
Guardian introduces a multi-agent workflow to refine alert
rules, executed every large time window (30 minutes by
default) to balance efficiency and effectiveness. Agents col-
laborate in a pipeline without a central orchestrator, ensuring
streamlined communication. Within a time window, all alerts
triggered by a rule are aggregated and based on the denoising
module’s results, they are classified into noise and critical
alerts. For each rule, the workflow is structured as follows:
(1) Detect Agent is used to identify noise patterns with two

specialized tools: (i) Clustering Tool applies the HDB-
SCAN algorithm [35] to group noise alerts by attributes
(e.g., rule name, explanation, attributes), detecting patterns
like semantically similar alerts without predefined cluster



counts. (ii) Periodicity Pattern Tool identifies persistent or
periodic alerts (e.g., daily CPU spikes) based on frequency
and timing. Detect Agent categorizes alerts into clusters
or patterns requiring refinement.

(2) RAG Agent queries the RAG Vector DB for each catego-
rized group, aggregating key attributes to retrieve relevant
knowledge chunks (e.g., rule explanation).

(3) Rule Agent: Refines rules by analyzing categorized alerts
and retrieved chunks, employing four policies:

e Rule Deduplication: Identifies and merges redundant
rules by comparing their semantic intent and oper-
ational overlap, using LLM-driven natural language
understanding to ensure functional equivalence while
simplifying the rule set.

o Rule Aggregation: Consolidates rules targeting similar
alerts (e.g., Rule-1 and Rule-2 in Fig. 2 both focus
on pod not-ready status) by generalizing attributes and
introducing conjunctive conditions (e.g., AND logic).
The LLM infers common patterns across alerts and
proposes unified rules that reduce redundancy while
maintaining coverage.

o Threshold Adjustment: Analyzes statistical distributions
of metrics (e.g., CPU usage, latency) from the knowl-
edge base, using LLM to recommend adaptive thresh-
olds that align with traffic patterns, seasonal variations,
or anomaly trends. For instance, it would adjust a CPU
alert threshold from 40% to 60% in Fig. 2 based on
historical data correlations, suppressing noise without
missing critical events.

o Temporal Analysis: Incorporates time-based conditions
for recurring patterns (e.g., excluding maintenance win-
dows or silencing daily spikes). The LLM enhances this
by predicting optimal time windows from contextual
cues and suggests precise temporal filters (e.g., “trigger
only if sustained for 5 minutes”).

The Rule Agent’s LLM also generates detailed rationales

for each refinement (e.g., “Threshold raised to 60% based

on 95th percentile of last 30 days’ data”), enhancing
transparency and trust.

(4) Review Agent validates refined rules using a syntax check-
ing tool to ensure rule integrity and a simulation tool that
tests rules against historical alerts, confirming noise re-
duction without compromising critical alerts. If validation
fails, the Review Agent triggers iterative refinement.

Iterative Feedback Loop. The Detect Agent, Rule Agent,
and Review Agent form a feedback loop to iteratively refine
alert rules until they meet precise stopping conditions, ensuring
reliability and effectiveness. The loop terminates when all the
following criteria are satisfied:

o Syntax Integrity: Refined rules must be free of syntax
errors, verified by the Review Agent’s syntax checking tool,
ensuring they are executable by the alert system.

o Preservation of Critical Alerts: Refined rules must retain
all critical alerts, confirmed by the Review Agent’s simula-
tion tool, which tests rules against historical data to ensure

TABLE I: Detailed information on production datasets.

Dataset | Domain | #Rule | #Alert | #Incident
A Game 12,960 | 2,853,345 138
B Office 3,544 1,243,259 114
C Media 59,607 3,883,293 187
D Education 6,962 2,692,964 179

no critical alerts are suppressed.

« Noise Reduction Threshold: The noise alert ratio (pro-
portion of non-critical alerts) must fall below a predefined
threshold (5% by default), as evaluated by the Review
Agent’s simulation tool against historical data, while main-
taining full coverage of critical alerts.

During each iteration, the Review Agent assesses the refined
rules against these criteria using inputs from the Detect Agent.
If any condition is not met, such as syntax errors, loss
of critical alerts, or a noise ratio above the threshold, the
Review Agent provides targeted feedback to the Rule Agent,
prompting further refinement. This process continues until all
stopping conditions are satisfied, ensuring robust optimization.
If the above conditions are not met after 30 iterations, the
optimization process for the rule is terminated and the rule
remains unoptimized to prevent excessive computational over-
head. The refined rules are then submitted to the SREs for
final approval, maintaining a human-in-the-loop framework to
ensure operational trust and accountability.

Deployment Experience 3: The iterative feedback loop
and LLM-generated rationales provide SREs with transpar-
ent insights, boosting confidence in rule adjustments.

IV. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of AlertGuardian, we con-
ducted an experimental study aimed at addressing the follow-
ing research questions (RQ):

« RQ1: How does AlertGuardian perform in alert denoise?
« RQ2: How does AlertGuardian perform in alert summary?
e RQ3: How well does AlertGuardian refine alert rules?

A. Experiment Setup

Dataset. We collected alert and alert rule data from four
large-scale cloud systems at Company-X, supporting gaming,
office, media, and education services. As shwon in Table I,
these datasets, denoted A, B,C, and D, each span 9 days
and encompass thousands of services, generating hundreds of
thousands of alerts daily. Alerts and alert rules in Company-
X conform to the Prometheus generic alarm system format,
ensuring the generalizability of our approach. Each dataset
includes over 100 incidents, with annotations for critical alerts
and root cause components. Table I summarizes the dataset
characteristics.

Implementation. We implemented AlertGuardian using
Python 3.7.2 and PyTorch 1.13.1 [36]. The graph learning
model for alert denoising was trained on alerts from the first 6
days of each dataset and evaluated on the final 3 days to ensure
temporal separation between training and testing. For alert



summarization and rule refinement, we leveraged Company-
X’s existing RAG infrastructure, which stores operational
knowledge in a vector database. The RAG system, widely
adopted by 86% of enterprises deploying LLMs [37], enhances
generalizability. We use Deepseek V3 [33] in alert summary
and use Deepseek R1 [38] in alert rule refinement provided
by Company-X by default. All experiments were conducted
on a server running TencentOS Server 3.2, equipped with a
24-core Intel Xeon E5-2690 v3 CPU, 128 GB of RAM, and
an NVIDIA Tesla V100 GPU.

B. RQI: Performance in Alert Denoise

We evaluated the effectiveness of AlertGuardian in alert
denoising from the following three aspects:

« RQ1.1: What is the extent of alert volume reduction
achieved by AlertGuardian?

« RQ1.2: How accurately does AlertGuardian retain critical
alerts for identifying failures?

« RQ1.3: How efficient is the alert denoise process?

Evaluation metrics. For RQ1.1, we quantified alert reduc-
tion using the reduction ratio, defined as: N NM , where N is
the initial number of alerts, and M is the number of alerts
remaining after denoising. This metric reflects the reduction
in alert burden for SREs. For RQ1.2, we assessed the accuracy
of retaining critical alerts using Precision (P), Recall (R), and
Fl-score (F1). Precision is the proportion of critical alerts
among the retained alerts, Recall is the proportion of true
critical alerts retained relative to all true critical alerts, and F1-
score is their harmonic mean, providing a balanced measure
of accuracy. Critical alerts were derived from SRE-provided
incident reports, serving as ground truth. For RQ1.3, we
measured computational efficiency by recording the average
inference time per alert batch (processed in 1-minute windows)
on the experimental hardware.

Baselines. We compared AlertGuardian against the follow-
ing baseline methods to contextualize its performance:

o Severity-based method is a common heuristic where only
alerts with high severity (e.g., critical level in our datasets)
are prioritized, reflecting typical SRE practices.

e Cluster-based method UHAS [17] uses Extreme Value The-
ory (EVT) [39] and Isolation Forest [40] for clustering,
retaining only alerts corresponding to cluster centroids.

o Window-based method OAS [15] suppresses a new alert
with A% if it is sufficiently similar to a precedent alert A%’
and t; — tg < w. We set the window size w to 1 minutes.

o AlertGuardian without Anonymization (AlertGuardian w/o
Non): A variant of AlertGuardian without attribute
anonymization, to evaluate the impact of anonymization on
denoising performance.

RQ1.1: Effort Reduction. The experimental results in
Table. II show that AlertGuardian achieves the highest alert
reduction ratios across four cloud systems, ranging from
93.82% to 95.50%, significantly outperforming all baseline
methods and demonstrating its superior ability to filter noise.
Its success is attributed to the graph learning model and

TABLE II: Comparison of alert reduction ratios.

Alert Reduction Ratio(%)

Method

A B C D
AlertGuardian 95.10 93.82 9550 95.00
AlertGuardian w/o Anon  90.20 88.00 90.00 89.00
Severity 85.04 83.92 8500 84.00
OAS [15] 88.00 87.00 88.00 87.00
UHAS [17] 91.00 89.00 91.00 90.00

attribute anonymization techniques. In contrast, AlertGuardian
w/o Anon, without anonymization, exhibits a 5-6% reduction
ratio drop (e.g., from 95.10% to 90.20% in dataset .A),
highlighting anonymization’s importance for handling high-
cardinality attributes like Pod IDs. Among baselines, severity-
based method performs worst due to its reliance on simplistic
heuristics, while UHAS and OAS show moderate performance
but lack precision.

RQ1.2: Denoise Accuracy. Figure 12 shows the de-
noise accuracy of AlertGuardian, AlertGuardian w/o Anon,
UHAS [17], OAS [15], and Severity-Based across four
datasets using Precision, Recall, and F1 Score. As shown in
Fig. 12, UHAS and OAS achieve high precision but low recall,
as their clustering (UHAS) and window-based suppression
(OAS) mechanisms discard some critical alerts, limiting their
effectiveness for fault diagnosis. In contrast, AlertGuardian
outperforms both, yielding higher precision and recall while
retaining fewer alerts, enhancing fault diagnosis efficiency
in large-scale systems. The AlertGuardian w/o Anon variant
shows reduced performance, underscoring the critical role
of anonymization in handling high-cardinality attributes and
improving noise filtering. These results highlight the superior
balance of precision and recall, making it a robust solution for
reliable alert management.

RQ1.3: Efficiency of Alert Denoise. Our objective is to
swiftly handle online alert storms and assist SREs in fault
remediation, necessitating a highly efficient, low-latency sys-
tem. During the offline training phase, we employ a distributed
framework (i.e., Ray [41]) with data parallelism. The training
complexity is approximately O(N? x M), where N is the
number of alert entities and M is the number of training
epochs. This process is highly efficient in practice: training
on a dataset with one million alert (N = 10°) takes only 20
minutes, and for a typical cloud system with data from the
last seven days (under five million alerts), training completes
within 100 minutes. For online inference, the alert volume
for a single system per minute usually stays below 1000.
The computational complexity for this stage is approximately
O(N?), enabling the system to perform alert denoising and
summary extraction in under 200 milliseconds. Furthermore,
response times can be further optimized through techniques
like caching for accelerated data access.

C. RQ2: Performance in Alert Summary

To evaluate the effectiveness of alert summary results,
we conducted experiments without labeled summary data,
combining quantitative and qualitative metrics. Quantitative
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TABLE III: Comparison of alert summary performance.

Method Action Acc.(%) RCA(%) Action Rele.
AlertGuardian (DeepSeek) 98.5 90.5 4.8 4.9
AlertGuardian w/o RAG 86.5 82.5 3.0 3.1
AlertGuardian (Qwen) 91.5 88.0 4.0 4.5
OAS [15] 70.0 64.5 - -
UHAS [17] 72.5 67.0

metrics included Action/No-Action Accuracy (accuracy in
classifying summaries as requiring action or not, validated
against incident reports) and Root Cause Analysis Accuracy
(accuracy in identifying root causes, assessed via heuristic
matching with incident report annotations). Qualitative assess-
ment involved two SREs scoring summaries for Actionability
and Relevance (1-5 scale). Due to the high cost of manual
labeling, we focused solely on Dataset 4. We compared
AlertGuardian (RAG + Deepseek V3) against two methods
OAS [15] and UHAS [17] that are not based on LLM and two
methods AlertGuardian w/o RAG and AlertGuardian (RAG +
Qwen 2.5 72B) that are based on LLM.

As shown in Table III, AlertGuardian achieves the best
performance, with Action Accuracy of 98.5%, RCA Accuracy
of 90.5%, Actionability of 4.8, and Relevance of 4.9. Its RAG-
based approach with Deepseek V3 leverages retrieved context
to produce concise, actionable summaries that effectively
identify critical alerts and root causes. The AlertGuardian with
Qwen 2.5 72B baseline performs well but is limited by the
smaller model size of Qwen 2.5 72B, reducing its capacity
for nuanced summarization. AlertGuardian w/o RAG shows
significantly lower performance, as the lack of background
knowledge hampers Deepseek V3’s ability to contextualize
alerts. Non-LLM baselines, UHAS and OAS, yield poor quan-
titative results and are incapable of generating interpretable
summaries, rendering Actionability and Relevance scores in-
applicable. Their clustering and window-based mechanisms
oversimplify alert relationships, missing critical fault details.
The superior quantitative and qualitative performance demon-
strates its efficacy in reducing alert fatigue while enhancing
fault diagnosis in large-scale cloud systems.

D. RQ3: Performance in Alert Rule Refinement

As described in §III-C, AlertGuardian employs four poli-
cies: Rule Deduplication, Rule Aggregation, Threshold Ad-
justment, and Temporal Analysis. New rules are recommended
to SREs, who assess their acceptance. Table IV presents
the performance of AlertGuardian, recommending 221-375
rules across datasets, with 73—117 accepted (accept rates
31.2-33.0%). Rule Deduplication achieves the highest accept
rates (80.0-83.3%) due to its clear identification of redundant
rules. Using LLM-driven semantic analysis, AlertGuardian

TABLE IV: Rule refinement performance of AlertGuardian.

Dataset Policy Recommend  Accept  Accept Rate(%)

Rule Deduplication 50 40 80.0

Rule Aggregation 100 28 28.0

A Threshold Adjustment 80 20 25.0
Temporal Analysis 75 8 10.7

Total 305 96 315

Rule Deduplication 36 30 83.3

Rule Aggregation 75 22 29.3

B Threshold Adjustment 60 14 233
Temporal Analysis 50 7 14.0

Total 221 73 33.0

Rule Deduplication 62 50 80.6

Rule Aggregation 120 35 29.2

C Threshold Adjustment 100 25 25.0
Temporal Analysis 93 7 7.5

Total 375 117 31.2

Rule Deduplication 46 38 82.6

Rule Aggregation 90 26 28.9

D Threshold Adjustment 70 17 243
Temporal Analysis 67 8 11.9

Total 273 89 32.6

detects overlapping rules, offering low-risk simplifications
that SREs readily accept to reduce noise. Rule Aggregation
and Threshold Adjustment yields moderate accept rates, as
consolidating similar alerts and adjusting threshold risks over-
generalization, requiring SRE validation. Temporal Analysis
records the lowest accept rates, as time-based conditions are
error-prone in variable workloads.

V. DISCUSSION

A. Success Stories

In February 2024, alert denoise module of AlertGuardian
was deployed at Company-X, remaining in stable operation
for over a year. Its alert summary and rule refinement modules
have been in pilot use for more than three months in System A,
one of Company-X ’s major gaming platforms supporting tens
of millions of users in real-time multiplayer game sessions.
Prior to implementing AlertGuardian, System A faced severe
alert storms: over 30,0000 alerts were generated daily from
more than ten thousand rules.

AlertGuardian effectively addresses the alert storms with
three core features, significantly improving both system relia-
bility and operational efficiency:

o Alert Denoise. Leveraging graph-based learning and at-
tribute anonymization, AlertGuardian reduces the system’s
daily alerts by 95%, from 300,000 down to about 15,000 per
day (averaging 10 alerts per minute). Meanwhile, critical
alerts maintain an Fl-score of 0.92, enabling downstream
components to focus on pivotal alerts and filter out a large
volume of irrelevant noise.



o Alert Summary. For the alerts remaining in each one-
minute window after denoising, alert summary module
determines whether SRE intervention is required. If not,
the system remains silent; otherwise, it clusters key
alerts, identifies root causes, generates succinct summaries,
and recommends solutions. This action/non-action decision
achieves 98% accuracy, substantially alleviating “alert fa-
tigue” among SREs. The mean time to recovery (MTTR)
dropped from an average of 156 minutes to 21 minutes,
improving efficiency by a factor of 7.4.

o Alert Rule Refinement. By analyzing noisy alerts flagged
by the alert denoise module, AlertGuardian generated over
300 rule optimization proposals, with near 100 adopted by
SREs. Through continuous refinement, the system elimi-
nates over 50,000 false positives per day.

B. Lessons Learned

The development and deployment of AlertGuardian at
Company-X have provided valuable insights into effective alert
life-cycle management for large-scale cloud systems.

Hybrid Model Approach Balances Efficiency and Con-
textual Depth. AlertGuardian combines a lightweight graph
learning model for alert denoising with a LLM for alert
summarization, optimizing both computational efficiency and
narrative richness. The small model leverages graph-based
techniques to process high-volume alert streams, filtering
noise while preserving critical signals. In contrast, the LLM
enhances summarization by generating human-readable narra-
tives that contextualize alerts with system dependencies and
operational insights. This hybrid strategy demonstrates that
integrating small models for scalable processing with LLMs
for advanced semantic understanding can address diverse
requirements in alert management effectively.

RAG-Enabled Knowledge Integration Enhances Scala-
bility. By employing RAG, AlertGuardian seamlessly incorpo-
rates private system documentation and operational knowledge
without the need for resource-intensive fine-tuning. RAG re-
trieves relevant context, such as alert rule explanations and
incident records, enabling the LLM to produce informed
summaries that align with the organization’s proprietary envi-
ronment. This approach highlights the power of RAG as a cost-
effective method to enhance alert contextualization, making it
adaptable to domain-specific needs in complex cloud systems.

Iterative Feedback Loop Drives Rule Optimization. The
rule refinement process relies on an iterative feedback loop
that continuously improves alert rules by incorporating insights
from noise detection and validation. Agents analyze noise
patterns and propose rule optimizations, such as deduplication
or threshold adjustments, with LLM-generated rationales for
transparency. If proposed refinements fail to reduce noise or
suppress critical alerts, feedback triggers further iterations
until accuracy is achieved. Final proposals are validated by
SREs, ensuring a human-in-the-loop approach. This mecha-
nism underscores the importance of iterative refinement to
adapt rules to evolving system dynamics, maintaining long-
term effectiveness with minimal manual intervention.
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C. Threats to Validity

Internal Threats. Potential biases in data labeling could af-
fect evaluation metrics. To mitigate this, we relied on rigorous
incident reports and annotations validated by multiple SREs,
ensuring high-quality ground truth. Additionally, LLM hallu-
cinations posed a risk to summarization and rule refinement.
We addressed this by integrating RAG to anchor outputs in
verified knowledge and employing iterative feedback loops to
refine LLM-generated content, enhancing reliability.

External Threats. The datasets, sourced exclusively from
Company-X, may limit generalizability. However, we miti-
gated this by including four diverse domains (i.e., gaming,
office, media, and education) demonstrating the effective-
ness of AlertGuardian across varied workloads. Furthermore,
Company-X ’s use of Prometheus-based alert rules [12], a de
facto industry standard widely adopted in cloud monitoring,
ensures strong compatibility and applicability to other systems,
bolstering the framework’s external validity.

VI. RELATED WORK

Alert Rule Management. Major cloud providers, such as
Azure [10], Google Cloud [42], and open-source tools like
Prometheus [12] and Grafana [43], offer robust alert rule
management capabilities, enabling users to create, modify,
and delete rules. These systems provide flexible interfaces for
defining thresholds and conditions but lack intelligent opti-
mization mechanisms to adapt rules dynamically. DEAR [44]
proposes evaluating existing rules to balance high accuracy and
low network traffic volume without administrative overhead.
However, DEAR primarily focuses on optimizing traffic trans-
mission rather than enhancing rule quality for alert reduction.
In contrast, AlertGuardian is the first to leverage LLMs for in-
telligent rule refinement, enabling iterative rule improvement.

Alert Management. Alert storms in large-scale cloud
systems have been widely studied, with several approaches
proposed to mitigate their impact on SREs [13]-[17], [22].
Alert ranking methods [22], [45], [46] rank alerts by severity,
directing SREs to focus on the most critical issues first.
Other works employ alert correlation and aggregation tech-
niques [13]-[15], [47], grouping related alerts into single inci-
dents to reduce the number of actionable items. Additionally,
alert denoising approaches [17], [19] identify and suppress
noise alerts to alleviate SRE burden. However, these methods
assume fixed alert attributes, failing to handle real-world sce-
narios where attribute counts vary due to system complexity.
COLA [48] leverages LLMs’ natural language understanding
to group related alerts. However, COLA does not address
the attribute combination explosion and requires substantial
labeled data for supervised fine-tuning (SFT), which is often
scarce in real-world alerts. AlertGuardian addresses these gaps
with an unsupervised framework that accommodates variable
attributes. Furthermore, by integrating RAG-enhanced LLM
summarization, our approach provides actionable narratives for
critical alerts, accelerating RCA.



VII. CONCLUSION

In this paper, we tackle the challenge of alert storms from

the

alert life-cycle management perspective. We introduce

AlertGuardian, a novel framework that combines lightweight
graph models with LLMs to optimize the entire alert life-cycle.
Its central idea is twofold: On the online side, AlertGuardian
first identifies and filters out noisy alerts, then leverages inter-
nal system knowledge to analyze and summarize the remaining
critical alerts based on LLMs for rapid fault diagnosis. On the
offline side, AlertGuardian applies LLM-based rule refinement
to address the underlying causes of noisy alerts, ultimately
preventing recurring alert storms at their source. This inte-
grated strategy not only reduces the immediate burden of alert
overload but also improves long-term system maintainability.
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