
ChangeRCA: Finding Root Causes from Software Changes in
Large Online Systems

GUANGBA YU, Sun Yat-sen University, China
PENGFEI CHEN, Sun Yat-sen University, China
ZILONG HE, Sun Yat-sen University, China
QIUYU YAN, Tencent, China
YU LUO, Tencent, China
FANGYUAN LI, Tencent, China
ZIBIN ZHENG, Sun Yat-sen University, China

In large-scale online service systems, the occurrence of software changes is inevitable and frequent. Despite
rigorous pre-deployment testing practices, the presence of defective software changes in the online envi-
ronment cannot be completely eliminated. Consequently, there is a pressing need for automated techniques
that can effectively identify these defective changes. However, the current abnormal change detection (ACD)
approaches fall short in accurately pinpointing defective changes, primarily due to their disregard for the
propagation of faults. To address the limitations of ACD, we propose a novel concept called root cause change
analysis (RCCA) to identify the underlying root causes of change-inducing incidents. In order to apply the
RCCA concept to practical scenarios, we have devised an intelligent RCCA framework named ChangeRCA. This
framework aims to localize the defective change associated with change-inducing incidents among multiple
changes. To assess the effectiveness of ChangeRCA, we have conducted an extensive evaluation utilizing a
real-world dataset from WeChat and a simulated dataset encompassing 81 diverse defective changes. The
evaluation results demonstrate that ChangeRCA outperforms the state-of-the-art ACD approaches, achieving
an impressive Top-1 Hit Rate of 85% and significantly reducing the time required to identify defective changes.

CCS Concepts: • Software and its engineering→Maintaining software; Software reliability; Software
performance.

Additional Key Words and Phrases: Software Change, Root Cause Analysis, Online Systems

ACM Reference Format:
Guangba Yu, Pengfei Chen, Zilong He, Qiuyu Yan, Yu Luo, Fangyuan Li, and Zibin Zheng. 2024. ChangeRCA:
Finding Root Causes from Software Changes in Large Online Systems. Proc. ACM Softw. Eng. 1, FSE, Article 2
(July 2024), 23 pages. https://doi.org/10.1145/3643728

1 INTRODUCTION
In modern software engineering, monolithic applications are experiencing a transformation towards
microservice architecture to enhance agility and reduce the time of new feature releases by enabling
continuous integration and continuous delivery (CI/CD). Despite the implementation of rigorous

Authors’ addresses: Guangba Yu, Sun Yat-sen University, Guangzhou, China, yugb5@mail2.sysu.edu.cn; Pengfei Chen, Sun
Yat-sen University, Guangzhou, China, chenpf7@mail.sysu.edu.cn; Zilong He, Sun Yat-sen University, Guangzhou, China,
hezlong@mail2.sysu.edu.cn; Qiuyu Yan, Tencent, Shenzhen, China, ireneyan@tencent.com; Yu Luo, Tencent, Shenzhen,
China, zekaluo@tencent.com; Fangyuan Li, Tencent, Shenzhen, China, leiffyli@tencent.com; Zibin Zheng, Sun Yat-sen
University, Zhuhai, China, zhzibin@mail.sysu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2994-970X/2024/7-ART2
https://doi.org/10.1145/3643728

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

HTTPS://ORCID.ORG/0000-0001-6195-9088
HTTPS://ORCID.ORG/0000-0003-0972-6900
HTTPS://ORCID.ORG/0000-0001-7963-082X
HTTPS://ORCID.ORG/0009-0009-9667-9276
HTTPS://ORCID.ORG/0009-0008-2652-6138
HTTPS://ORCID.ORG/0009-0004-4961-1053
HTTPS://ORCID.ORG/0000-0002-7878-4330
https://doi.org/10.1145/3643728
https://orcid.org/0000-0001-6195-9088
https://orcid.org/0000-0003-0972-6900
https://orcid.org/0000-0001-7963-082X
https://orcid.org/0009-0009-9667-9276
https://orcid.org/0009-0008-2652-6138
https://orcid.org/0009-0004-4961-1053
https://orcid.org/0000-0002-7878-4330
https://doi.org/10.1145/3643728

2:2 Guangba Yu, Pengfei Chen, Zilong He, Qiuyu Yan, Yu Luo, Fangyuan Li, and Zibin Zheng

testing methodologies prior to deployment and the utilization of canary release strategies [33],
bugs persist in the online environment due to the inherent heterogeneity of hardware and software
systems, as well as the complex interactions between various components [62]. Empirical studies
conducted on incidents generated in popular cloud platforms reveal that more than 40% of these
incidents are directly correlated to software changes [13, 22]. Therefore, improper management of
these changes can cause severe consequences, negatively impacting user experience and business
revenue [1, 11, 16, 28, 39].
Consequently, it is imperative for Site Reliability Engineers (SREs) to closely monitor services

that undergo changes using Key Performance Indicators (KPIs) to promptly identify and mitigate
defective changes during their earliest stages. Early identification of a defective change enables
software developers to halt the detrimental change and promptly initiate a rollback. However, a
larger online systems typically contains thousands of service and the frequency of software changes
in distributed systems can reach thousands of deployments per day [38]. The manual identification
of defective changes by SREs is not only time-consuming but also prone to errors.

Significant efforts have been made to automate the mitigation of the impact caused by defective
changes, with a focus on either abnormal change detection (ACD) [4, 30, 49, 57, 60, 63] or root
cause analysis (RCA) [17, 23, 35, 51, 52, 56, 61]. However, we identify two primary limitations of
existing ACD or RCA approaches in localize defective changes from massive changes.

• The overlook of anomalous propagation of defective changes in ACD. Existing ACD
approaches pay close attention to determine the presence of a defective change. These approaches
typically assess the abnormality of individual changes within a single service, without taking
into account the potential impact of abnormal change propagation from other services within the
system. Existing ACD approaches fall short in identifying defective changes in complex scenarios
that involve abnormal change propagation (details presented in § 3.3.3).

• Insufficient exploitation of change data in RCA.Most existing RCA approaches typically
utilize system runtime information (e.g., metrics) as input while neglecting the corresponding
change data (e.g., change flow). As a result, these approaches tend to localize root causes at the
service level rather than at the fine-grained change level. Once RCA results are obtained, SREs
are required to manually analyze which changes are responsible for the incidents, resulting in a
prolonged time to identify (TTI). A more comprehensive RCA analysis should be conducted for
change-inducing incidents to establish a clear linkage back to defective changes.

RCCA. To overcome the aforementioned limitations, we propose a novel concept called root
cause change analysis (RCCA) to identify the root cause changes of change-inducing incidents.
In this study, a root cause change refers to the defective change that triggers an incident. RCCA
takes into account the interdependencies among changes across different services, allowing for a
comprehensive analysis to localize root cause changes.
ChangeRCA. To apply the RCCA concept to practical scenarios, we design an intelligent

RCCA framework, ChangeRCA, to localize the defective change of change-inducing incidents
among multiple changes. The key idea of ChangeRCA is to combine valuable information from the
difference between pre-change and post-change instances, change flow, and service dependency
graph to perform RCCA effectively. When an incident occurs, suppose that ChangeRCA is triggered
with RCA service S𝑟𝑐𝑎 , ChangeRCA encompasses three primary stages. Stage 1○ Defective Canary
Change Identifier (§ 5.2) ascertains whether the incident is induced by a defective canary change. If
not, stage 2○ Non-change Fault Identifier (§ 5.3) investigates whether the incident is induced by
other non-change faults. If neither of the previous stages identifies the cause, stage 3○ Suspicious
Change Scorer (§ 5.4) identifies the suspicious changes within the service dependency graph of S𝑟𝑐𝑎
for SREs to check, ultimately helping SREs to localize the root cause change.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

ChangeRCA: Finding Root Causes from Software Changes in Large Online Systems 2:3

Y

N

Y

N N

Y

Rollback Rollback Rollbackpre-change post-change

Fig. 1. Workflow of a canary software change in industry.

Results. We conduct a comprehensive study on a real-world dataset from a large-scale online
system WeChat and a simulated dataset from a widely-used microservice benchmark OnlineBou-
tique (OB) [15] to evaluate the performance of ChangeRCA. Our experimental results demonstrate
that ChangeRCA can identify defective changes with 85% 𝐻𝑅@1 (Top-1 Hit-Rate), 96% 𝐻𝑅@3, and
outperform the ACD methods by 20%∼28% in 𝐻𝑅@1. Furthermore, ChangeRCA can locate 90% of
defective changes in less than 3 minutes in WeChat, a 90% reduction compared to ACD approaches.

Contributions. This study makes the following contributions:

• We propose a novel concept called root cause change analysis (RCCA) to identify the root cause
changes of change-inducing incidents. This concept takes into account the interdependencies
among changes across different services, providing a comprehensive approach for RCCA (§ 4.1).

• We introduce a novel approach called ChangeRCA that effectively identifies root cause changes
from a large number of normal changes. ChangeRCA assists SREs in focusing their attention on
defective changes and taking appropriate actions to prevent further service outages (§ 5).

• Extensive experiments show that ChangeRCA outperforms all the start-of-the-art approaches,
achieving 96% 𝐻𝑅@3 and effectively reducing the identification time. We have made our tool
and OnlineBoutique data available on GitHub [6] (§ 6).

2 BACKGROUND ANDMOTIVATION
2.1 Software Canary Release
In online service systems, software changes are both frequent and inevitable, necessitated by the
introduction of novel features, resolution of extant bugs, adaptation to evolving environmental
conditions, and enhancement of overall performance. To mitigate the inherent risks associated with
deploying new software versions, the canary release strategy has emerged as a prevalent technique
in software deployment [33]. This approach entails the incremental deployment of modifications
to a select group of users or a limited number of servers before the comprehensive implementation
across the entire user base or infrastructure. As illustrated in Fig. 1, the canary release process for a
given service typically encompasses the following sequential steps,

(1) Developers deploy the new version of a service to a restricted number of users or servers.
(2) Developers monitor the performance, stability, and user feedback of the post-change version

within the canary environment.
(3) If the post-change version exhibits suboptimal performance or issues are identified, developers

initiate a rollback of the post-change version to rectify the problem. Alternatively, developers
expand the release to more users or servers.

(4) Upon successful testing and confirmation of stability, the post-change version is deployed across
the entire user base or infrastructure step-by-step.

Introducing the change to actual production traffic enables developers to identify problems that
might not be visible in testing frameworks. The canary change strategy enables developers to
minimize the ramifications of potential issues arising from the new software version by confining
exposure to a narrowly defined group of users.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

2:4 Guangba Yu, Pengfei Chen, Zilong He, Qiuyu Yan, Yu Luo, Fangyuan Li, and Zibin Zheng

ACD

ACD

ACD

RCCA (,)

(a)	ACD	Process (b)	RCCA	Process

S1

S2

S3

S1

S2

S3 Normal Abnormal

Dependency

S3

Root	Cause	Change

Fig. 2. Comparison between abnormal change detection (ACD) and root cause change analysis (RCCA).

2.2 Comparison between ACD and RCCA
As the state-of-the-art defective change identification technique, current abnormal change detection
(ACD) approaches [50, 60, 63] typically employ continuous monitoring of KPIs or other failure
signals for pre- and post-change instances. Subsequently, they quantify the disparities in KPIs
between these groups to identify defective changes and provide recommendations for decision-
making, such as “go” or “no-go”. In this study, we present the formulation of the ACD process as
follows: given a system change action C planned to be rolled out on service S, the ACD approach
is utilized to detect whether C introduces anomalies to S. If S is identified as exhibiting abnormal
behavior, the change is promptly terminated and rolled back.
In real-world applications, it is common to have multiple change actions occurring within a

condensed timeframe. As shown in Fig. 2 (a), when confronted with multiple change actions, current
ACD approaches detect software changes individually, disregarding service dependencies and fault
propagation across software changes. Therefore, such ACD approaches are prone to false positives
when confronted with silent defective changes and fault propagation. For example, the abnormal
behavior of 𝑆1 and 𝑆2 in Fig. 2 (a) is caused by fault propagation from silent defective change of 𝑆3.
Current ACD approach (e.g., SCWarn [63]) will consider the changes in 𝑆1 and 𝑆2, which exhibit
anomalies, as anomalous changes, and consider the real defective change of 𝑆3 as normal changes.
We delve into the specifics of false localization cases in § 3.3.3.

To address the limitations of ACD approaches, we propose a groundbreaking concept for identify-
ing root cause changes, namely root cause change analysis (RCCA). We define a root cause change
as the defective change that causes an incident. As shown in Fig. 2 (b), RCCA adopts a holistic
perspective of applications and considers the interferences between multiple changes to identify
the most suspicious ones. We formalize the RCCA process in § 4.1. Compared to conventional
ACD approaches, RCCA takes into account the interdependencies among changes across various
services, thereby facilitating a more comprehensive analysis for localizing root cause changes and
making rollback decisions.

2.3 Relationship between RCA and RCCA
Root cause analysis (RCA) is a crucial process in system analysis aimed at identifying the component
or module responsible for deviating from expected behavior. By localizing the root cause, SREs
can gain a deeper understanding of the underlying issue and initiate appropriate remedial actions.
However, existing RCA approaches [17, 23, 52, 54, 56] primarily rely on observability data, such
as metrics and traces, while often neglecting the significance of change data. Consequently, these
RCA approaches may struggle to accurately pinpoint the defective changes in scenarios where
failures are induced by system changes. Consequently, SREs frequently find themselves having to
proceed manually to the next stage of locating the defective changes.
RCCA extends the capabilities of RCA by specifically focusing on identifying the changes

responsible for anomalies. By incorporating both observability and change data as input, RCCA
provides a more granular perspective, enabling SREs to determine the specific change actions that
require examination or potential rollback to rectify the problem.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

ChangeRCA: Finding Root Causes from Software Changes in Large Online Systems 2:5

8 . 5 7
2 0

5 1 . 4 2

8 . 5 7 8 . 5 7 2 . 8 6
R C A _ U 2 R C A _ U 1 R C A R C A _ D 1 R C A _ D 2 O t h e r s

0

2 0

4 0

6 0

Pe
rce

nt(
%)

Fig. 3. Differences between automatic RCA result and defec-
tive change service.

Table 1. Distribution of change-inducing inci-
dents in WeChat and ACD results.

Type Funnel SCWarn Gandalf

Model 0/2 2/2 0/2
Resource 2/4 4/4 3/4

Configuration 2/4 2/4 3/4
Backend 13/20 13/20 14/20
Total 17/30 21/30 20/30

To illustrate the relationship between RCA and RCCA, we present a comparative analysis in
RCA services and defective change services of change-inducing incidents from WeChat in a whole
year of 2022. Figure 3 shows the differences between these services. The RCA system employed in
WeChat adopts a graph neural network model and a PageRank algorithm with a flexible transition
matrix to localize suspicious services. In Fig. 3, the label “RCA” indicates instances where the RCA
results align with the defective change service. “RCA_U𝑖” and “RCA_D𝑖” indicate that the defective
change service is either an upstream service or a downstream service with a depth of 𝑖 to the RCA
service.

As depicted in Fig. 3, we find that in 51% of incidents, the RCA services coincide with the defective
change services. However, these RCA services do not explicitly consider their association with
defective changes. In the remaining incidents, approximately 46% of defective change services
are either upstream or downstream services of the RCA services within a depth of 2. These
observations highlight the interdependence of RCA and RCCA: RCA can effectively assist
RCCA in narrowing down the search scope for defective changes. Rather than designing a
comprehensive end-to-end RCCA algorithm, it is more efficient and cost-effective for enterprises
to leverage the results obtained from existing RCA approaches and design an RCCA framework
specifically tailored for defective changes.

3 STUDY ON ACD APPROACHES
In this section, we aim to evaluate the performance of the current ACD approaches using real
change-inducing incidents and investigate whether the limitations of ACD approaches have a
significant impact on change localization. Specifically, we try to answer the following research
questions (RQs),
• RQ1: How does ACD perform on the real dataset regarding number of defective changes detected?
• RQ2: Why does ACD succeed in detecting some defective changes?
• RQ3: Why does ACD fail to detect some defective changes?

3.1 Data Collection
To conduct our study, we first collect 30 real-world change-inducing incidents from WeChat, a
large-scale online system widely used by billions of users worldwide. WeChat is a representative
online system that covers a variety of application scenarios (e.g., instant messaging, social media,
and mobile payment) and is implemented in several programming languages [53]. The frequency of
software change inWeChat can reach thousands of deployments per day. These incidents encompass
diverse domains such as instant messaging, social media, and mobile payment, and encompass
various change scenarios, including 2 model changes, 4 resource changes, 4 configuration changes,
and 20 backend changes.
To facilitate incident analysis and prevent their recurrence, engineers responsible for these

incidents are obligated to document the entire fault-handling process in the form of post-mortems.
These post-mortems contain crucial information such as fault manifestation, alert time, automatic

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

2:6 Guangba Yu, Pengfei Chen, Zilong He, Qiuyu Yan, Yu Luo, Fangyuan Li, and Zibin Zheng

Service	D Service	E	 Service	F

Pre-change	Failed	Req.	Num. Post-change	Failed	Req.	Num.	Change	Point

①	Call ②	Call

Service	A Service	C	Service	B

①	Call ②	Call

(a)	Incident	caused	by	config	change	of	Service	C (b)	Incident	caused	by	backend	change	of	Service	E

Normal	Call Abnormal	Call

Fig. 4. Successfully-identified cases. Real service name and instance counts are anonymized due to privacy.

RCA result, final confirmed RCA results by the responsible engineers, and other pertinent data.
Regarding root cause change labeling, three authors independently label the root cause change of
each incident by carefully analyzing the troubleshooting steps and incident reason descriptions
documented in the post-mortems. The process is conducted under the supervision of the “Cohen’s
Kappa coefficient” [41] to ensure reliability and consistency. In cases where disagreements arise,
consultations are pursued until a consensus is reached.

3.2 Start-of-the-Art ACD Approaches
We explore the performance of the following three state-of-the-art ACD approaches on real datasets.

• FUNNEL [60] leverages the singular spectrum transform algorithm to detect performance
changes and employs the Difference-in-Differences (DiD) [40] approach to detect defective
change. DiD allows for a comparative analysis of the system’s behavior before and after a change.

• SCWarn [63] keeps monitoring the multi-source observability data of changed services. It utilizes
a multivariate Long Short-TermMemory (LSTM) [18] approach to capture temporal dependencies
and patterns so as to detect anomalies associated with defective changes.

• Gandalf [24] monitors various fault signals (e.g., OS events) and uses Holt-Winters forecasting [7]
to detect error instances. If a significant number of error instances occur after a service change,
Gandalf correlates the anomaly with the specific change based on the change time.

3.3 Results and Analysis
3.3.1 RQ1: Number of Successfully-identified Defective Changes. As supported by the
empirical results presented in Table 1, the ACD methods, namely FUNNEL, SCWarn, and Gan-
dalf, exhibit the capability to identify defective changes in a range of change-inducing incidents.
Specifically, FUNNEL successfully detects 17 out of 30 incidents, accounting for 56.67% of the cases.
SCWarn and Gandalf correctly identify 20 and 21 defective changes, respectively. To gain deeper
insights into the performance shortcomings of ACD approaches within the context of the WeChat
scenario, we aim to scrutinize the individual cases where these methods either succeed or fail in
identifying defective changes.

3.3.2 RQ2: Successfully-identified Defective Changes. The successfully-identified changes
are predominantly achieved through the comparative analysis of KPI differences between pre- and
post-change instances.
Successfully-identified Case I: In Fig. 4 (a), an inconsistency arises in the new configura-

tion files of service 𝐶 between the test and production environments due to a developer error.
Consequently, the post-change instances of service 𝐶 fail to handle incoming requests, leading to
an escalation in failed requests for post-change instances. Conversely, the pre-change instances
of 𝐶 behave stable. By leveraging FUNNEL, SCWarn, and Gandalf, the defective change of 𝐶 is
successfully pinpointed by comparing the KPI differences between pre- and post-change instances.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

ChangeRCA: Finding Root Causes from Software Changes in Large Online Systems 2:7

Service		H Service		I	Service		K

Memory	Alert	

①	Call ②	Call

(a)	Memory	leak	incident	caused	by	backend	change	of	Service	H

Service	L	 Service	M Service	N	

①	Call

②	Return

(b)	Incident	caused	by	backend	change	of	Service	M

③	Call

Pre-ch	Failed	Req.	Num Post-ch	Failed	Req.	Num.Change	Point Normal	Call Abnormal	Call

Fig. 5. Failed-identified cases. Real service name and instance count are anonymized due to privacy.

Successfully-identified Case II: In Fig. 4 (b), a defective code segment is introduced to service 𝐸,
causing the post-change instances to crash. As depicted in Fig. 4 (b), the defective change manifests
as an increase in failed requests for the post-change instances of 𝐸. Given the evident disparities
between the pre- and post-change instances, FUNNEL, SCWarn, and Gandalf effectively detect this
defective change. However, it is important to note that three ACD approaches also flag the change
of 𝐷 as a defective change, because the failed requests to 𝐷 also increase due to fault propagation.

3.3.3 RQ3: Failed-identified Defective Changes. For failed-identified changes, most of them
do not exhibit noticeable differences in KPIs between the pre- and post-change instances.
Failed-identified Case I: In Fig. 5 (a), a defective code segment was integrated into a new

version of service 𝐻 . This code segment introduced a slow memory leak, which caused 𝐻 not to
behave abnormally until 12 hours after the change was completed. However, existing approaches
such as FUNNEL and SCWarn primarily focus on detecting change failures during the canary
change phase, disregarding failures that occur after the changes have been fully implemented.
Moreover, once a change is completed, all instances of the service become post-change instances,
making it difficult for the existing ACD approaches to identify the defective change by comparing
pre-change and post-change instance groups.
Failed-identified Case II: In Fig. 5 (b), after a software change of service 𝑀 , it modified its

return value type. Service 𝐿 called 𝑀 to obtain the return value and used it to call 𝑁 . However,
the new return value type was incompatible with the requirements of service 𝑁 , resulting in a
failed call from 𝑁 to 𝐿. In this case, ACD approaches are unable to detect the defective change
in 𝑀 because its post-change instances do not exhibit any KPI or signal anomalies. Thus, solely
considering the KPIs and signals of an individual service is insufficient to identify silent defective
changes that do not behave any KPI or signal anomalies.
To sum up, it is evident that existing ACD approaches face challenges in detecting defective

changes that do not manifest significant KPI differences and fail to account for failures occurring
after the completion of changes. Additionally, relying solely on KPIs and signals of updated service
proves inadequate for identifying silent defective changes. Analyzing the impact of silent defective
changes on upstream and downstream based the service dependency graph and thus inferring the
root cause change is a promising solution, which is an important motivation for this paper.

3.4 Enlightenment
According to the findings of above RQs, we could infer some guidelines for designing RCCA:
(1) Utilizing comparative analysis clues. By examining the differences in KPIs or failure signals

between pre- and post-change instances, anomalies brought about by the change can be identi-
fied. This comparative analysis serves as an effective means to identify defective changes that
manifested themselves during the canary change phase.

(2) Considering service dependency graphs. Analyzing interactions between services within
the system is important to understand the impact of a defective change on the overall system. By

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

2:8 Guangba Yu, Pengfei Chen, Zilong He, Qiuyu Yan, Yu Luo, Fangyuan Li, and Zibin Zheng

incorporating service dependency into process, it becomes possible to identify silent defective
change and reduce false positives.

(3) Pay more attention to silent changes. Even if a service does not exhibit apparent anomalies,
its changes are still at risk of being defective. The presence of a silent defective change can
propagate to its upstream or downstream service through service interaction.

(4) Monitoring completed changes. Certain defective changes may not immediately reveal their
impact following the update but rather emerge after the change completion. Consequently,
continuous monitoring subsequent to change completion becomes indispensable to identify
these latent defective changes effectively.

4 A NEW RCCA FRAMWORK: CHANGERCA
Inspired by the findings of study on ACD, we propose a new concept for identifying root cause
changes, namely Root Cause Change Identification (RCCA). To apply the RCCA concept to practical
scenarios, we design an intelligent RCCA framework, ChangeRCA, for large-scale online systems.

4.1 RCCA Problem Definition
Consider a large-scale online system consisting of 𝑁 services and the dependency graph G, where
service S𝑛 has a change ticket set represented by C𝑛 = {𝑐1𝑛, ..., 𝑐𝑚𝑛 }. Here, 𝑐𝑚𝑛 denotes the𝑚th change
ticket of S𝑛 . Each change ticket documents the entire process of a single change, including details
such as change time and change status for each service instance. For an instance S𝑖𝑛 of S𝑛 , the KPI
time series are given by K𝑖

𝑛 = {𝑘𝑖1𝑛 , ..., 𝑘
𝑖 𝑗
𝑛 }, with 𝑘𝑖 𝑗𝑛 representing the time series of a KPI 𝑗 of S𝑖𝑛 .

The primary objective of RCCA is to determine if an incident is induced by defective changes
and estimate the suspiciousness score for suspicious changes. To achieve this, we formalize RCCA
based on a parameterized model F : (S, C,K,G) → (T , 𝑆𝑐𝑜𝑟𝑒). T is a three-category indicator,
where 0 denotes a defective canary change, 1 signifies a non-change fault, and 2 represents a
possible defective change. The suspiciousness score, denoted by 𝑆𝑐𝑜𝑟𝑒 , is represented by 𝑆𝑐𝑜𝑟𝑒 =
[𝑠𝑐𝑜𝑟𝑒1, ..., 𝑠𝑐𝑜𝑟𝑒𝑀]. If T equals 0, 𝑆𝑐𝑜𝑟𝑒 contains only defective canary changes. If T equals 1,
𝑆𝑐𝑜𝑟𝑒 contains no items. Otherwise, 𝑆𝑐𝑜𝑟𝑒 is a sorted list containing the most suspicious changes.

4.2 Overview of ChangeRCA.
Figure 6 illustrates the overall analysis process of ChangeRCA. ChangeRCA is invoked by the RCCA
Trigger (§ 5.1), typically implemented as a fault diagnosis system. Once RCCA Trigger identifies
that service S𝑟𝑐𝑎 is suspicious and initiates the ChangeRCA process, the framework progresses
through three cascade stages, each addressing specific fault mitigation objectives.
Stage 1○: Defective Canary Change Identifier (§ 5.2) determines whether the anomaly in S𝑟𝑐𝑎

is caused by a defective canary change. This is accomplished by comparing the KPIs of pre- and
post-change instances. In the event of a defective canary change, ChangeRCA presents the canary
change ticket and recommends a rollback to SREs.

Stage 2○: If no defective changes are identified in the previous stage, Non-change Fault Identifier
(§ 5.3) is utilized to determine whether S𝑟𝑐𝑎 is affected by a non-change fault (e.g., inadequate
resources). This identification facilitates appropriate mitigation actions (e.g., resource scaling).

Stage 3○: In the absence of the aforementioned faults, Suspicious Change Scorer (§ 5.4) integrates
information from change tickets, dependency graphs, and KPIs to produce an ordered list of
suspicious change tickets. This prioritized list enables SREs to efficiently examine and investigate
suspicious change tickets, aiding in effective problem resolution.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

ChangeRCA: Finding Root Causes from Software Changes in Large Online Systems 2:9

RCCA
Trigger

Change

Monitor

			Non-change
Fault	Identifier

				Defective	Canary
Change	Identifier

				Suspicious
Change	Scorer

ChangeRCA

Suspicious	List
1

2

3

	Service:	D							
	Change	Event:	668	
	Service:	G		
	Change	Event:	163	

Rollback

……
Scale/Isolation

prechange
postchange

Resource
One-ins.
No-ops

Time

Dep.
KPI

Y Y

NNTrigger

Fig. 6. ChangeRCA framework.

5 DETAIL DESIGN
5.1 RCCA Trigger
As discussed in § 2.3, RCCA extends the capabilities of RCA, which is typically performed at the
service level, by specifically focusing on identifying defective changes. In this study, we adopt
state-of-the-art RCA approaches as the RCCA Trigger. The default RCA approach is GIED [17]
which adopts a graph neural network model and a PageRank algorithm with a flexible transition
matrix to localize suspicious services. We choose GIED because it has been proven effective in
industrial systems.

There are several reasons why we choose to use existing RCA approaches instead of designing
a new one. Firstly, designing a new RCA method for industrial systems from scratch can be a
complex and time-consuming process. Given the constraints of paper length, providing an in-
depth discussion on RCA design is beyond the scope of this paper. Secondly, the existing RCA
methods [17, 42] have already undergone extensive testing and have been proven effective at the
service level in industrial systems. As depicted in Fig. 3, the state-of-the-art RCA method can
effectively assist RCCA in narrowing down the search scope for defective changes.

Moreover, ChangeRCA can be readily integrated with different RCA approaches. In § 6.5, we will
discuss the impact of different RCA approaches on the effectiveness of ChangeRCA.

5.2 Defective Canary Change Identifier

Upon activation by the suspicious service S𝑟𝑐𝑎 , stage 1○ introduces the Defective Canary Change
Identifier, hereafter referred to as Canary Identifier. Its primary objective is to detect whether a
canary change has occurred in S𝑟𝑐𝑎 and further determine if the canary change is defective.
The core idea underlying Canary Identifier is as follows. If an incident is caused by defective

changes, these defects will only affect the post-change instances while leaving the pre-change
instances unaffected. Conversely, incidents caused by other factors will impact both pre- and post-
change instances. By evaluating the significance of the difference between pre- and post-change
instances, we can determine if an incident is attributable to a defective change. For example, as
shown in Fig. 4 (b), a defective change in 𝐸 results in a surge in the number of failed requests.
Notably, the post-change instances (marked with a pentagram) exhibit a spike in failed requests,
while the pre-change instance remains stable. Consequently, the likelihood that the KPI changes
are caused by a defective change is high.
Drawing inspiration from Enlightenment (1) in § 3.4, our study leverages the concept of split

testing to assess whether significant differences exist between KPIs of the treatment group (i.e.,
post-change instances) and the control group (i.e., pre-change instances). Difference-in-Differences
(DiD) [40] is a widely recognized econometric technique, which enables a comparative analysis
between the treatment and control groups, facilitating the estimation of the causal effect resulting
from a intervention. Consequently, existing works such as FUNNEL [60] have employed DiD to
quantify the discrepancies between pre- and post-change instances.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

2:10 Guangba Yu, Pengfei Chen, Zilong He, Qiuyu Yan, Yu Luo, Fangyuan Li, and Zibin Zheng

Zone2

Zone1

Difference	in	Difference

Second-Layer	DiD

Defective
Change

First-Layer	DiD Normal	
Change

(a) (b)

Post-change

Pre-change

Post-change

Pre-change

Post-change

History

Fig. 7. Example of different instances of the same service in two zones with distinct seasonal patterns.

Nevertheless, DiD assumes that any pre-existing seasonal patterns remain consistent across both
the treatment and control groups. However, one service in different zones (e.g., Asia or Europe)
may have different seasonal patterns. In such situations, estimated treatment effects may become
confounded by these variations, subsequently leading to biased outcomes. For instance, as shown
in Fig. 7, the post-change instances in zone1 experience a pronounced seasonal surge during a
specific period, while the pre-change instances in zone2 remain unaffected. In this case, applying
DiD without accounting for these confounding seasonal variations can yield misleading results.

To address this concern and enhance the reliability of causal inference, ChangeRCA incorporates
a cascade DiD framework, which consists of two layers of DiD. The first-layer DiD quantifies
the discrepancies between pre- and post-change instances. If first discrepancies is significant,
the second-layer DiD compares the KPI differences between post-change instances and their
historical contemporaries. If second discrepancies is insignificant, ChangeRCA determines that the
anomaly was induced by period. Otherwise, ChangeRCA determines the anomaly was induced by
the defective change. Specifically, we adopt the same approach as GIED [17], setting the historical
contemporaneous period to the previous day.
According to the first-layer DiD framework, suppose that 𝐾𝑝𝑟𝑒 (𝑘 |𝐶 = 0) , 𝐾𝑝𝑜𝑠𝑡 (𝑘 |𝐶 = 0)

represent the KPIs before change 𝐶 at pre- and post-change instances respectively. Similarly,
𝐾𝑝𝑟𝑒 (𝑘 |𝐶 = 1) , 𝐾𝑝𝑜𝑠𝑡 (𝑘 |𝐶 = 1) denote the KPIs after change 𝐶 at pre- and post-change instances
respectively. To obtain the standard errors and significance levels for the DiD estimator, we use a
linear parametric model to model KPIs values. Then the first-layer DiD is calculated as follows,

𝑑 (𝑝𝑜𝑠𝑡, 𝑝𝑟𝑒) = {𝐸 [𝐾𝑝𝑜𝑠𝑡 (𝑘 |𝐶 = 1)] −𝐸 [𝐾𝑝𝑜𝑠𝑡 (𝑘 |𝐶 = 0)]} − {𝐸 [𝐾𝑝𝑟𝑒 (𝑘 |𝐶 = 1)] −𝐸 [𝐾𝑝𝑟𝑒 (𝑘 |𝐶 = 0)]}.
(1)

If the KPI changes are caused by factors other than software changes, there should be no significant
change in the relative performance between the pre- and post-change instances, resulting in
𝑑 (𝑝𝑜𝑠𝑡, 𝑝𝑟𝑒) being close to zero. Conversely, if 𝑑 (𝑝𝑜𝑠𝑡, 𝑝𝑟𝑒) ≪ 0 or 𝑑 (𝑝𝑜𝑠𝑡, 𝑝𝑟𝑒) ≫ 0, it indicates a
high likelihood that the performance changes are caused by a software change.

Subsequently, ChangeRCA calculates the p-value associated with 𝑑 (𝑝𝑜𝑠𝑡, 𝑝𝑟𝑒). We select a signifi-
cance level 𝜆 (with a default value of 𝜆 = 0.05) for the hypothesis test. If the p-value of 𝑑 (𝑝𝑜𝑠𝑡, 𝑝𝑟𝑒)
is less than 𝜆, the DiD estimate is deemed statistically significant.
For the second-layer DiD framework, 𝐾ℎ𝑖𝑠 (𝑘 |𝐶 = 0) represents the KPIs before change 𝐶 on

the previous day, and 𝐾ℎ𝑖𝑠 (𝑘 |𝐶 = 1) represents the KPIs after change 𝐶 on the previous day. The
second-layer DiD is calculated as follows,

𝑑 (𝑝𝑜𝑠𝑡, ℎ𝑖𝑠) = {𝐸 [𝐾𝑝𝑜𝑠𝑡 (𝑘 |𝐶 = 1)] − 𝐸 [𝐾𝑝𝑜𝑠𝑡 (𝑘 |𝐶 = 0)]} − {𝐸 [𝐾ℎ𝑖𝑠 (𝑘 |𝐶 = 1)] − 𝐸 [𝐾ℎ𝑖𝑠 (𝑘 |𝐶 = 0)]}.
(2)

If the KPI changes are periodical such as system daily routines, there should be no significant
change in the relative performance between the post-change and contemporaneous period, leading
to 𝑑 (𝑝𝑜𝑠𝑡, ℎ𝑖𝑠) being close to zero. Conversely, if 𝑑 (𝑝𝑜𝑠𝑡, ℎ𝑖𝑠) ≪ 0 or 𝑑 (𝑝𝑜𝑠𝑡, ℎ𝑖𝑠) ≫ 0, it indicates a
low likelihood that the performance changes are caused by a periodical factor. We use the same
p-value method as the first-layer DiD to estimate significance.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

ChangeRCA: Finding Root Causes from Software Changes in Large Online Systems 2:11

For a post-change instance, if 𝑑 (𝑝𝑜𝑠𝑡, 𝑝𝑟𝑒) is significant while 𝑑 (𝑝𝑜𝑠𝑡, ℎ𝑖𝑠) is not significant, the
post-change instance would be determined as an abnormal instance induced by a defective change.
After processing each post-change instance and each KPI of a service in parallel, ChangeRCA
obtains the number of abnormal post-change instances 𝑁𝑎𝑝𝑜𝑠𝑡 . Finally, we calculate the suspicious
score of the change, denoted as 𝑆𝑐𝑜𝑟𝑒𝐶 , by calculating the percentage of anomalies among the
post-change instances,

𝑆𝑐𝑜𝑟𝑒𝐶 =
𝑁𝑎𝑝𝑜𝑠𝑡

𝑁𝑝𝑜𝑠𝑡
, (3)

where 𝑁𝑝𝑜𝑠𝑡 denotes the total number of post-change instances. A score threshold 𝜂 (default value
of 0.8) is set for determining defective canary changes. If 𝑆𝑐𝑜𝑟𝑒𝐶 is greater than 𝜂, ChangeRCA
concludes that T equals 0 and recommends SREs to rollback the defective change. This approach
eliminates the need to consider other changes, significantly reducing computational overhead.

However, Canary Identifier is not a silver bullet. It cannot localize the root cause change for the
failed-identified case I and II (§ 3.3.3), where the KPIs of 𝐻 appeared abnormal after the change and
the KPIs of𝑀 remained stable after the change. This is why ChangeRCA requires stage 2○ and 3○.

5.3 Non-change Fault Identifier
If S𝑟𝑐𝑎 cannot be attributed to the defective canary change, it is customary for SREs to investigate
whether S𝑟𝑐𝑎 is caused by other non-change faults. Consequently, in stage 2○, Non-change Fault
Identifier module is employed within ChangeRCA to eliminate non-change faults. This prevents
SREs from examining change tickets associated with faults unrelated to changes.
From the perspective of SREs, resource-related faults, one-instance faults, and non-ops faults

are the three most prevalent types of non-change faults [43]. Therefore, three pluggable fault
identification modules, namely Resource Fault Identifier, One-instance Fault Identifier, and Non-Ops
Fault Identifier, are introduced within the ChangeRCA framework to provide actionable suggestions
for SREs. Additionally, the pluggable nature of Non-change Fault Identifier module allows for
easy integration of additional fault identification modules, such as fault sketching [25], offering
flexibility in enhancing its capabilities.
5.3.1 Resource Fault Identifier. Resource faults occur when a service’s resources, such as CPU,
memory, or disk, reach maximum capacity or utilization, resulting in performance degradation or
service failure. Resource Fault Identifier is responsible for detecting resource faults by analyzing
the resource utilization rate of services and establishing utilization thresholds. These thresholds
indicate whether a service has reached saturation. Empirically, for resource-sensitive services like
online shopping platforms, a lower threshold, such as 50%, may be set for the resource utilization
rate. In other cases, a higher threshold, such as 80%, may be more appropriate. If a resource fault is
detected, ChangeRCA reports to SREs and provides recommendations for resource scaling.
5.3.2 One-instance Fault Identifier. A one-instance fault, occurs when only a few service instances
experience issues, while the remaining instances continue to operate normally. These faults can be
caused by various factors, such as hardware failures, affecting only a limited number of instances.
One-instance Fault Identifier employs the DiD approach described in § 5.2 to obtain the abnormal
instance number 𝑁𝑎 . If 𝑁𝑎 ≤ 𝑁min, One-instance Fault Identifier determines that a one-instance
fault caused the alert. Empirically, 𝑁min is set to 2 in WeChat, as SREs believe that more than 2
abnormal instances warrant further investigation. If a one-instance fault is identified, auto-isolation
of faulty instances can quickly alleviate the issue.
5.3.3 Non-Ops Fault Identifier. Non-ops faults refer to faults that automatically recover to normal
states without any human intervention [22, 43]. Incidents induced by defective changes typically
exhibit non-transient behavior, lasting for an extended period without human intervention. On the
other hand, transient anomalies, such as temporary network issues, are more likely to be considered

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

2:12 Guangba Yu, Pengfei Chen, Zilong He, Qiuyu Yan, Yu Luo, Fangyuan Li, and Zibin Zheng

Service	K Service	H Service	M	(Root	Change)

User

Service	O

Service	L Service	N Service	Q

Normal	Pre	CI Abnormal	Pre	CI Normal	Post	CI Abnormal	Post	CI

Service	P

Service	R

RCA System Ticket
RCA Time RCA Service

2023-03-03 16:16:06 Service L

Service Change Flow
Change Time Ticket Instance

2023-06-06 16:15:06 12345 Service M-2
2023-06-06 16:13:09 12345 Service M-1
2023-06-06 11:08:08 12343 Service N-2
2023-06-06 10:36:56 12340 Service L-3

Fig. 8. Part of dependency graph and change flow of the case in Fig 5(b). Service𝐻 , 𝐿,𝑀 , 𝑁 ,𝑂 and𝑄 undergo
software changes. Service𝑀 encounters a defective change and propagates faults to 𝐿 and𝑀 .

as noises. Therefore, Non-Ops Fault Identifier filters out faults if the abnormal behavior is back to
normal state before performing RCCA.

Overall, the above fault identifiers primarily focus on filtering out faults that are clearly identified
as non-change faults. By filtering out these clearly identified non-change faults in the early stages,
the subsequent stage can focus on investigating and determining faults that may or may not be
change faults. While the above fault identifiersare empirically developed, they fulfill the lightweight
design requirements and the fault type are easy to reason about since they are based on domain
knowledge and empirical debugging experience. This approach allows for a more efficient effort.

5.4 Suspicious Change Scorer
The previous stages provide a mechanism for SREs to identify and promptly address faults by
categorizing them into specific fault types. However, there are situations where certain faults
cannot be definitively classified into any particular category. For instance, Fig. 8 presents a partial
dependency graph and change flow related to the scenario depicted in Fig. 5 (b). In this example,
services 𝐶 , 𝐹 , and 𝐺 do not exhibit typical characteristics of defective canary changes and non-
change faults. As a result, these faults cannot be effectively handled within stage 1○ and 2○.

Li et al. [22] conducted a study on 354 publicly available postmortems from three large-scale cloud
platforms, revealing that over 46% of the incidents were caused by software changes. Motivated
by this finding and corroborated by SREs, it is reasonable to prioritize investigating whether an
incident is attributed to a defective change when the fault type cannot be definitively determined.
Consequently, drawing inspiration from Enlightenment (2), (3), and (4), unlike in stage 1○, where
only canary changes of S𝑟𝑐𝑎 are considered, Suspicious Change Scorer module assumes that the
most recent changes for all services in the dependency graph of S𝑟𝑐𝑎 are potentially defective
changes. In stage 3○, Suspicious Change Scorer takes these changes as input and identifies the
change with the highest suspicion level.

The key idea behind Suspicious Change Scorer is to amalgamate valuable clues from abnormal
KPIs of service instances, change time, and dependency graph to perform RCCA. ChangeRCA does
not solely rely on KPIs, as some defective changes may not manifest themselves as KPI anomalies
(e.g., service 𝑀 in Fig. 8). Fortunately, SREs discovered that the system failed merely 5 minutes
after the change in service 𝑀 . Moreover, by that time, more than 5 hours had passed since the
last change in services 𝐿 and 𝑁 . As a result, the SREs deduced that this fault was associated with
the change of𝑀 . Consequently,𝑀 should be prioritized for inspection. This case exemplifies the
contribution of time differences to RCCA. To incorporate these three pieces of evidence, Suspicious
Changes Scorer comprises three components: KPI Scorer, Dependency Scorer, and Time Scorer.
5.4.1 KPI Scorer. KPI Scorer evaluates the relationship between KPIs and defective changes. For
canary changes, the two-layer DiD method used in the Canary Identifier module is employed
to obtain the number of abnormal instances 𝑁𝑎𝑝𝑜𝑠𝑡 . For completed changes, the second-layer
DiD method in the Canary Identifier module is utilized to determine the number of all abnormal

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

ChangeRCA: Finding Root Causes from Software Changes in Large Online Systems 2:13

instances 𝑁S𝑎 . A service with a higher number of abnormal instances will receive a higher score.
The KPI score of service S can be computed as follows,

𝑆𝑐𝑜𝑟𝑒𝐾 =
𝑁S𝑎
𝑁S

, (4)

where 𝑁S represents the number of service instances of S. For canary changes, 𝑁S𝑎 = 𝑁𝑎𝑝𝑜𝑠𝑡 .
5.4.2 Dependency Scorer. As discussed in § 2.3, services dependent on S𝑟𝑐𝑎 are more likely to be
the defective services. The purpose of Dependency Scorer is to evaluate the proximity of a service
to S𝑟𝑐𝑎 in terms of their dependency relationship. Dependency Scorer assigns scores to services
based on their level of connection to S𝑟𝑐𝑎 . Services that are directly connected to S𝑟𝑐𝑎 receive
higher scores, while those that are further away receive lower scores.
To calculate the dependency score for a service S, Dependency Scorer considers the transi-

tive closure of the dependency graph. The transitive closure captures all the direct and indirect
dependencies between services. The score assigned to service S is computed as follows,

𝑆𝑐𝑜𝑟𝑒𝐷 =
𝑡𝑖𝑒𝑟𝑚𝑎𝑥

𝑡𝑖𝑒𝑟𝑚𝑎𝑥 + Tier(S,S𝑟𝑐𝑎)
, (5)

where 𝑡𝑖𝑒𝑟𝑚𝑎𝑥 is the maximum tier in the dependency graph of S𝑟𝑐𝑎, and Tier(S,S𝑟𝑐𝑎) is the
tier from S to S𝑟𝑐𝑎 . If S is S𝑟𝑐𝑎 , Tier(S,S𝑟𝑐𝑎) = 0. If Tier(S,S𝑟𝑐𝑎) > tier𝑚𝑎𝑥 , S would not be
considered. tier𝑚𝑎𝑥 is set to 2 based on the observations in Fig. 3 that 98% of services with defective
changes are located within a two-tier range of calls from S𝑟𝑐𝑎 and confirmed by SREs.
5.4.3 Time Scorer. Time Scorer takes into account the timing of changes to evaluate their potential
impact on a fault. It considers the time duration between the changes in different services and the
occurrence of the incident. The intuition is that if a fault occurs shortly after a change in a specific
service, that change is more likely to be the root cause of the incident. Conversely, if a considerable
amount of time has passed since the last change in a service, it is less likely to be responsible for
the fault. This intuition is inspired by previous work [24] and has been confirmed in most cases by
SREs, aligning with industry practices. Considering the change time is important to identify silent
changes.
To incorporate time differences into the scoring process, Time Scorer defines time windows

for analysis. These time windows determine the duration within which changes are considered
relevant for RCCA. When detecting an anomaly at time 𝑡𝑖𝑚𝑒𝑎 , and a service S that releases its
latest change at 𝑡𝑖𝑚𝑒𝑐 , the time difference 𝑡𝑖𝑚𝑒𝑎 − 𝑡𝑖𝑚𝑒𝑐 is evaluated to determine if it falls within
the defined time window. If the time difference is within the time window, it is considered to have
a positive effect on the RCCA. The time score of service S can be computed as follows:

𝑆𝑐𝑜𝑟𝑒𝑇 =

∑
𝑚 TimeScorer

(
time𝑎, time𝑐 | 𝑇𝑊𝑗

)
𝑚

, (6)

where𝑚 denotes the number of time windows. Each time window is defined as𝑇𝑊𝑗 = 𝑇𝑊𝑏𝑎𝑠𝑒 × 2𝑗 ,
where 𝑇𝑊𝑏𝑎𝑠𝑒 is the base duration for the time windows. The TimeScorer function determines
whether the time difference time𝑎 − time𝑐 falls within the 𝑗th time window (𝑇𝑊𝑗). If the time
difference is less than 𝑇𝑊𝑗 , TimeScorer is set to 1, indicating that the change occurred within the
relevant time frame. Otherwise, if time𝑎 − time𝑐 ≥ 𝑇𝑊𝑗 , TimeScorer is set to 0, indicating that the
change occurred outside the relevant time frame. The choice of𝑚 and𝑇𝑊𝑏𝑎𝑠𝑒 for the time windows
depends on the specific characteristics of the system being analyzed. In this study,𝑚 is set to 8 and
𝑇𝑊𝑏𝑎𝑠𝑒 is set to 30 minutes by default based on the change policy defined in WeChat.

After obtaining the individual scores 𝑆𝑐𝑜𝑟𝑒𝑖𝐾 , 𝑆𝑐𝑜𝑟𝑒𝑖𝐷 , and 𝑆𝑐𝑜𝑟𝑒𝑖𝑇 for change 𝑖 using the KPI
Scorer, Dependency Scorer, and Time Scorer, respectively, Suspicious Changes Scorer module
employs a hierarchical weighted average approach to combine these scores and derive the final

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

2:14 Guangba Yu, Pengfei Chen, Zilong He, Qiuyu Yan, Yu Luo, Fangyuan Li, and Zibin Zheng

suspicious score. If change 𝑖 is a canary change and its 𝑆𝑐𝑜𝑟𝑒𝑖𝐾 exceeds the threshold value 𝜂, it
is inferred to be a defective change based on Canary Identifier. In this case, the KPI score alone
is considered sufficient evidence to infer faults, and the change is assigned a higher priority. For
other cases, the weighted average approach defined in Equ. 7 is applied to calculate the final score.

𝑆𝑐𝑜𝑟𝑒𝑖 =

{
3 + 𝑆𝑐𝑜𝑟𝑒𝑖𝐾 𝑖 𝑓 𝑆𝑐𝑜𝑟𝑒𝑖𝐾 > 𝜂 and 𝑖 is canary change
𝛼𝑆𝑐𝑜𝑟𝑒𝑖𝐾 + 𝛽𝑆𝑐𝑜𝑟𝑒𝑖𝐷 + 𝛾𝑆𝑐𝑜𝑟𝑒𝑖𝑇 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(7)

The weights 𝛼 , 𝛽 , and 𝛾 represent the importance given to the KPI Scorer, Dependency Scorer, and
Time Scorer, respectively. In this study, we set 𝛼 , 𝛽 , and 𝛾 equal to 1 in Equ. 7 because SREs believe
that each scoring component contributes equally to the final suspicious score calculation.

Finally, after computing the final scores for all changes, an indicator T = 2 and an ordered score
list 𝑆𝑐𝑜𝑟𝑒 = [𝑠𝑐𝑜𝑟𝑒1, ..., 𝑠𝑐𝑜𝑟𝑒𝑀] is generated, where𝑀 represents the total number of changes. The
change with the highest final score is considered the most likely to be the defective one, indicating
a higher priority for inspection and localization by the SREs.

6 EXPERIMENT EVALUATION
In this section, we aim to evaluate ChangeRCA to answer the following research questions (RQs):
• RQ4: How effective is ChangeRCA in RCCA? (§ 6.2)
• RQ5: How useful are the dependency graph and different rankers for RCCA? (§ 6.3)
• RQ6: Can ChangeRCA reduce the identification time of change-inducing incidents? (§ 6.4)
• RQ7: How do RCA approaches affect the effectiveness of ChangeRCA? (§ 6.5)
• RQ8: How do parameters affect the effectiveness of ChangeRCA? (§ 6.6)

6.1 Experiment Setup
6.1.1 Datasets. To evaluate the effectiveness of ChangeRCA, we utilize two datasets from real-
world production systems fromWeChat and a microservice benchmark system OnlineBoutique [15].
These datasets comprise a total of 81 incidents, encompassing various scenarios.

Real-world System Dataset A: We collect change-inducing incidents from the production
environment of WeChat for 3 months. With the assistance of SRE teams, we construct a labeled
dataset consisting of 30 change-inducing incidents. Further details regarding data collection and
change types can be found in § 3.1. Due to the limitations on the persistence time of KPI data in
WeChat, we are unable to collect more change-inducing incidents

Benchmark SystemDatasetB.We deploy an open-source microservice benchmark OnlineBou-
tique (OB) on a Kubernetes platform with 12 nodes. OB simulates an e-commerce microservice
system where users can browse, view, and purchase products. OB have been widely used in many
previous studies [17, 23, 52, 55]. Based on previous studies [9, 65], we carefully designed and
simulated 12 types of defective changes in the OB. Table 2 provides an overview of the 12 fault
types of defective changes we designed. Additionally, we also incorporate normal changes into the
dataset to ensure its diversity. For each case, we randomly select one defective change and 2 to 5
normal changes on different services, resulting in a varied and comprehensive dataset. B consists
of 51 incidents in total. The dataset B is available at [6].
Each case in the dataset includes the necessary input for ChangeRCA, such as the RCA service,

dependency graph, change flow, and KPI data. These data can be easily obtained from a production
environment. For example, obtaining the dependency graph can be achieved through service meshes
(e.g., Istio [19]) or programming frameworks (e.g., Spring Boot [37]). Change flow information is
typically stored in CI/CD tools (e.g., Gitlab [14]). Regarding the KPIs, we primarily focus on the
request success ratio, which reflects the proportion of successfully processed requests. Request

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

ChangeRCA: Finding Root Causes from Software Changes in Large Online Systems 2:15

Table 2. Fault type of defective changes injected on the benchmark OnlineBoutique for evaluation.

Change Type Fault Type

Defective Backend Change Miss Func. Call, Wrong Except. Handle, Miss Param. Value,
Wrong Return Value, Wrong Sql, Wrong Cache, Wrong Param. Order

Defective Config. Change Wrong Port, Config. File Inconsistent, Wrong Access Key

Defective Resource Change Memory Leak, Unsatisfactory Resource Allocation

latency is intentionally excluded from consideration as excessive latency can lead to request
timeouts, which would also be reflected in a decrease in the success ratio.

6.1.2 Evaluation Measurements. For RQ4, RQ5 and RQ7, we apply two widely used measure-
ments [36, 52, 66] to validate the performance of ChanegRCA and ACD approaches.
• Hit Rate of Top-k (𝐻𝑅@𝑘) refers to the probability that root cause change is within the top-k
results. 𝐻𝑅@𝑘 = 1

𝑁

∑𝑁
𝑖=1

(
𝑐𝑖 ∈ Score𝑖[1:𝑘]

)
, where 𝑐𝑖 is the ground-truth root cause change for

the 𝑖-th incident, 𝐶𝑖[1:𝑘] is top-k list of the 𝑖-th incident, and 𝑁 is the number of all incidents. We
set 𝑘 = {1, 3, 5} because a survey [20] found that more than 73% operators only consider Top-5
ranked elements. The higher 𝐻𝑅@𝑘 is better.

• Exam Score (𝐸𝑆) refers to the average count of false-positive changes that have to be excluded
manually by SREs before locating the actual defective change. If the root cause is outside the
Top-5, we assign a default false-positive candidate count of 10 for it. The smaller 𝐸𝑆 is better.
For RQ6, we introduce Time To Identify (TTI) to evaluate the identification time reduction

brought by ChangeRCA. TTI is the time SREs require to identify the root causes after detecting a
fault [22]. We analyzed historical incidents and found that the time for SREs to inspect a change
ticket manually is approximately 2 minutes. If the root cause change is located at the Top-1 position,
the TTI is equal to the execution time of approaches. Otherwise, the TTI is the sum of the execution
time of approaches and review time of false-positive changes.

6.1.3 Implementation and Settings. We implement a prototype of ChangeRCA using Python 3.6,
with the source code available at [6]. Our experiments were conducted on a virtual machine
equipped with a 32-core AMD EPYC 7K62 Processor (2.6 GHz) and 32 GB memory, running Tencent
Linux 3.2. We set the p-value 𝜆 to 0.05 and the score threshold 𝜂 to 0.8 by default. The default RCA
approach is GIED [17] because it has been proven effective in industrial systems. The influence of
RCA, 𝜆 and 𝜂 will discuss in § 6.5 and § 6.6.

6.2 RQ4: Effectiveness Result in RCCA
Table 3 presents the comparative results between ChangeRCA and ACD approaches on A and B.
From Table 3, we can observe that ChangeRCA outperforms all the ACD approaches significantly in
both two dataset and achieves high accuracy in 𝐻𝑅@1 (85.78%), 𝐻𝑅@3 (96%) and 𝐻𝑅@5 (96.67%)
on average. These results indicate that ChangeRCA is able to successfully identify the correct root
cause change in the majority of cases. The excellent performance of ChangeRCA is mainly attributed
to the fact that ChangeRCA considers the interdependencies among changes across various services.

In contrast, the ACD approaches achieve lower hit rate. FUNNEL, SCWarn, and Gandalf achieve
57.75%, 65.39%, 65.69% 𝐻𝑅@1 on average. ChangeRCA surpasses ACD approaches by 20% to 28% in
𝐻𝑅@1, demonstrating its ability to accurately identify defective changes. Furthermore, the 𝐸𝑆 of
ChangeRCA is 1.48, while the 𝐸𝑆 for FUNNEL, SCWarn, and Gandalf are 4.33, 3.95, 3.88, reflecting a

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

2:16 Guangba Yu, Pengfei Chen, Zilong He, Qiuyu Yan, Yu Luo, Fangyuan Li, and Zibin Zheng

Table 3. Root cause change analysis results on Dataset A and B.

Data Approach HR@1 ⇑HR@1(%) HR@3 ⇑HR@3(%) HR@5 ⇑HR@5(%) ES ⇓ES(%)

A

ChangeRCA 83.33 - 90.00 - 93.33 - 1.83 -
FUNNEL [60] 56.67 47.04 73.33 22.73 76.67 21.72 3.96 53.78
SCWarn [63] 70.00 19.04 80.00 12.5 80.00 16.66 3.43 46.64
Gandalf [24] 66.67 24.98 76.67 17.38 80.00 16.66 3.6 49.16
w/o graph 56.67 47.04 73.33 22.73 76.67 21.72 3.96 53.78
w/o 𝑆𝑐𝑜𝑟𝑒𝐾 73.33 13.64 80.00 12.5 90.00 3.7 2.63 30.42
w/o 𝑆𝑐𝑜𝑟𝑒𝐷 70.00 19.04 80.00 12.5 80.00 16.66 3.43 46.65
w/o 𝑆𝑐𝑜𝑟𝑒𝑇 60.00 38.89 83.33 8.0 86.67 7.68 2.73 32.97

B

ChangeRCA 88.23 - 100.0 - 100.0 - 1.13 -
FUNNEL [60] 58.82 50 58.82 70 58.82 70 4.70 75.06
SCWarn [63] 60.78 45.16 60.78 64.53 62.74 59.39 4.47 67.06
Gandalf [24] 64.70 36.67 64.70 54.56 72.54 37.85 4.16 62.95
w/o graph 37.25 136.86 58.82 70 58.82 70 4.92 77.03
w/o 𝑆𝑐𝑜𝑟𝑒𝐾 72.54 21.63 98.03 2.04 100.0 0 1.39 18.71
w/o 𝑆𝑐𝑜𝑟𝑒𝐷 80.39 9.75 98.03 2.04 100.0 0 1.27 11.02
w/o 𝑆𝑐𝑜𝑟𝑒𝑇 82.35 7.14 96.07 4.09 100.0 0 1.31 13.74

reduction of 62% to 65%. These results illustrate that SREs need to examine fewer false positive
changes with ChangeRCA.
We also investigated the reasons behind the suboptimal performance of the ACD approaches.

FUNNEL and SCWarn fail to account for valuable information from service dependency and change
flow, rendering them incapable of handling change-inducing incidents caused by fault propagation
of silent changes. Although Gandalf considers change flow, it is designed to identify the defective
change in the canary change phase, making it challenging to identify the defective change after the
change is complete. In contrast, ChangeRCA leverages useful information from the abnormal KPI of
service instances, change time, and dependency graph to perform RCCA. This enables ChangeRCA
to handle a wider range of defective changes.

In summary, ChangeRCA is very effective in RCCA, achieving 20% to 28% improvement in 𝐻𝑅@1
and reducing 62% to 65% in 𝐸𝑆 compared to ACD approaches.

6.3 RQ5: Ablation Result in RCCA
We conducte an ablation study to explore the contributions of the dependency graph and different
scorers in ChangeRCA. We derived several variants of ChangeRCA to analyze their impact,

• w/o graph: ChangeRCA does not uses dependency graph and only uses Canary Identifier § 5.2.
• w/o 𝑆𝑐𝑜𝑟𝑒𝐾 : ChangeRCA removes the KPI Scorer module in § 5.4.1.
• w/o 𝑆𝑐𝑜𝑟𝑒𝐷 : ChangeRCA removes the Dependency Scorer module in § 5.4.2.
• w/o 𝑆𝑐𝑜𝑟𝑒𝑇 : ChangeRCA removes the Time Scorer module in § 5.4.3.

The ablation study results are displayed in Table 3. It is evident that the dependency graph and each
scorer contributes to the effectiveness of ChangeRCA as ChangeRCA achieves the best performance.
However, the extent of their contributions varies. Specifically, KPI Scorer contributes the least, as
ChangeRCA w/o 𝑆𝑐𝑜𝑟𝑒𝐾 ranks second-best. This is because most defective changes that cause KPI
changes are already captured by Canary Identifier in stage 1○. Additionally, we observe a significant
performance degradation of ChangeRCA w/o graph, particularly in 𝐻𝑅@1, since dependency graph
is crucial information that greatly contributes to the identification of defective changes that do not
manifest their own anomalies.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

ChangeRCA: Finding Root Causes from Software Changes in Large Online Systems 2:17

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 03
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

CD
F

M i n u t e s

 C h a n g e R C A
 F U N N E L
 S C W a r n
 G a n d l f

Fig. 9. CDF of TTI in change-inducing incidents.

Table 4. Results of ChangeRCA triggered by different RCA approaches.

RCA Approach HR@1(%) HR@3(%) HR@5(%) ES

GIED [17] 88.23 100.0 100.0 1.13
Microscope [26] 74.50 96.07 98.03 1.49
MicroRCA [47] 88.23 96.07 98.03 1.37

6.4 RQ6: Time to Identification Result in RCCA
Rapid identification of defective change is essential for timely incident mitigation in online systems
upon receiving an alert. In this section, we compare the TTI between ChangeRCA and ACD
approaches to demonstrate that ChangeRCA reduces the time required to identify defective changes.
Figure 9 displays the CDF of TTI for ChangeRCA and ACD approaches in A. As illustrated in Fig. 9,
ChangeRCA can locate 90% of defective changes in less than 3 minutes, compared to 35, 37, and 41
minutes for SCWarn, Gandalf, and FUNNEL, resulting in a more than 90% reduction. This result
indicates that SREs can localize defective changes more rapidly with the assistance of ChangeRCA,
thereby accelerating incident mitigation. Due to page limitations, we do not show the results on
the B dataset, but the results are consistent across the two datasets.

6.5 RQ7: Impact of RCA on ChangeRCA
We evaluate the impact of different RCA approaches on the performance of ChangeRCA by using
the results of three state-of-the-art RCA approaches as input. The following three RCA approaches
are considered,
• GIED [17] adopts a graph neural network model and a PageRank algorithm with a flexible
transition matrix to localize suspicious services.

• Microscope [26] is an RCA approach that identifies root cause services based on the correlation
of metrics from frontend to downstream services along the dependency graph.

• MicroRCA [47] presents an RCA approach that localizes suspicious services by leveraging a
PageRank method on an extracted anomaly sub-graph.
Table 4 displays the results of ChangeRCA triggered by the outputs of different RCA approaches

on dataset B. We do not use dataset A here because Microscope and MicroRCA validated their
effectiveness in simulated benchmarks rather than real industry scenarios. It is not practical to
directly apply methods that work well in small-scale systems to complex real-world scenarios.
From Table 4, we observe that different RCA algorithms have a substantial effect on 𝐻𝑅@1,

where the GIED result is 13.73% higher than the Microscope result. However, the impact on 𝐻𝑅@3
and 𝐻𝑅@5 is relatively small. This discrepancy arises because GIED exhibits higher accuracy than
Microscope in localizing root causes at the service level. Despite the less accurate localization
provided by Microscope, ChangeRCA is still able to rank anomalous changes within the top three in
most cases by considering the service dependency graph. This demonstrates that ChangeRCA can

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

2:18 Guangba Yu, Pengfei Chen, Zilong He, Qiuyu Yan, Yu Luo, Fangyuan Li, and Zibin Zheng

0.0 0.1 0.2 0.3 0.4 0.5

70

75

80

85

90

95

100

P
er

ce
n

t(
%

)

(a) significance level

Α HR@1 HR@3 Β HR@1 HR@3

0.2 0.4 0.6 0.8 1.0

70

75

80

85

90

95

100

P
er

ce
n

t(
%

)

(b) gray threshold

Fig. 10. The effect of parameters in ChangeRCA

compensate for the limitations of the RCA approaches and effectively identify root cause changes
by leveraging the additional information from the dependency graph.

6.6 RQ8: Parameter Sensitivity
The significant level 𝜆 and score threshold 𝜂 are two important parameters in ChangeRCA. Figure 10
(a) presents its effect the value of 𝜆 on 𝐻𝑅@1 and 𝐻𝑅@3. In hypothesis test, 𝜆 usually can take
a value between 0.01 and 0.2. Bigger 𝜆 usually leads to lower 𝐻𝑅@1 and 𝐻𝑅@3, as it is easier to
cause false positives with more loose conditions. According to the results, 𝜆 = 0.05 achieves the best
result in terms of both 𝐻𝑅@1 and 𝐻𝑅@3. Figure 10 (b) presents the effect of the value of 𝜂 in on
𝐻𝑅@1 and 𝐻𝑅@3. Clearly, with small 𝜂, the threshold is relatively loose, leading to lower 𝐻𝑅@1
and 𝐻𝑅@3. This is because ChangeRCA will generate some false positive changes caused by noises.
According to the Fig. 10 (b), 𝜂 = 0.7 or 𝜂 = 0.8 achieves the best results of 𝐻𝑅@1 and 𝐻𝑅@3. In
practice, the best configuration of 𝜂 and 𝜆 highly depends on the characteristics of the dataset.

7 DISCUSSION
7.1 Limitations and Future Work
ChangeRCA relies on the comparison between pre- and post-change instances. However, when
releasing a new service, it has no pre-change instances. When removing a service, it has no post-
change instances. Consequently, ChangeRCA struggles to accurately identify both types of defective
changes. In the future, we need to optimize ChangeRCA for these two special changes.
Furthermore, an important limitation of the current ChangeRCA implementation is the lack

of user feedback incorporation. This absence restricts ChangeRCA’s ability to precisely pinpoint
defective changes that are solely perceived by users. To overcome this limitation, we intend to
explore the inclusion of user feedback results in ChangeRCA as part of our future work.

7.2 Threats to Validity
The threats to the internal validity mainly lie in the implementation of ACD and RCA approaches.
To mitigate threats related to the implementation of ACD and RCA approaches, we have taken
several steps. For Funnel, Gandalf, and Microscope, as these approaches lack publicly available
implementations, we have implemented them ourselves based on the details provided in their
respective papers. This approach ensures that our implementation aligns with the original designs
and methodologies outlined in the literature. Conversely, for SCWarn, MicroRCA, and GIED, we
have directly utilized their open-source code, which enhances the credibility and reliability of our
study by leveraging established and validated implementations.
Threats to external validity primarily pertain to the generalizability of the study findings to

a wider population. The study subjects in evaluations consist of one real-world system and one
microservice benchmark. While these subjects may not fully represent all online service systems,

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

ChangeRCA: Finding Root Causes from Software Changes in Large Online Systems 2:19

we believe our approach is general enough for two reasons: (1) WeChat encompasses large online
systems that host various types of services, such as instant messaging, shopping, payment, and
video. By considering a diverse range of services. (2) The defective changes introduced in WeChat
are derived from real cases observed in the production environment. These real-world defective
changes reflect the complexity and diversity of fault scenarios that can occur in production systems.
Moreover, to mitigate the potential limitations of fault scenarios in the microservice benchmark,
we have injected defective changes from OpenStack [9]. By incorporating these real cases, our
evaluation captures representative fault scenarios that enhance the generalizability of the results.

8 RELATEDWORK
Change-inducing incident study. Considerable efforts have been devoted to analyzing change-
inducing incidents [3, 10, 12, 22, 34, 38, 62]. Zhang et al. [62] conduct an in-depth study of 123
real-world change incidents, shedding lights on the severity, underlying causes, exposing conditions,
and resolution strategies of change incidents. They observe that only 37% of the software change
bugs were caught before corresponding versions were released to public, with the majority (63%)
exposed in production. Tudor et al. [12] analyze 55 upgrade failures from three systems to build an
upgrade-centric fault model, which concentrates on the effects of upgrade procedural mistakes
rather than software defects. Li et al. [22] studied 354 publicly available post-mortems collected in
three large-scale cloud. One of their findings is that 46.6% of incidents involve software changes. An
et al. [2] examine the characteristics of commits that lead to crashes in Mozilla Firefox. They found
that crash-inducing commits are often submitted by developers with less experience. However,
current online systems commonly experience partial failures rather than crash [27].

Identifying defective changes before deployment.Many prior work on identifying defective
changes by software test [8, 21, 45, 58, 59], reliability auditing [4, 49, 57], and system verification [5,
32, 62]. Rex [32] utilizes a combination of machine learning and program analysis to learn change-
rules that capture correlations of bugs and misconfigurations. PCHECK [49] analyzes the source
code and automatically generates configuration checking code (called checkers) to detect latent
configuration (LC) errors. Such software misconfiguration detection tools focused on configuration
logic, rather than failures caused by common dependencies. DUPChecker [62] is a static tool
used to search for incompatibility on data of enum types and data defined using serialization
libraries. Raghav et al. [4] proactively assess the risk associated with software changes by extracting
linkages between changes and change-inducing incidents. However, defective changes would
remain concealed during the testing phase prior to software changes due to unknown differences
between production and development environments.

Identifying defective changes after deployment. Efforts to identify defective changes after
deployment are crucial because some bugs and errors can go undetected due to discrepancies
between testing and the production environment [24, 29–31, 44, 60, 63]. FUNNEL [60] detects
performance changes in the impact set by the singular spectrum transform algorithm, and deter-
mines performance changes induced by software changes using a difference-in-difference method.
Gandalf [24], Kontrast [44] and CORNET [29] use the idea of the treatment group (where the change
was implemented) versus the control group (where the change was not implemented) comparison
to check where the current change is defective. SCWarn [63] draws support from multi-modal
learning to identify abnormal changes from heterogeneous multi-source data. However, existing
defective software change identification approaches majorly regard this problem as an anomaly
detection task, utilizing anomaly detection algorithms to apply to this problem directly. In addition,
there are some crash-inducing changes localization approaches [46, 48, 64] that rely on crash
reports to localize defective change. However, they are inadequate for handling partial failures that

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

2:20 Guangba Yu, Pengfei Chen, Zilong He, Qiuyu Yan, Yu Luo, Fangyuan Li, and Zibin Zheng

do not result in a system crash or do not generate crash reports. Hence, an RRCA approach tailored
to handle post-deployment change failures is essential for online systems.

9 CONCLUSION
In this study, we propose a novel concept called RCCA to identify the root cause changes of change-
inducing incidents from massive changes across different services. To make RCCA applicable in
practical scenarios, we propose an intelligent RCCA approach named ChangeRCA. The primary
objective of ChangeRCA is to accurately localize the defective change among numerous changes
associated with change-inducing incidents, thereby expediting the incident resolution process.
We have conducted an extensive evaluation of ChangeRCA on both a real-world dataset from
WeChat and a simulated dataset encompassing diverse defective changes. Our evaluation results
demonstrate that ChangeRCA significantly outperforms all existing methods, achieving a 𝐻𝑅@3 of
96% and effectively reducing the time required for identifying defective changes.

Data Availability. The implementation of ChangeRCA and OB data are available at [6].

ACKNOWLEDGMENTS
We greatly appreciate the insightful feedback from the anonymous reviewers. The research is
supported by the National Natural Science Foundation of China (No.62272495) and the Guangdong
Basic and Applied Basic Research Foundation (No.2023B1515020054), and sponsored by Tencent
Rhino-Bird Research Elite Program. The corresponding author is Pengfei Chen.

REFERENCES
[1] Amazon. 2017. Summary of the Amazon S3 Service Disruption in the Northern Virginia (US-EAST-1) Region.

https://aws.amazon.com/message/41926/. Accessed February 6, 2023.
[2] Le An and Foutse Khomh. 2015. An Empirical Study of Crash-inducing Commits in Mozilla Firefox. In PROMISE 2015.

ACM, 5:1–5:10. https://doi.org/10.1145/2810146.2810152
[3] Ibrahim Assi, Rami Tailakh, and Abdel Salam Sayyad. 2021. Survey on software changes: reasons and remedies.

International Arab Journal of Information Technology 18, 2 (2021), 248–260. https://doi.org/10.34028/iajit/18/2/14
[4] Raghav Batta, Larisa Shwartz, Michael Nidd, Amar Prakash Azad, and Harshit Kumar. 2021. A system for proactive

risk assessment of application changes in cloud operations. In CLOUD 2021. IEEE, 112–123. https://doi.org/10.1109/
CLOUD53861.2021.00025

[5] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A General Approach to Network Configuration
Verification. In SIGCOMM 2017. ACM, 155–168. https://doi.org/10.1145/3098822.3098834

[6] ChangeRCA. 2024. ChangeRCA. https://github.com/IntelligentDDS/ChangeRCA. Accessed Feb. 6, 2024.
[7] C. Chatfield. 1978. The Holt-Winters Forecasting Procedure. Journal of the Royal Statistical Society. Series C (Applied

Statistics) 27, 3 (1978), 264–279. https://doi.org/10.2307/2347162
[8] Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu. 2021. Test-case prioritization for configuration

testing. In ISSTA 2021. ACM, 452–465. https://doi.org/10.1145/3460319.3464810
[9] Domenico Cotroneo, Luigi De Simone, Pietro Liguori, Roberto Natella, and Nematollah Bidokhti. 2019. How Bad Can

a Bug Get? An Empirical Analysis of Software Failures in the OpenStack Cloud Computing Platform. In ESEC/FSE
2019. ACM, 200–211. https://doi.org/10.1145/3338906.3338916

[10] Jose Luis de la Vara, Markus Borg, Krzysztof Wnuk, and Leon Moonen. 2016. An Industrial Survey of Safety Evidence
Change Impact Analysis Practice. IEEE TSE 42, 12 (2016), 1095–1117. https://doi.org/10.1109/TSE.2016.2553032

[11] Dropbox. 2014. Dropbox change failure. https://dropbox.tech/infrastructure/outage-post-mortem. Accessed February
6, 2023.

[12] Tudor Dumitraş and Priya Narasimhan. 2009. Why Do Upgrades Fail and What Can We Do about It? Toward
Dependable, Online Upgrades in Enterprise System. In Middleware 2009. Springer-Verlag, 20 pages. https://doi.org/10.
5555/1656980.1657005

[13] Supriyo Ghosh, Manish Shetty, Chetan Bansal, and Suman Nath. 2022. How to fight production incidents?: an empirical
study on a large-scale cloud service. In SoCC 2022. ACM, 126–141. https://doi.org/10.1145/3542929.3563482

[14] Gitlab. 2023. Gitlab. https://gitlab.com. Accessed Sep. 6, 2023.
[15] GoogleCloudPlatform. 2023. OnlineBoutique. https://github.com/GoogleCloudPlatform/microservices-demo. Accessed

Sep.6, 2023.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

https://aws.amazon.com/message/41926/
https://doi.org/10.1145/2810146.2810152
https://doi.org/10.34028/iajit/18/2/14
https://doi.org/10.1109/CLOUD53861.2021.00025
https://doi.org/10.1109/CLOUD53861.2021.00025
https://doi.org/10.1145/3098822.3098834
https://github.com/IntelligentDDS/ChangeRCA
https://doi.org/10.2307/2347162
https://doi.org/10.1145/3460319.3464810
https://doi.org/10.1145/3338906.3338916
https://doi.org/10.1109/TSE.2016.2553032
https://dropbox.tech/infrastructure/outage-post-mortem
https://doi.org/10.5555/1656980.1657005
https://doi.org/10.5555/1656980.1657005
https://doi.org/10.1145/3542929.3563482
https://gitlab.com
https://github.com/GoogleCloudPlatform/microservices-demo

ChangeRCA: Finding Root Causes from Software Changes in Large Online Systems 2:21

[16] Lynn Greiner. 2020. The great 2020 Gmail outage: A tale of two blackouts, and lessons learned. https://www.
itworldcanada.com/article/the-great-2020-gmail-outage-a-tale-of-two-blackouts-and-lessons-learned/439924. Ac-
cessed February 6, 2023.

[17] Zilong He, Pengfei Chen, Yu Luo, Qiuyu Yan, Hongyang Chen, Guangba Yu, and Fangyuan Li. 2022. Graph based
Incident Extraction and Diagnosis in Large-Scale Online Systems. In ASE 2022. ACM, 48:1–48:13. https://doi.org/10.
1145/3551349.3556904

[18] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation 9, 8 (1997), 1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735

[19] Istio. 2023. Istio. https://istio.io. Accessed Sep. 6, 2023.
[20] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’ expectations on automated fault

localization. In ISSTA 2016. ACM, 165–176. https://doi.org/10.1145/3510003.3510152
[21] Yigit Küçük, Tim A. D. Henderson, and Andy Podgurski. 2021. Improving Fault Localization by Integrating Value and

Predicate Based Causal Inference Techniques. In ICSE 2021. IEEE, 649–660. https://doi.org/10.1109/ICSE43902.2021.
00066

[22] Xiaoyun Li, Guangba Yu, Pengfei Chen, Hongyang Chen, and Zhekang Chen. 2022. Going through the Life Cycle of
Faults in Clouds: Guidelines on Fault Handling. In ISSRE 2022. IEEE, 121–132. https://doi.org/10.1109/ISSRE55969.2022.
00022

[23] Yufeng Li, Guangba Yu, Pengfei Chen, Chuanfu Zhang, and Zibin Zheng. 2022. MicroSketch: Lightweight and Adaptive
Sketch Based Performance Issue Detection and Localization in Microservice Systems. In ICSOC 2022 (Lecture Notes in
Computer Science, Vol. 13740). Springer, 219–236. https://doi.org/10.1007/978-3-031-20984-0_15

[24] Ze Li, Qian Cheng, Ken Hsieh, Yingnong Dang, Peng Huang, Pankaj Singh, Xinsheng Yang, Qingwei Lin, Youjiang
Wu, Sebastien Levy, and Murali Chintalapati. 2020. Gandalf: An Intelligent, End-To-End Analytics Service for Safe
Deployment in Large-Scale Cloud Infrastructure. In NSDI 2020. USENIX Association, 389–402. https://www.usenix.
org/conference/nsdi20/presentation/li

[25] Zeyan Li, Nengwen Zhao, Mingjie Li, Xianglin Lu, Lixin Wang, Dongdong Chang, Xiaohui Nie, Li Cao, Wenchi Zhang,
Kaixin Sui, Yanhua Wang, Xu Du, Guoqiang Duan, and Dan Pei. 2022. Actionable and Interpretable Fault Localization
for Recurring Failures in Online Service Systems. In ESEC/FSE 2022. ACM, 996–1008. https://doi.org/10.1145/3540250.
3549092

[26] Jinjin Lin, Pengfei Chen, and Zibin Zheng. 2018. Microscope: Pinpoint Performance Issues with Causal Graphs in
Micro-service Environments. In ICSOC 2018. Springer, 3–20. https://doi.org/10.1007/978-3-030-03596-9_1

[27] Chang Lou, Peng Huang, and Scott Smith. 2020. Understanding, Detecting and Localizing Partial Failures in Large
System Software. InNSDI 2020. USENIXAssociation, 559–574. https://www.usenix.org/conference/nsdi20/presentation/
lou

[28] Kim Lyons. 2021. Facebook says ‘configuration change’ caused some users to be logged out unexpectedly. https:
//www.theverge.com/2021/1/23/22245842/facebook-logged-out-configuration-change-ios-app-security. Accessed
February 6, 2024.

[29] Ajay Mahimkar, Carlos Eduardo de Andrade, Rakesh Sinha, and Giritharan Rana. 2021. A Composition Framework for
Change Management. In SIGCOMM 2021. ACM, 788–806. https://doi.org/10.1145/3452296.3472901

[30] Ajay Mahimkar, Zihui Ge, Jia Wang, Jennifer Yates, Yin Zhang, Joanne Emmons, Brian Huntley, and Mark Stockert.
2011. Rapid detection of maintenance induced changes in service performance. In Co-NEXT 2011. ACM, 13. https:
//doi.org/10.1145/2079296.2079309

[31] Ajay Anil Mahimkar, Han Hee Song, Zihui Ge, Aman Shaikh, Jia Wang, Jennifer Yates, Yin Zhang, and Joanne Emmons.
2010. Detecting the performance impact of upgrades in large operational networks. In SIGCOMM 2010. ACM, 303–314.
https://doi.org/10.1145/1851182.1851219

[32] Sonu Mehta, Ranjita Bhagwan, Rahul Kumar, Chetan Bansal, Chandra Shekhar Maddila, Balasubramanyan Ashok,
Sumit Asthana, Christian Bird, and Aditya Kumar. 2022. Rex: Preventing Bugs and Misconfiguration in Large Services
Using Correlated Change Analysis. In NSDI 2020. USENIX Association, 435–448. https://www.usenix.org/conference/
nsdi20/presentation/mehta

[33] Nabor C. Mendonca, Pooyan Jamshidi, David Garlan, and Claus Pahl. 2021. Developing Self-Adaptive Microservice
Systems: Challenges and Directions. IEEE Software 38, 2 (2021), 70–79. https://doi.org/10.1109/MS.2019.2955937

[34] Amit Kumar Mondal, Kevin A. Schneider, Banani Roy, and Chanchal K. Roy. 2022. A survey of software architectural
change detection and categorization techniques. Elsevier JSS 194 (2022), 111505. https://doi.org/10.1016/j.jss.2022.111505

[35] Yicheng Pan, Meng Ma, Xinrui Jiang, and Ping Wang. 2021. Faster, deeper, easier: crowdsourcing diagnosis of
microservice kernel failure from user space. In ISSTA 2021. ACM, 646–657. https://doi.org/10.1145/3460319.3464805

[36] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D. Ernst, Deric Pang, and Benjamin
Keller. 2017. Evaluating and improving fault localization. In ICSE 2017. IEEE / ACM, 609–620. https://doi.org/10.1109/
ICSE.2017.62

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

https://www.itworldcanada.com/article/the-great-2020-gmail-outage-a-tale-of-two-blackouts-and-lessons-learned/439924
https://www.itworldcanada.com/article/the-great-2020-gmail-outage-a-tale-of-two-blackouts-and-lessons-learned/439924
https://doi.org/10.1145/3551349.3556904
https://doi.org/10.1145/3551349.3556904
https://doi.org/10.1162/neco.1997.9.8.1735
https://istio.io
https://doi.org/10.1145/3510003.3510152
https://doi.org/10.1109/ICSE43902.2021.00066
https://doi.org/10.1109/ICSE43902.2021.00066
https://doi.org/10.1109/ISSRE55969.2022.00022
https://doi.org/10.1109/ISSRE55969.2022.00022
https://doi.org/10.1007/978-3-031-20984-0_15
https://www.usenix.org/conference/nsdi20/presentation/li
https://www.usenix.org/conference/nsdi20/presentation/li
https://doi.org/10.1145/3540250.3549092
https://doi.org/10.1145/3540250.3549092
https://doi.org/10.1007/978-3-030-03596-9_1
https://www.usenix.org/conference/nsdi20/presentation/lou
https://www.usenix.org/conference/nsdi20/presentation/lou
https://www.theverge.com/2021/1/23/22245842/facebook-logged-out-configuration-change-ios-app-security
https://www.theverge.com/2021/1/23/22245842/facebook-logged-out-configuration-change-ios-app-security
https://doi.org/10.1145/3452296.3472901
https://doi.org/10.1145/2079296.2079309
https://doi.org/10.1145/2079296.2079309
https://doi.org/10.1145/1851182.1851219
https://www.usenix.org/conference/nsdi20/presentation/mehta
https://www.usenix.org/conference/nsdi20/presentation/mehta
https://doi.org/10.1109/MS.2019.2955937
https://doi.org/10.1016/j.jss.2022.111505
https://doi.org/10.1145/3460319.3464805
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.62

2:22 Guangba Yu, Pengfei Chen, Zilong He, Qiuyu Yan, Yu Luo, Fangyuan Li, and Zibin Zheng

[37] Pivotal. 2023. Spring Boot. https://spring.io. Accessed Sep. 6, 2023.
[38] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie A. Williams, Kent L. Beck, and Michael Stumm. 2016. Continuous

deployment at Facebook and OANDA. In ICSE Companion 2016. ACM, 21–30. https://doi.org/10.1145/2889160.2889223
[39] Toby Sterling. 2021. Fastly blames software bug for major global internet outage. https://www.reuters.com/business/

media-telecom/fastly-blames-software-bug-major-global-internet-outage-2021-06-09/. Accessed February 6, 2023.
[40] Elizabeth A Stuart, Haiden A Huskamp, Kenneth Duckworth, Jeffrey Simmons, Zirui Song, Michael E Chernew, and

Colleen L Barry. 2014. Using propensity scores in difference-in-differences models to estimate the effects of a policy
change. Health Services and Outcomes Research Methodology 14 (2014), 166–182. https://doi.org/10.1007/s10742-014-
0123-z

[41] Anthony J Viera, Joanne M Garrett, et al. 2005. Understanding interobserver agreement: the kappa statistic. Fam med
37, 5 (2005), 360–363. https://pubmed.ncbi.nlm.nih.gov/15883903/

[42] Hanzhang Wang, Zhengkai Wu, Huai Jiang, Yichao Huang, Jiamu Wang, Selcuk Kopru, and Tao Xie. 2021. Groot:
An event-graph-based approach for root cause analysis in industrial settings. In ASE 2021. IEEE, 419–429. https:
//doi.org/10.1109/ASE51524.2021.9678708

[43] Lu Wang, Pu Zhao, Chao Du, Chuan Luo, Mengna Su, Fangkai Yang, Yudong Liu, Qingwei Lin, Min Wang, Yingnong
Dang, Hongyu Zhang, Saravan Rajmohan, and Dongmei Zhang. 2022. NENYA: Cascade Reinforcement Learning for
Cost-Aware FailureMitigation atMicrosoft 365. InKDD 2022. ACM, 4032–4040. https://doi.org/10.1145/3534678.3539127

[44] Xuanrun Wang, Kanglin Yin, Qianyu Ouyang, Xidao Wen, Shenglin Zhang, Wenchi Zhang, Li Cao, Jiuxue Han, Xing
Jin, and Dan Pei. 2022. Identifying Erroneous Software Changes through Self-Supervised Contrastiv Learning on Time
Series Data. In ISSRE 2022. IEEE, 366–377. https://doi.org/10.1109/ISSRE55969.2022.00043

[45] Ming Wen, Junjie Chen, Yongqiang Tian, Rongxin Wu, Dan Hao, Shi Han, and Shing-Chi Cheung. 2021. Historical
Spectrum Based Fault Localization. IEEE TSE 47, 11 (2021), 2348–2368. https://doi.org/10.1109/TSE.2019.2948158

[46] Ming Wen, Rongxin Wu, and Shing-Chi Cheung. 2016. Locus: locating bugs from software changes. In ASE. ACM,
262–273. https://doi.org/10.1145/2970276.2970359

[47] Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. 2020. MicroRCA: Root Cause Localization of Performance Issues
in Microservices. In NOMS 2020. IEEE/IFIP, 1–9. https://doi.org/10.1109/NOMS47738.2020.9110353

[48] Rongxin Wu, Ming Wen, Shing-Chi Cheung, and Hongyu Zhang. 2018. ChangeLocator: locate crash-inducing changes
based on crash reports. In ICSE 2018. ACM, 536. https://doi.org/10.1145/3180155.3182516

[49] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and Shankar Pasupathy. 2016. Early
Detection of Configuration Errors to Reduce Failure Damage. In OSDI 2016. USENIX Association, 619–634. https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/xu

[50] Yong Xu, Xu Zhang, Chuan Luo, Si Qin, Rohit Pandey, Chao Du, Qingwei Lin, Yingnong Dang, and Andrew Zhou.
2021. CARE: Infusing Causal Aware Thinking to Root Cause Analysis in Cloud System. In HAOC 2021. ACM, 1–3.
https://doi.org/10.1145/3447851.3458737

[51] Zihao Ye, Pengfei Chen, and Guangba Yu. 2021. T-Rank: A Lightweight Spectrum based Fault Localization Approach
for Microservice Systems. In CCGrid 2021. IEEE/ACM, 416–425. https://doi.org/10.1109/CCGrid51090.2021.00051

[52] Guangba Yu, Pengfei Chen, Hongyang Chen, Zijie Guan, Zicheng Huang, Linxiao Jing, Tianjun Weng, Xinmeng
Sun, and Xiaoyun Li. 2021. MicroRank: End-to-End Latency Issue Localization with Extended Spectrum Analysis in
Microservice Environments. In WWW 2021. ACM, 3087–3098. https://doi.org/10.1145/3442381.3449905

[53] Guangba Yu, Pengfei Chen, Pairui Li, TianjunWeng, Haibing Zheng, and Yuetang Deng. 2023. LogReducer: Identify and
Reduce Log Hotspots inKernel on the Fly. In ICSE 2023. IEEE, 1763–1775. https://doi.org/10.1109/ICSE48619.2023.00151

[54] Guangba Yu, Pengfei Chen, Yufeng Li, Hongyang Chen, Xiaoyun Li, and Zibin Zheng. 2023. Nezha: Interpretable
Fine-Grained Root Causes Analysis for Microservices on Multi-Modal Observability Data. In ESEC/FSE 2023. ACM,
553–565. https://doi.org/10.1145/3611643.3616249

[55] Guangba Yu, Pengfei Chen, and Zibin Zheng. 2019. Microscaler: Automatic Scaling for Microservices with an Online
Learning Approach. In ICWS 2019. IEEE, 68–75. https://doi.org/10.1109/ICWS.2019.00023

[56] Guangba Yu, Zicheng Huang, and Pengfei Chen. 2021. TraceRank: Abnormal service localization with dis-aggregated
end-to-end tracing data in cloud native systems. Journal of Software: Evolution and Process 35, 10 (2021), e2413.
https://doi.org/10.1002/smr.2413

[57] Ennan Zhai, Ang Chen, Ruzica Piskac, Mahesh Balakrishnan, Bingchuan Tian, Bo Song, and Haoliang Zhang. 2020.
Check before You Change: Preventing Correlated Failures in Service Updates. In NSDI 2020. USENIX Association,
575–589. https://www.usenix.org/conference/nsdi20/presentation/zhai

[58] Chen Zhang, Bihuan Chen, Xin Peng, and Wenyun Zhao. 2022. Buildsheriff: Change-Aware Test Failure Triage for
Continuous Integration Builds. In ICSE 2022. ACM, 312–324. https://doi.org/10.1145/3510003.3510132

[59] Mengshi Zhang, Xia Li, Lingming Zhang, and Sarfraz Khurshid. 2017. Boosting spectrum-based fault localization
using PageRank. In ISSTA 2017. ACM, 261–272. https://doi.org/10.1145/3092703.3092731

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

https://spring.io
https://doi.org/10.1145/2889160.2889223
https://www.reuters.com/business/media-telecom/fastly-blames-software-bug-major-global-internet-outage-2021-06-09/
https://www.reuters.com/business/media-telecom/fastly-blames-software-bug-major-global-internet-outage-2021-06-09/
https://doi.org/10.1007/s10742-014-0123-z
https://doi.org/10.1007/s10742-014-0123-z
https://pubmed.ncbi.nlm.nih.gov/15883903/
https://doi.org/10.1109/ASE51524.2021.9678708
https://doi.org/10.1109/ASE51524.2021.9678708
https://doi.org/10.1145/3534678.3539127
https://doi.org/10.1109/ISSRE55969.2022.00043
https://doi.org/10.1109/TSE.2019.2948158
https://doi.org/10.1145/2970276.2970359
https://doi.org/10.1109/NOMS47738.2020.9110353
https://doi.org/10.1145/3180155.3182516
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/xu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/xu
https://doi.org/10.1145/3447851.3458737
https://doi.org/10.1109/CCGrid51090.2021.00051
https://doi.org/10.1145/3442381.3449905
https://doi.org/10.1109/ICSE48619.2023.00151
https://doi.org/10.1145/3611643.3616249
https://doi.org/10.1109/ICWS.2019.00023
https://doi.org/10.1002/smr.2413
https://www.usenix.org/conference/nsdi20/presentation/zhai
https://doi.org/10.1145/3510003.3510132
https://doi.org/10.1145/3092703.3092731

ChangeRCA: Finding Root Causes from Software Changes in Large Online Systems 2:23

[60] Shenglin Zhang, Ying Liu, Dan Pei, Yu Chen, Xianping Qu, Shimin Tao, and Zhi Zang. 2015. Rapid and robust impact
assessment of software changes in large internet-based services. In CoNEXT 2015. ACM, 1–13. https://doi.org/10.1145/
2716281.2836087

[61] Yingying Zhang, Zhengxiong Guan, Huajie Qian, Leili Xu, Hengbo Liu, Qingsong Wen, Liang Sun, Junwei Jiang,
Lunting Fan, and Min Ke. 2021. CloudRCA: A Root Cause Analysis Framework for Cloud Computing Platforms. In
CIKM 2021. ACM, 4373–4382. https://doi.org/10.1145/3459637.3481903

[62] Yongle Zhang, Junwen Yang, Zhuqi Jin, Utsav Sethi, Kirk Rodrigues, Shan Lu, and Ding Yuan. 2021. Understanding
and Detecting Software Upgrade Failures in Distributed Systems. In SOSP 2021. ACM, 116–131. https://doi.org/10.
1145/3477132.3483577

[63] Nengwen Zhao, Junjie Chen, Zhaoyang Yu, Honglin Wang, Jiesong Li, Bin Qiu, Hongyu Xu, Wenchi Zhang, Kaixin
Sui, and Dan Pei. 2021. Identifying bad software changes via multimodal anomaly detection for online service systems.
In ESEC/FSE 2021. ACM, 527–539. https://doi.org/10.1145/3468264.3468543

[64] Yujin Zhao, Ling Jiang, Ye Tao, Songlin Zhang, Changlong Wu, Tong Jia, Xiaosong Huang, Ying Li, and Zhonghai Wu.
2023. Identifying Root-Cause Changes for User-Reported Incidents in Online Service Systems. In ISSRE 2023. IEEE,
287–297. https://doi.org/10.1109/ISSRE59848.2023.00028

[65] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding. 2021. Fault Analysis and Debugging
of Microservice Systems: Industrial Survey, Benchmark System, and Empirical Study. TSE 47, 2 (2021), 243–260.
https://doi.org/10.1109/TSE.2018.2887384

[66] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin Xiang, and Chuan He. 2019. Latent error prediction
and fault localization for microservice applications by learning from system trace logs. In ESEC/FSE 2019. ACM, 683–694.
https://doi.org/10.1145/3338906.3338961

Received 2023-09-29; accepted 2024-01-23

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 2. Publication date: July 2024.

https://doi.org/10.1145/2716281.2836087
https://doi.org/10.1145/2716281.2836087
https://doi.org/10.1145/3459637.3481903
https://doi.org/10.1145/3477132.3483577
https://doi.org/10.1145/3477132.3483577
https://doi.org/10.1145/3468264.3468543
https://doi.org/10.1109/ISSRE59848.2023.00028
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1145/3338906.3338961

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Software Canary Release
	2.2 Comparison between ACD and RCCA
	2.3 Relationship between RCA and RCCA

	3 Study on ACD Approaches
	3.1 Data Collection
	3.2 Start-of-the-Art ACD Approaches
	3.3 Results and Analysis
	3.4 Enlightenment

	4 A New RCCA Framwork: ChangeRCA
	4.1 RCCA Problem Definition
	4.2 Overview of ChangeRCA.

	5 Detail Design
	5.1 RCCA Trigger
	5.2 Defective Canary Change Identifier
	5.3 Non-change Fault Identifier
	5.4 Suspicious Change Scorer

	6 Experiment Evaluation
	6.1 Experiment Setup
	6.2 RQ4: Effectiveness Result in RCCA
	6.3 RQ5: Ablation Result in RCCA
	6.4 RQ6: Time to Identification Result in RCCA
	6.5 RQ7: Impact of RCA on ChangeRCA
	6.6 RQ8: Parameter Sensitivity

	7 Discussion
	7.1 Limitations and Future Work
	7.2 Threats to Validity

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

