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ABSTRACT
Latency-critical (LC) applications are widely deployed in modern
datacenters. Effective power management for LC applications can
yield significant cost savings. However, it poses a significant chal-
lenge in maintaining the desired Service Level Aggrement (SLA)
levels. Prior researches have mainly emphasized predicting the
service time of request and utilize heuristic algorithms for CPU
frequency adjustment. Unfortunately, the control granularity is
limited to the request level and manual feature selection is needed.

This paper proposes DeepPower, a deep reinforcement learn-
ing (DRL) based power management solution for LC applications.
DeepPower comprises two key components, a DRL agent for mon-
itoring the system load changes and a thread controller for CPU
frequency adjustment. Considering the high overhead of the neural
network and the short service time of requests, it is infeasible to
employ DRL for direct adjustment of CPU frequency at the request
level. Instead, DeepPower proposes a hierarchical control mecha-
nism. That means the DRL agent adjusts the parameter of thread
controller with longer intervals, and thread controller adjusts the
CPU frequency with shorter intervals. This control mechanism
enables DeepPower to adapt to dynamic workloads and achieves
fine-grained frequency adjustments. We evaluate DeepPower with
some common LC applications under dynamic workload. The ex-
perimental results show that DeepPower saves up to 28.4% power
compared with state-of-the-art methods and reduces the percentage
of request timeout.

CCS CONCEPTS
• Computer systems organization → Client-server architec-
tures.
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1 INTRODUCTION
Latency-critical applications occupy a high proportion in modern
datacenters, providing users with various services [14]. Datacenter
operators need to ensure that the Quality-of-Service (QoS) con-
straint of these applications is within an agreed level. Generally,
the tail latency of a service cannot exceed a specified threshold,
typically on the order of milliseconds, to ensure an acceptable level
of user experience [22, 25]. However, the variation in request work-
load over time and the variation in the execution time of each
request is non-negligible in latency-critical applications. Datacen-
ters typically maintain high CPU frequencies to meet the latency
constraints, resulting in low utilization and excessive power con-
sumption [2, 8, 23]. Therefore, QoS-aware fine-grained power man-
agement can deliver substantial economic benefits for companies
managing large-scale datacenters[2, 12, 20, 26].

The good news is modern processor vendors are providing more
andmore power optimization techniques. Dynamic voltage/frequency
scaling (DVFS)[15] technology makes it possible to dynamically
adjust the frequency of each thread at runtime with a delay in a
few microseconds. Therefore, a straightforward idea is to set the
CPU frequency at a high level to improve its computing capability
under a high load, thus ensuring the QoS requirements. When the
load is low, the CPU frequency is scaled down to reduce power
consumption. However, the workload of latency-critical applica-
tions changes frequently, and the service time of requests follows a
long-tail distribution, increasing difficulty for the trade-off between
QoS and power consumption

Many efforts have been devoted in this field, focusing on the
trade-off of CPU frequency and response time [5, 10, 12, 19, 30].
Rubik [12] models the distribution of requests’ service time, and
proposes a heuristic method for scaling frequency for each request
based on statistical analysis. Gemini [30] leverages neural networks
to predict the service time of a request for web search based on
features, and proposes a two-stage frequency selection method.
Retail [5] demonstrates that a simple linear regression is accurate
enough for service time prediction and uses a heuristic method to
determine the frequency of each request.
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The common point of these approaches is that they model the
latency of requests assuming the request workload is static (i.e.
request-per-second (RPS) does not change over time). We conduct
experiments to point out that the model accuracy deteriorates un-
der a dynamic workload. A heuristic algorithm for CPU frequency
scaling is simple, and a more advanced policy could lead to a more
significant power reduction. Moreover, the previous methods scale
the frequency at the granularity of requests. However, the experi-
ment results show that a more fine-grained method results in better
performance.

In this paper, we propose DeepPower, a Deep Reinforcement
Learning (DRL) based hierarchical control power management
framework for latency-critical applications. DRL is known for the
capability to learn complex policies and adaptability to dynamic
and complex scenarios, but has been criticized for the overhead of
neural networks [3]. Since the inference time of a simple neural
network can take a hundred microseconds, it is challenging to uti-
lize DRL for a fine-grained level (e.g., user request level) control.
We overcome this challenge by proposing a hierarchical control
mechanism. The top layer outputs an action in a longer interval,
and trains the neural network based on the state transition and
reward function. Meanwhile, the bottom layer selects a frequency
for each CPU core in shorter intervals, guided by the action of the
top layer. The mechanism that separates policy learning from fre-
quency selection enables our method to achieve both fine-grained
control and the ability to learn complex policies.

With the powerful adaptability and representation abilities of
DRL, DeepPower is robust to dynamic loads and can learn an op-
timal policy. Meanwhile, DeepPower does not depend on specific
features and expert knowledge, leading to improved generalization.
Moreover, with the innovative hierarchical control mechanism,
DeepPower saves more energy than other methods while meeting
the QoS requirements. The differences between DeepPower and
the state-of-the-art methods are listed in Table 1.

Compared with state-of-the-art methods such as Gemini [30]
and ReTail [5], DeepPower can reduce power consumption by up
to 28.4% while satisfying tail latency constraints. Moreover, we
conduct extended experiments to demonstrate that DeepPower
can be generalized to different scenarios, introducing a negligible
overhead.

In summary, this paper makes the following contributions:

• We experimentally prove that the request time prediction
based methods are not accurate enough when the workload
changes dynamically. DeepPower does not need manual
feature engineering for prediction, which increases its gener-
ization.

• As far as we know, DeepPower is the first method to apply
DRL for power management in latency-critical applications.
Due to the powerful learning capability of DRL, the learned
policy is more efficient than heuristic methods, resulting in
more power reduction.

• By using a hierarchical control mechanism, we push CPU
frequency scaling to a more fine-grained level, leading to
more energy savings while preventing requests from timing
out.

2 BACKGROUND
2.1 Latency-Critical Application
A large number of applications are deployed across thousands of
computing nodes in datacenters to provide services to users. A
request sent from clients to the datacenter will be processed se-
quentially. In order to make sure that users receive responses in a
short period, the tail latency of each request should be maintained
below a specific level, usually a few milliseconds. In this work,
we solely focus on the power management of latency-sensitive
applications within a single computing node, such as virtual ma-
chine or physical machine. Generally, multiple threads run on one
node, with each thread scheduled to a physical CPU core. DVFS
can be used to scale the frequency of the core without affecting the
performance of other cores.

The variability of request processing time poses a significant
difficulty in power management. We demonstrate this variability in
service time using data collected from four latency-critical applica-
tions from Tailbench [14]. Fig. 1 shows the Cumulative Distribution
Function (CDF) of normalized service time. We can observe that
a long-tailed distribution exists in the CDF. For example, in the
Moses application, tail latency is approximately 8 times larger than
the average service time. Since a small percentage of requests’ pro-
cessing time significantly exceeds the average time, they make an
intractable obstacle for ensuring Quality-of-Service.

2.2 Service Time Modeling
Given that requests with longer service time are themajor challenge,
previous works have proposed extensive solutions. The common
pattern of these solutions is predicting the service time of requests
and setting a higher frequency for requests with long service time.
Retail and Gemini are exemplary methods in this field, utilizing neu-
ral networks and linear regression, respectively, to predict request
execution times. Gemini [30] created a two-stage frequency boost
method utilizing the prediction model. The method sets a baseline
frequency, and will increase it to the maximum frequency if the
queue of waiting requests risks timing out. Retail [5] selects the
minimum frequency at which the execution of all requests in the
queue will not result in a timeout. Then Retail uses this frequency
to execute the first request in the queue. Since the prediction-based
approach has a accurate prediction capability under static loads,
Gemini and Retail obtain a certain power-saving effect.

3 MOTIVATION
3.1 Load-Aware Power Management
Gemini and Retail have made significant progress by predicting
the service time of requests. However, the prediction may become
inaccurate when the load changes. Since many threads process the
requests in the same machine, different threads have contention for
memory, cache, and disk. Although the application colocation has
been studied [4], it is still complex and intractable to quantify this
contention.When the RPS changes, the impact of this contention on
service time also varies together, which may mislead the prediction.

We demonstrate it with a simple experiment with Masstree and
Sphinx applications. Linear regression models described in [5] are



Table 1: Comparison of DeepPower and other methods

Feature Engineering Expert Knowledge Control Level Dynamic Workload Adaptability Overhead Method

Rubik [12] No No Request level Medium Low Statistical model

Adrenaline [10] Yes Yes Request level Medium Low Expert rules

Gemini [30] Yes No Request level Bad High Neural network

Retail [5] Yes No Request level Medium Low Linear regression

DeepPower No No Time slice level Good Low DRL-based hierarchical control
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Figure 1: CDF of service time divided by the mean for four latency-critical applications.

(a) Masstree (b) Sphinx

Figure 2: Heatmap of Relative Root Mean Square Error
(RMSE). The value of row 𝑖 and column 𝑗 in the heatmap
means the relative RMSE generated by using the model from
𝑙𝑒𝑣𝑒𝑙−𝑖 loads to predict the service time of 𝑙𝑒𝑣𝑒𝑙− 𝑗 inMasstree
and Sphinx applications.

adopted to train with data collected from different load levels, de-
noted as𝑚𝑜𝑑𝑒𝑙𝑖 = 𝑡𝑟𝑎𝑖𝑛(𝑑𝑎𝑡𝑎𝑖 ). Thenwe use the service timemodel
from one load to predict data from other loads and get 𝑒𝑟𝑟𝑜𝑟 (𝑖, 𝑗)
as Root Mean Square Error (RMSE) of 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑚𝑜𝑑𝑒𝑙𝑖 , 𝑑𝑎𝑡𝑎 𝑗 ). Fi-
nally, define Relative RMSE (𝑖, 𝑗) as 𝑒𝑟𝑟𝑜𝑟 (𝑖, 𝑗)/𝑒𝑟𝑟𝑜𝑟 ( 𝑗, 𝑗), i.e., the
prediction error after the load changes. Fig. 2 shows the heatmap of
Relative RMSE. However, when the load changes substantially, the
prediction becomes inaccurate. To this end, the power management
method should be workload-aware.

3.2 DRL-based Hierarchical Control
DRL utilizes a deep neural network for value function or policy
approximation. However, the overhead of the neural network is too
high to request-level frequency scaling. We demonstrate it with a
simple experiment. Four classic DRL algorithms are implemented
with a lightweight neural network. The client sends request infor-
mation to the server, and the DRL agent generates an action. Then
the inference time of each algorithm is recorded.

The inference time of each algorithm is shown in Table 2. The
value may not appear to be significant, but the service time of

Table 2: Inference time of each DRL algorithm.

DQN[21] DDQN[27] DDPG[17] SAC[9]

Inference time (us) 125 140 231 472

requests in many latency-critical systems is sub-millisecond, and
RPSmay reach a million with multi-threaded [14]. Therefore, if DRL
is applied for request-level frequency scaling, the heavy overload
will severely hurt the performance. Although some researchers
have applied reinforcement learning to power management [16, 28,
29, 31], as far as we know, DeepPower is the first DRL-based power
management method for the latency-critical applications.

To tackle this challenge, we propose a DRL-based hierarchical
control mechanism. The top-level DRL agent considers the dynamic
changes in workload but avoids directly adjusting the CPU core
frequency. Instead, it generates the parameters for the bottom-level
algorithm that handles the fine-grained frequency scaling.

4 DEEPPOWER FRAMEWORK
4.1 Overview
The framework of DeepPower and its interaction with a latency-
critical system is illustrated in Fig. 3. In a latency-critical system,
requests from the user client are sent to the server’s queue. The
server runs many working threads, which fetch requests from the
queue and process them without preemption. Each thread is com-
bined with a CPU core, while the thread controller scales the core
frequency with the DRL Agent’s guideline. The server collects
comprehensive information about the system (i.e. the number of
timeout requests, the length of queue) and sends it to DeepPower
framework.

The DeepPower framework mainly consists of two components:
the DRL agent and the thread controller, and also includes a state ob-
server, a reward calculator, and a power monitor. The state observer
receives information about a long time past of the latency-critical
system and produces a normalized state vector which will be uti-
lized by the policy neural network (actor) of the DRL Agent ( 1○).
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Figure 3: Overview of DeepPower framework for latency-
critical system power management.

The actor generates an action based on the state, and the action
is used as parameters of the thread controller ( 2○). The thread
controller continually scales the frequency of all CPU cores accord-
ing to the action and the remaining time of the request ( 3○). The
reward calculator relies on both the information from the latency-
critical system and the energy consumed from the power monitor
to calculate rewards ( 4○, 5○). State transitions are collected in the
experience replay pool ( 6○), from which the DRL agent samples a
batch of transitions and trains the neural network ( 7○), As afore-
mentioned, the DRL agent takes actions at longer intervals, while
the thread controller scales frequency at shorter intervals.

4.2 Thread Controller
As depicted in Fig. 1, the distribution of requests service time is
highly-skewed, i.e., a few requests consumed a longer processing
time. Prior methods identify these long requests and boost the
CPU frequency for them. Differently, we gradually increase the
frequency according to the request processing time. Intuitively,
when a request takes a long time to process, it should be sped up.

Thread controller (Algorithm 1) receives two non-negative pa-
rameters from DRL agent, BaseFreq and ScalingCoef, and calculate a
score based on the parameters and the begin time of request. CPU
core will be set to turbo if score greater than 1, means the request
processing needs to be completed as soon as possible. Otherwise, a
linear interpolation betweem the max and min frequency will be
done based on the score, and get the frequency of CPU core. Since
Scaling frequency operation can be finished in a few microseconds,
thread controller can scale the frequencies of all cores in less than
a millisecond.

Algorithm 1: Thread Controller
Input:
𝐵𝑒𝑔𝑖𝑛𝑇𝑖𝑚𝑒𝑠: Request arrive time of each thread
𝐵𝑎𝑠𝑒𝐹𝑟𝑒𝑞, 𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐶𝑜𝑒 𝑓 : Base frequency and the degree to
which frequency varies with consumed time
𝐹𝑟𝑒𝑞𝑚𝑖𝑛, 𝐹𝑟𝑒𝑞𝑚𝑎𝑥 : Min and Max frequency of system
𝑆𝐿𝐴: Latency requirement of Requests

1 while True do
2 𝑐𝑢𝑟𝑇𝑖𝑚𝑒 = 𝑔𝑒𝑡𝑇𝑖𝑚𝑒 ()
3 for 𝑖 = 1 to 𝑇ℎ𝑟𝑒𝑎𝑑𝑁𝑢𝑚 do
4 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑇𝑖𝑚𝑒 =

𝑐𝑢𝑟𝑇𝑖𝑚𝑒−𝑏𝑒𝑔𝑖𝑛𝑇𝑖𝑚𝑒𝑠 [𝑖 ]
𝑆𝐿𝐴

5 𝑆𝑐𝑜𝑟𝑒 = 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑇𝑖𝑚𝑒 ∗ 𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐶𝑜𝑒 𝑓 + 𝐵𝑎𝑠𝑒𝐹𝑟𝑒𝑞

6 if 𝑆𝑐𝑜𝑟𝑒 >= 1 then
7 Scale the frequency of 𝑖 − 𝑡ℎ core to Turbo
8 else
9 𝑓 𝑟𝑒𝑞 = 𝐹𝑟𝑒𝑞𝑚𝑖𝑛 + (𝐹𝑟𝑒𝑞𝑚𝑎𝑥 − 𝐹𝑟𝑒𝑞𝑚𝑖𝑛) ∗ 𝑆𝑐𝑜𝑟𝑒

10 Scale the frequency of 𝑖 − 𝑡ℎ core to 𝑓 𝑟𝑒𝑞

11 end
12 end
13 𝑠𝑙𝑒𝑒𝑝 (𝑆ℎ𝑜𝑟𝑡𝑇𝑖𝑚𝑒);
14 end

parameters
        update

parameters
 update

Figure 4: Millisecond-level frequency in the control of thread
controller during 2 seconds. The time of requests processing
begin and end are marked with green and blue marker. The
time when the parameter is updated is marked with red dot
line.

Fig. 4 depicts the change in frequency of a CPU core over a period
of 2000 milliseconds, during which the frequency level is recorded
per millisecond. If there is no request processing, the frequency
is set to BaseFreq; otherwise, it is gradually scaled up. The scaling
is determined by the value of ScalingCoef. In contrast, shorter re-
quests are finished quickly even with a lower frequency, while for
longer requests, a higher frequency is used to prevent timeouts.
The BaseFreq and ScalingCoef parameters of the thread controller
are updated by the DRL agent during the 2-second period. Thanks
to this fine-grained and flexible control mechanism, DeepPower
achieves better power savings and prevents SLA violations.

4.3 DRL Problem Formulation
Our method is appropriate for typical latency-critical application
scenarios. A server is located exclusively on one machine with a
multi-core processor. The processor can adjust frequencies with a
microsecond’s delay and offers various frequency options ranging



from hundreds of megahertz to several gigahertz, including support
for turbo boost.

Requests are sent to a server queue for processing, where several
threads retrieve and process them. Latency is defined as the time
between when a request arrives at the server and when it is sent
back to the client. Quality-of-Service (QoS) refers to tail latency,
which is the latency value at the 99th percentile. QoS should be
guaranteed to be less than a specified value (also referred as SLA),
typically measured in milliseconds.

Previous studies presume that the inter-arrival times of requests
conform to an exponential distribution whose parameter remains
constant over time, resulting in a stable RPS. However, this does not
hold true in the actual scenario. In reality, RPS exhibits a diurnal
pattern, as previously demonstrated in [19, 23], such as requests
in the afternoon are generally more than in the early morning. To
simulate this variation, we use a realistic workload that entails
periodic and significant variations in the number of requests sent
by the client.

We denote the power consumption at time 𝑡 as 𝑃 (𝑡), the number
of timeout requests at time 𝑡 as𝑇𝑅(𝑡) and the RPS as 𝑅𝑃𝑆 (𝑡). Then
the objective which is minimizing the total power consumpption
while satisfying QoS constraint over 𝑇 timestep can be formulated
as an optimization problem as follows:

min
𝜋

𝑇∑︁
𝑡=1

𝑃 (𝑡) (1)

𝑠 .𝑡 .

𝑇∑︁
𝑡=1

𝑇𝑅(𝑡) ≤
𝑇∑︁
𝑡=1

𝑅𝑃𝑆 (𝑡) ∗ 0.01 (2)

In Eq. 1, 𝜋 denotes the policy learnt by the DRL agent. The policy
determines the parameters of thread controller𝐵𝑎𝑠𝑒𝐹𝑟𝑒𝑞𝑡 , 𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐶𝑜𝑒 𝑓𝑡
at each time 𝑡 . Lower values of the parameters aid in reducing power
consumption; however, this comes at the trade-off of an increased
risk of request timeouts. The QoS constraint is converted as the
percentage of timeout requests less than 0.01 in Eq. 2. The problem
can be transformed into a 𝑀𝐷𝑃 =< 𝑆,𝐴, 𝑅, 𝜌,𝛾 > which will be
elaborated in the following. Considering that the parameter is a
continuous value, we employ the deep deterministic policy gradient
algorithm (DDPG). The agent aims to maximize the expectation of
policy 𝜋𝜃 ,

𝐽 (𝜋𝜃 ) =
∫
𝑆

𝜌𝜋 (𝑠)
∫
𝐴

𝜋𝜃 (𝑠, 𝑎)𝑟 (𝑠, 𝑎)𝑑𝑎𝑑𝑠

= E𝑠∼𝜌𝜋 ,𝑎∼𝜋𝜃 [𝑟 (𝑠, 𝑎)]
(3)

where 𝜃 denotes the parameters of policy 𝜋 , 𝜌𝜋 denotes the state
distribution under policy 𝜋 and E𝑠∼𝜌 [·] denotes the expectation
under the state distribution.

4.4 DRL Agent
The DRL Agent catches the dynamic changes in the system work-
load and generates an action for the thread controller. We detail
the design of the state space and reward function of the agent and
the principles behind them.

4.4.1 State Space. Apparently, DeepPower should increase the
frequency when the workload is heavy to avoid request timeouts
and decrease it for power saving if the workload gets lighter. So

Tolerable queue length

Queue length

Punished
 heavily

 

Figure 5: The scale function when 𝜂 = 100. The change point
is marked with a red pentagram.

the state should reflect the condition of the workload. Besides, the
state space should be as small as possible to reduce the overhead of
training and inference and facilitate the learning of neural networks.
Therefore, it is indispensable to model the workload condition with
refined data accurately.

An essential measure of load is obviously the RPS. Besides, the
number of requests being queued is also meaningful since queue
time has a significant impact on the latency [11–13]. Moreover, if
many requests are about to time out, it may be necessary to increase
the CPU frequency. Based on the above analysis, DeepPower uses
an 8-dimensional vector (NumReq, QueueLen, Queue25, Queue50,
Queue75, Core25, Core50, Core75) to represent the workload condi-
tion of the system:

• NumReq: The number of Requests received in the last period.
• QueueLen: The length of the queue in the server, which
means how many requests are in the queue.

• QueueX: The number of requests in the queue whose time
remains less than SLA*X%.

• CoreX: The number of requests which are being processed
and their time remaining less than SLA*X%.

4.4.2 Reward Function. The reward function is crucial for the rein-
forcement learning task, and the influence of many aspects on the
system must be taken into account. We design the reward function
with consideration of three aspects, energy consumed, timeout re-
quests, and the length of the queue, and linearly combine them to
the total reward function:

𝑅𝑡𝑜𝑡𝑎𝑙 = −(𝛼 × 𝑅𝑒𝑛𝑒𝑟𝑔𝑦 + 𝛽 × 𝑅𝑡𝑖𝑚𝑒𝑜𝑢𝑡 + 𝛾 ∗ 𝑅𝑞𝑢𝑒𝑢𝑒 )
• 𝑅𝑒𝑛𝑒𝑟𝑔𝑦 : Measure the power consumption in the previous
time step, which is closely related to CPU frequency.

• 𝑅𝑡𝑖𝑚𝑒𝑜𝑢𝑡 : Measure how many requests timeout in last time
step.

• 𝑅𝑞𝑢𝑒𝑢𝑒 : If too many requests are in the queue, significant
queuing latencies will incur. Punishing the agent when the
queue is longer than last time step is an intuitive idea. How-
ever, the situation that the queue is short and the number of
requests increases does not hurt the performance. Therefore,
we set 𝑅𝑞𝑢𝑒𝑢𝑒 as the multiplication of how much the queue
is lengthened and a scaling function. In formal terms, we
denote 𝑞𝑙𝑡 as the length of queue at time 𝑡 , and the define
𝑅𝑞𝑢𝑒𝑢𝑒 at time 𝑡 as:

𝑅𝑞𝑢𝑒𝑢𝑒 = 𝑠𝑐𝑎𝑙𝑒𝐹𝑢𝑛𝑐 (𝑞𝑙𝑡 ) ∗𝑚𝑎𝑥 (𝑞𝑙𝑡 − 𝑞𝑙𝑡−1, 0)

𝑠𝑐𝑎𝑙𝑒𝐹𝑢𝑛𝑐 (𝑥) =
𝑥
𝜂

𝑥
𝜂 + 𝜂

𝑥+𝜖



𝑠𝑐𝑎𝑙𝑒𝐹𝑢𝑛𝑐 (𝑥) is substantially closed to 0 when 𝑥 is less than
𝜂 and converges to 1 when x goes to infinity, as shown in Fig.
5. The hyper-parameter 𝜂 determines the threshold when
the queue becomes longer, i.e. , the agent won’t get severely
punished if the length of queue is below 𝜂, while a large
negative reward will be received when the length of queue
is above 𝜂 and the queue becomes longer. With the help of
𝑠𝑐𝑎𝑙𝑒𝐹𝑢𝑛𝑐 and hyper-parameter 𝜂, the agent is instructed to
prevent queues from becoming too long.

Linear combination makes the reward function contain three as-
pects of information. Changing the weight of each term leads to
adjusting the DRL Agent’s training objectives. For example, we can
increase the value of 𝛽 to improve the importance of 𝑅𝑡𝑖𝑚𝑒𝑜𝑢𝑡 if we
find that the tail latency is higher than the SLA metric.

4.4.3 Action Space. The action of DRL agent is two parameters
of the thread controller, 𝐵𝑎𝑠𝑒𝐹𝑟𝑒𝑞, 𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐶𝑜𝑒 𝑓 . We use a simple
neural network, consisting of fully connected layers and a sigmoid
function, to limit the parameter values to the range of [0, 1].

4.5 Training Process

Algorithm 2: DRL agent training process
Input: Four neural network 𝜋𝜃 ,𝜋𝜃 ′ ,𝑄𝑤 ,𝑄𝑤′ ,

Replay pool 𝐷 , Latency-Critical System 𝐿𝐶 , State
Observer 𝑆𝑂 , Reward Calculator 𝑅𝐶 , Thread
Controller 𝑇𝐶 , Power Monitor 𝑃𝑀

Output: Actor 𝜋𝜃
1 Run 𝐿𝐶 , initialize 𝑆𝑂, 𝑅𝐶,𝑇𝐶, 𝑃𝑀
2 Get initial state from 𝑆𝑂 as 𝑠1
3 for 𝑡 = 1 → 𝑇 do
4 if 𝑡 ≥𝑊𝐴𝑅𝑀𝑈𝑃 then
5 𝑎𝑡=𝜋𝜃 (𝑠𝑡 ) + 𝑁 (𝜇, 𝛿)
6 else
7 𝑎𝑡=randomSelect()
8 end
9 SEND 𝑎𝑡 to 𝑇𝐶 ,𝑠𝑙𝑒𝑒𝑝 (𝐿𝑜𝑛𝑔𝑇𝑖𝑚𝑒)

10 𝑆𝑂 and 𝑅𝐶 get information from 𝐿𝐶 ,𝑃𝑀
11 Draw 𝑠𝑡+1 from 𝑆𝑂 and 𝑟𝑡 from 𝑅𝐶

12 Push transition 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 in 𝐷

13 if 𝑡 ≥𝑊𝐴𝑅𝑀𝑈𝑃 then
14 Sample a batch transition (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠′𝑖 ) from 𝐷

15 Target Q value 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄𝑤′ (𝑠′
𝑖
, 𝜋𝜃 ′ (𝑠′

𝑖
))

16 𝐿𝑐 =
∑
𝑖 (𝑦𝑖 −𝑄𝑤 (𝑠𝑖 , 𝑎𝑖 ))2

17 𝐿𝑎 =
∑
𝑖 −𝑄𝑤 (𝑠𝑖 , 𝜋𝜃 (𝑠𝑖 ))

18 Update 𝜋𝜃 ,𝑄𝑤 with gradient descent, Soft update
𝜋𝜃 ′ ,𝑄𝑤′

19 end
20 end

We exploit DDPG algorithm to learn a deterministic policy from
state to action. DDPG utilized four neural network, actor 𝜋𝜃 works
as policy network which takes state as input and produce action
and critic𝑄𝑤 judge the actions chosen by the actor. Target actor 𝜋 ′

𝜃
and𝑄 ′

𝑤 are used to calculate target action and Q value, contributing

to the stability of traning process. State transision are stored in a
experience replay pool, from which agent draws a batch of samples
and trains on them. Meanwhile, DDPG adds noise to the action
generated by the actor , aims to increase exploratory.

The complete training algorithm is shown in algorithm 2.We first
run the latency-critical system and the power monitor, and connect
it with other components (the state observer, the reward calculator
and the thread controller) in DeepPower framework. Action is
selected randomly at first, and then is decided by the output of
actor adds a normally distributed noise to explore more diverse
strategies. When an action is generated, it will be sent to the thread
controller, which scales the frequency of each CPU cores according
to the guideline of the action. After the action has been executed
for some time, the latency-critical system and the power monitor
feedback information about requests and power consumption. The
state observer and the reward calculator convert them into next
state and reward of RL paradigm. Such a state transition is pushed
into experience replay pool and will be used for training after
warmup. The calculation of target Q value and loss function is
identical with classic DDPG algorithm, refer to [17] for more detail.

4.6 Implementation Detail
We implement our DRL Agent with popular neural network frame-
work Pytorch. The actor is designed as full-connected neural net-
work with three hidden layers which has 32,24,16 neuron units
seperately and ReLU is chosed as activation function. The input
state passes the first shared full-connected layer and the gets throught
two seperate full-connected layer, as shown in Fig. 3. A sigmoid
operation is conducted on the output to keep the final action
𝐵𝑎𝑠𝑒𝐹𝑟𝑒𝑞, 𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐶𝑜𝑒 𝑓 non-negative. As for critic, we concantence
the output of first hidden layer with action, and the passes throught
two full-connected layer. The DRL Agent can learn efficient policy
while keep the overhead low with this light-weight neural network.

In the early stages of training, the actor network tends to gener-
ate random actions. Queue congestion may take place when heavy
loads arrive. Consequently, we add a noise sampled from normal
distribution 𝑁 (𝜇, 𝛿) to the action generated by actor and set the 𝜇, 𝛿
to 0.3,1 by default, respectively. A positive mean leads to high fre-
quency and avoids queueing. Large variance helps the DRL Agent
explore more diverse actions and prevents it from falling into local
optimal values. The 𝑆ℎ𝑜𝑟𝑡𝑇𝑖𝑚𝑒 and 𝐿𝑜𝑛𝑔𝑇𝑖𝑚𝑒 are set to 1 millisec-
onds and 1 seconds by default, and can be changed according to
the service time of different applications.

5 EVALUATION
We first evaluate DeepPower with some typical latency-critical
applications and compare it with prior methods. We conduct a
thorough analysis of DeepPower, exposing its superiority over
other methods. Finally, we discuss the overhead of DeepPower.

5.1 Benchmark
We use 5 latency-critical applications from Tailbench for the ex-
periment: Xapian, an open-source search engine widely used in
websites and software frameworks ; Masstree, a high-performance
key-value store; Moses, a statistics-based real-time machine trans-
lation system; Sphinx, a speech recognition system and Img-dnn, a



Figure 6: Changing of workload over time.

deep neural network based image recognition program. Detailed
information about those applications is summarized in Table 3.

Table 3: Benchmark information

Xapian Masstree Moses Sphinx Img-dnn

Configuration
and Dataset

English
Wikipedia

mycsb-a
90% PUTs
10%GETs

Spainish
articles

CMU
AN4 MNIST

SLA(ms) 8 1 120 4000 5

99𝑡ℎ% ile 20% 2.742 0.191 30.99 1759.8 2.302

latency 50% 3.614 0.402 77.92 2040.7 2.295

at load 70% 4.617 0.657 100.49 2292.8 2.476

5.2 Experiment setting
The experiment is conducted on a common datacenter server. It has
an Intel Xeon Gold 5218R CPU with 2 sockets and 40 cores. Besides,
the server has 252G DDR4 memory . The frequency range from
0.8GHz to 2.1GHz and can be scaled with the help of the "userspace"
governor of the Linux ACPI frequency driver. The energy consump-
tion is recorded in Machine Specific Register (MSR) and can be read
with Intel Running Average Power Limit (RAPL) interface [24].

The DeepPower framework is implemented with Python3 and
Tailbench is implemented with C++, so a TCP connection is built for
communication. The 20 worker threads 1 of Tailbench are deployed
on socket0 and other threads (i.e., the threads sending/receiving
requests and the thread communicating with the DRL agent) are
deployed on socket1. RAPL interfaces are called to get the power
consumption of socket0 during the program running.

Real world workload usually have a diurnal pattern [19, 23]
which means RPS dynamically changes over time (e.g., RPS in the
afternoon obviously higher than at night). Therefore, we utilize
the E-commerce search benchmark [1], which records RPS of an
e-commerce search system during one month, as shown in Fig.
6. We downsample the time series to shorten the period (360s by
default) and multiply the RPS by a factor to make the tail latency
close to SLA when running without frequency scaling.

We train the DRL agent with a long running workload and save
the neural network parameters after training. During testing, we
run the DeepPower framework with a short workload and record
the latency of each request. After the execution of the workload,
the power, the percentage of timeout requests, the mean latency,
and the tail latency will be calculated as experiment results. We also
compare DeepPower with two state-of-the-art QoS-aware power
management methods, Gemini and Retail.

5.3 Experiment result
The experimental results are illustrated in Fig. 7. The performance
of a power management method should be assessed through many
aspects. We select the following metrics for evaluation: power con-
sumption, power saving, mean and tail latency, and timeout rate.

We demonstrate each method’s power consumption and saving
effect in Fig. 7a. The baseline runs without any power management
and exploits the maximum computing ability, causing tremendous
power consumption. Compared to the baseline, a large amount
of power saving effect has been achieved by DeepPower, except
Masstree. In Sphinx and Img-dnn, DeepPower saves about 30%
of energy, and this number grows to 39.7% and 49.4% for Xapian
and Moses. Although Retail and Gemini are able to achieve power
savings to a mild degree, DeepPower outperforms them by 12.7%
(Img-dnn) to 28.4% (Moses). Note that the result on Masstree is not
remarkable since only 8 threads are used, and the power consump-
tion of the machine itself accounts for a large proportion.

DeepPower not only reduces power consumption but also meets
the QoS constraint. As shown in Fig. 7b, DeepPower keeps the tail
latency lower than the SLA metric in all applications. However,
Retail and Gemini slightly violate the SLA in Xapian. More seri-
ously, the tail latency of Gemini in Masstree is more than three
times SLA, which is unacceptable in practice. We ascribe it to the
contradiction between the complex control mechanism of Gemini
and the microsecond-level request processing time of Masstree.

The superiority of DeepPower is also demonstrated by themean/tail
rates (i.e. mean latency divided by tail latency) and timeout rates
in Fig. 7c. The mean/tail rates of DeepPower are higher than other
methods in all applications except Img-dnn. DeepPower acquires a
0.5 mean/tail rate in Xapian, far above Retail and Gemini. Besides,
the percentage of timeout requests of DeepPower is lower than
Retail and Gemini, even if DeepPower is better at reducing power
consumption. High mean/tail rates mean that DeepPower scales
down the frequency for short requests to save energy, and low
timeout rates mean DeepPower scales up the frequency for long
requests to maintain QoS requirements.

We attribute the outstanding performance of DeepPower to two
points. (i) DeepPower allows fine-grained frequency control. In
Retail, the frequency of requests is decided when the request begins
processing. Gemini steps further by boosting the frequency when
the request is at risk of timeout. DeepPower scales the frequency of
each thread in milliseconds or microseconds, which leads to better
power saving. (ii) DeepPower is more adaptive to the dynamic
workload. Previous works assume that themean RPS is constant and
adopt the same policy for different workloads. DeepPower utilizes
the feedback learning mechanism of DRL, which will learn to adapt
to changes in RPS with the interaction from the environment.

5.4 Deeper into DeepPower
We have demonstrated the effectiveness of DeepPower and now
aim to understand the reasons behind its success furtherly. Through
this analysis, we hope to shed light on the mechanisms driving the
effectiveness of DeepPower.

In Fig. 8, we visualize some critical indicators over time of the
running of Xapian within DeepPower. The variation curve of the

18 worker threads of Masstree since its memory overhead
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(a) Power consumption and power saving for each power management method.

Baseline Retail Gemini DeepPower Baseline Retail Gemini DeepPower Baseline Retail Gemini DeepPower Baseline Retail Gemini DeepPower Baseline Retail Gemini DeepPower

(b) The mean and tail latency for each power management method. SLA is denoted as grey dotted line.
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(c) The mean/tail rates and requests timeout rates for each power management method.

Figure 7: Comparation between DeepPower and others state-of-the-art methods

Figure 8: Visualization of RPS, power consumption, thread controller parameters over time

power consumption basically matches the RPS, showing that Deep-
Power saves energy very well at low loads. DeepPower raises the
ScalingCoef of ThreadController in high loads to avoid the queueing
and timeouts and maintains BaseFreq at a moderate level to avoid
using higher frequencies for short requests. The average frequency
curve also reveals the adaptability of DeepPower. The frequency
is mainly determined by BaseFreq when the load is low, and the
influence of ScalingCoef grows greater when the load increases.
Note that DeepPower adjusts the parameters per second to adapt
to the changing workload quickly.

To further understand the advantages of DeepPower, we analyze
the frequency change during the program running under each
power management method. We visualize the running process of
millisecond-level latency applications Xapian in Fig. 9 and second-
level latency applications Sphinx in Fig. 10. DeepPower achieves

fine-grained control by gradually scaling up the frequency during
the request’s processing, as shown in Fig. 9a and Fig. 10a. During
request processing, the thread controller increases the frequency
slowly. As a result, the frequency is not boosted to its maximum
level most of the time. Conversely, Retail and Gemini select the
frequency at a coarser granularity (i.e., once or twice per request).
It makes them have to boost the CPU frequency in many cases (i.e.,
the occurance of long queues or request time out) and causes a
large amount of energy consumption [18].

To attain a more profound understanding of the parameters Base-
Freq and ScalingCoef, we execute the Xapian application with the
parameters set to a fixed value and collect frequency information.
Figure 11 shows the frequency changes during the different execu-
tions of Xapian with various parameter settings. Fig. 11a illustrates
the result of a setting with low BaseFreq and high ScalingCoef. The



(a) DeepPower (b) Retail (c) Gemini

Figure 9: Comparison of the change in frequency of each CPU core during a 50ms execution of Xapian.

(a) DeepPower (b) Retail (c) Gemini

Figure 10: Comparison of the change in frequency of each CPU core during a 30s execution of Sphinx.

(a) BaseFreq=0.4 and ScalingCoef =1.0 (b) BaseFreq=0.5 and ScalingCoef =0.75 (c) BaseFreq=0.6 and ScalingCoef =0.5

Figure 11: Comparison of the change in frequency of each CPU with fixed parameters settings during a 50ms execution of
Xapian.

low BaseFreq results in a lower frequency during the initial execu-
tion of requests, which is indicated on the figure by a cooler color.
Meanwhile, a higher value of ScalingCoef causes a rapid increase of
frequency during request processing. Conversely, a higher BaseFreq
and lower ScalingCoef leads to a more moderate frequency chang-
ing, as Fig. 11c demonstrates. Overall, a higher BaseFreq is suitable
for situations with heavier loads to accelerate request processing,
while ScalingCoef is more related to the long-tail distribution of
request processing time. For a small portion of requests with longer
processing times, a higher ScalingCoef is effective in avoiding re-
quest timeouts.

5.5 Overhead
Since the neural networks in DeepPower are all lightweight, the
DRL agent can be trained without GPU. The parameters updating
of the DDPG training algorithm costs 13ms when the batchsize is
64. During testing, DeepPower generates an action in less than a
millisecond. Considering one second interval between each step
of the DRL, the training and inference overhead is negligible. The
number of parameters in the actor neural network is 2096, so the
memory and storage overhead is slight. Setting the frequency for a
CPU core consumes less than 10us in the thread controller, which
enables granular frequency scaling.

The overhead of DeepPower framework is validated. We first
run the latency-critical application with a fixed CPU frequency
and record the power consumption without DeepPower. Then we
run the components of DeepPower while setting the frequency to
the previous value each time, and another power consumption is

recorded. Then the average difference over multiple intervals is
considered as the additional power consumption of DeepPower. The
results show that DeepPower delivers 2.81W of additional power
consumption. Compared with the significant power savings from
DeepPower, this overhead is acceptable.

6 RELATEDWORK
Many studies have concentrated on DVFS-based power manage-
ment for latency-critical systems in datacenters, whose primary
challenge is the disproportion in the service times of requests.
Adrenaline [10] points out that requests can be classified as long
and short based on features. Rubik [12] goes ahead by modeling the
latency distribution. In order to avoid SLA violation, Rubik takes
the tail of the distribution as the predicted latency. Considering the
long-tailed distribution of request service times, this prediction is
overestimated. Gemini [30] notices the relationship between the
features of requests and the service time in the web search applica-
tion and uses a neural network for service time prediction. Gemini
selects a low frequency of a request and boosts the frequency when
the request is going to time out. Retail [5] argues that linear regres-
sion is accurate enough for applications in Tailbench [14]. When
a request arrives, Retail enumerates all the frequency levels from
small to large and stops when the frequency level is large enough
to avoid timing out. Instead of relying on request time modeling,
DeepPower utilizes fine-grained frequency scaling techniques to
overcome the issue of uneven request processing times, achieving
superiority over previous approaches.



Moreover, there exist power management methodologies that
utilize the sleep states. Entering the sleep state significantly re-
duces the power consumption of a core, but returning it to normal
state takes a considerable amount of time (i.e. about 100us for C6
state). As a result, utilizing the sleep state carries the risk of request
timeouts. DynSleep [7] postpones the requests processing while en-
suring tail latency constraints are met exactly. A longer idle period
is gained with this delay, and deeper C-state is leveraged to save
more power. uDPM[6] is an extension of Rubik, which combines
DVFS and sleep states technologies. Utilizing statistical models,
uDPM calculates the optimal wake-up time and frequency for each
request to maximize power efficiency. However, these methods did
not successfully resolve the issue of imbalanced request processing
time. The integration of sleep states into our methods represents a
significant challenge. We leave this to future work.

7 CONCLUSION
We have presented DeepPower, a DRL-based power management
method for latency-critical applications. To overcome the obstacle
between the short service time of requests and the long inference
time of neural networks, we design a hierarchical control mech-
anism. DeepPower achieves fine-grain control and has the adapt-
ability to dynamic workloads, which delivers better power savings.
Unlike previous methods, DeepPower does not need features of
requests, which makes it more general. Experimental results show
that DeepPower reduces power consumption by up to 28.4% com-
pared to state-of-the-art methods and decreases the rate of request
timeouts.
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