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ABSTRACT

Performance degradation due to miscon�guration in software sys-

tems that violates SLOs (service-level objectives) is commonplace.

Diagnosing and explaining the root causes of such performance

violations in con�gurable software systems is often challenging due

to their increasing complexity. Although there are many tools and

techniques for diagnosing performance violations, they provide

limited evidence to attribute causes of observed performance viola-

tions to speci�c con�gurations. This is because the con�guration is

not originally considered in those tools. This paper proposes Diag-

Config, speci�cally designed to conduct con�guration diagnosis

of performance violations. It leverages static code analysis to track

con�guration option propagation, identi�es performance-sensitive

options, detects performance violations, and constructs cause-e�ect

chains that help stakeholders better understand the relationship

between con�guration and performance violations. Experimental

evaluations with eight real-world software demonstrate that Diag-

Config produces fewer false positives than a state-of-the-art docu-

mentation analysis-based tool (i.e., 5 vs 41) in the identi�cation of

performance-sensitive options, and outperforms a statistics-based

debugging tool in the diagnosis of performance violations caused

by con�guration changes, o�ering more comprehensive results

(recall: 0.892 vs 0.289). Moreover, we also show that DiagConfig

can accelerate auto-tuning by compressing con�guration space.

CCS CONCEPTS

• Software and its engineering → Software con�guration

management and version control systems; Software perfor-

mance.
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Con�guration diagnosis, Program analysis, Performance violation,

Taint tracking
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1 INTRODUCTION

Modern software systems are highly con�gurable to meet users’

requirements in various scenarios. Take the popular open-source

database management system MySQL as an example. Its latest ver-

sion has reached around 1,000 con�guration options. It is always

challenging to make the proper con�gurations for software de-

ployment. Studies have shown that miscon�guration is one of the

primary culprits responsible for production system failures and

performance problems [2, 36, 79, 84]. As system performance is

becoming more and more critical in enterprise business [24, 35, 39],

miscon�guration can lead to millions of dollars cost [66]. It is of

essence to quickly �nd out the improperly con�gured options when

SLOs (service-level objectives) violations occur.

However, diagnosing and pinpointing con�guration-related per-

formance problems is time-consuming [9, 11, 28, 37, 55, 72, 88] due

to its huge search space. Search-based techniques are exploited to

change the value of con�guration options by trial-and-error [32, 50,

54] to resolve performance violations and to �nd the optimal con-

�gurations. But without explicit cause-e�ect relationships between

options and performance, search-based techniques could be easily

trapped in the massive con�guration space generated by too many

options [13, 51, 68]. This motivates us to explore other techniques

to tame the cause-e�ect relationships for eliminating the e�ort of

trial-and-error and �guring out the crucial options.

The cause-e�ect relationships between con�guration options

and performance help understand which, where, how, and why con-

�gured options in�uence system performance behind the screen.

But such studies are still in the early stage and rely greatly on ex-

perts and domain knowledge. One human-centric approach [72] to

diagnose performance problems is to collect software hotspots with

CPU pro�ling, identify related options and locate option hotspots

with performance-in�uence models. Then they manually investi-

gate how related con�guration options a�ect the performance. This

approach is non-trivial and cannot guarantee to �nd the correct

root cause for the following reasons: (1) the relationship between

566

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3611643.3616300
https://doi.org/10.1145/3611643.3616300


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Zhiming Chen, Pengfei Chen, Peipei Wang, Guangba Yu, Zilong He, and Genting Mai

Global performance

m1 m2 m3

Latency

A A·D F E C E

Traditional Profiling Techniques Profiling with Options Tracking

Global performance

m1 m2 m3

Latency

Which options
are root cause ? B

Figure 1: The weakness of traditional pro�ling techniques

for con�guration-related performance violations diagnosis.

hotspots detected by pro�lers and con�guration options is complex

and uncertain; (2) not all options need to be tuned when a perfor-

mance violation occurs; (3) some options are continuous values,

making it di�cult for performance modeling; and (4) options evolve

with software updates. Thus, we seek to diagnose and restore the

evidence for performance violations via automatic cause inference.

When performance violations occur, there are substantial moni-

toring and pro�ling techniques whose goal is to locate performance

hotspots [20, 38, 52, 60, 69]. However, hotspots only imply per-

formance bottlenecks but not always performance violations. For

example, some code logic is destined to occupy more execution time

than others, and thus are highlighted as hotspots by the pro�lers.

On the other side, which options to tune remains an open problem

in performance analysis with traditional monitors and pro�lers,

given that those pro�ling and monitoring tools consider only one

instance of all con�guration options at a time to evaluate their per-

formance e�ects. As illustrated in Figure 1, in a con�gurable system

with six options, method m1 contains complex computational logic

and is highlighted as a hotspot by pro�lers when a performance

violation occurs. However, traditional pro�lers cannot dive into the

option level and it totally depends on stakeholders (users, devel-

opers, and site reliability engineers) to navigate the source code

and then to �nd the options A, D, F are relevant to m1. But in fact,

option B is the critical option causing the performance violation.

Performance-in�uence models [61] help understand the in�u-

ence of options on system performance [26, 27, 33, 34, 37, 42, 70–

72, 75]. The accuracy of performance models heavily depends on

the selected model [42] and the subset of the con�guration space

generated by various sampling strategies [40, 47]. To make it trick-

ier for sampling-based performance modeling, software systems

are sensitive to con�guration changes, meaning that systems with

similar con�gurations would have dramatic performance di�er-

ences [13, 51]. Previous attempts at buildingwhite-box performance

models of con�gurable systems [70–72, 75] are de�cient for general-

purpose dynamic workloads and environments. Besides, as the soft-

ware evolves and the number of options increases, it is becoming

more expensive to keep the performance models up to date.

Given the discussion above, our goal is to devise a general low-

cost, high-precision technique for con�gurable software systems

that can not only interpret cause-e�ect relationships between op-

tions and performance violations but also infer which con�gured

options are responsible for those violations. To achieve our goal,

we propose DiagConfig, a white-box diagnosis tool to (1) identify

performance-sensitive options, (2) tame cause-e�ect relationships

between the options and performance violations, (3) �gure out the

options that are responsible for performance violations. DiagCon-

fig leverages both static code information from taint tracking and

runtime pro�ling information to build cause-e�ect chains which

can help stakeholders explain performance issues. We evaluated

DiagConfig with eight real-world open-source projects and the

results show that DiagConfig produced fewer false positives than

SafeTune [29] (i.e., 5 vs 41), a documentation-analysis based tool,

in the identi�cation of performance-sensitive options. Moreover,

DiagConfig is fast and supports a more comprehensive diagnosis

of performance violations compared to Unicorn [32] (recall: 0.892

vs 0.289), a statistics-based debugging tool. We also integrated Di-

agConfig into an auto-tuner and demonstrated its feasibility of

underpinning prior works on con�guration performance tuning.

Our key contributions are as follows.

• A summary of information needed for con�guration diag-

nosis of performance violations, including identi�cation of

performance-sensitive options, localization of performance

violations, and root causes inference.

• Awhite-box approach and prototype,DiagConfig, for build-

ing cause-e�ect chains between con�guration options and

pro�led hotspots to diagnose performance violations.

• A dataset of performance-sensitive options on eight real-

world con�gurable software systems in diverse domains,

which can be used to evaluate DiagConfig and its compara-

ble alternatives.

2 BACKGROUND AND RESEARCH
QUESTIONS

In this section, we �rst introduce basic concepts of pro�ling and

taint tracking, which are exploited in the white-box analysis of

con�gurable software systems. After that, we introduce important

information needed to diagnose performance violations, according

to which we de�ne and describe our research questions.

2.1 Background

Pro�ling. Pro�ling aims to reveal the runtime behavior of program

execution with regard to resource consumption [19]. Pro�ling in-

vestigates howmuch of a resource each program element consumes

and reports performance-critical program elements as hotspots. A

program element refers to a statement or method (function) in a

program. It is a basic sampling unit in pro�ling. There are many

approaches to detect performance problems caused by resource

consumption, such as CPU-time pro�ling [25] and unnecessarily

high memory consumption pro�ling [77, 78, 81]. These approaches

track how hotspots are invoked; in particular, stakeholders follow

the traces (e.g., call-chains) to diagnose unexpected performance

behavior. However, limited evidence in the pro�ling clari�es the

relationships between options and hotspots. Stakeholders have to

navigate the source code to �nd hotspot-related options, which is

not e�cient and could go beyond the scope of human reasoning

due to the complexity in the dependencies of program elements.

Taint tracking. Taint tracking is typically used in information

security detection to track the information-�ow from user inputs

(sources) to speci�c security-sensitive locations (sinks). From the

perspective of performance analysis in con�gurable systems, the

con�guration is equal to user inputs. Well-designed systems have

standard APIs for loading con�guration option values to program
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variables [18, 45, 57, 58, 79, 80]. These variables are then propa-

gated along the program’s data-�ow paths via assignments, string

operations, and arithmetic operations until they are consumed in

program elements that change runtime behavior. Taint tracking

with con�guration as a source helps understand di�erent attributes

of con�gurable software systems, including performance attributes.

2.2 Research Questions

The performance of a con�gurable software system can be de�ned

as %8 = ? (28 ,F8 , E8 ), where 2 = [>1, >2, ..., >=] is a valid con�gura-

tion, > is an option,F is a speci�c workload, E is a speci�c produc-

tion environment, and 8 is used to distinguish between cases. In this

paper, our ultimate goal is to �nd the set of options 2∗ responsible

for the performance violation |%8 −%(!$ | ≥ X to help con�guration

performance tuning and cause-e�ects explanation, where %(!$
denotes the prede�ned SLO and X is a signi�cant factor.

Speci�cally, a con�guration diagnosis needs su�cient informa-

tion to answer the following research questions.

RQ1: Which options are performance-sensitive?

Not all options are performance-sensitive. Stakeholders usu-

ally identify and interpret performance-sensitive options based

on documentation rather than source code [72]. However, any op-

tion that a�ects performance during runtime must have a data- or

control-�ow dependency with performance-related operations [44].

Performance-related operations refer to code snippets in a pro-

gram contributing positively to execution time (time-expensive) and

memory consumption (memory-expensive). In this paper, we follow

the prior work [44], and consider four types of performance-related

operations: one type of memory-expensive operations and three

types of time-expensive operations. Thememory-expensive

operations are heap or static array allocation operations. And the

three types of time-expensive operations are (1) I/O operations;

(2) lock-synchronization and threads start/pause operations; and (3)

operations that a�ect system concurrency (e.g., creation of threads

or thread pools). These operations are computationally expensive,

and potentially need paging or swapping with low-speed devices

or context-switching. And the data- and control-�ow dependen-

cies between an option and a performance-related operation can

be grouped into three categories.

(1) A direct data dependency where program variables derived

from the option’s value are used in the operation and a�ect

every dynamic execution of the operation.

(2) An if/switch-related control dependency where program

variables derived from the option’s value determine whether

the operation is executed by in�uencing control-�ow deci-

sions of the if/switch statement.

(3) A loop-related control dependency where program variables

derived from the option’s value determine the number or

frequency of the operation executions.

To answer this question, we �rst treat con�guration as the source

and mine the information-�ow paths that record the dependencies

between performance-related operations and options via taint track-

ing. Since not all performance-related operations have a signi�cant

performance impact, we characterize the dependency information

and then utilize the random forest [8] to identify performance-

sensitive options. The details of this process are presented in § 3.1

and the evaluation of its e�ectiveness is discussed in § 5.2.

RQ2: Which hotspot functions are performance-violating?

End-to-end performance metrics can tell when performance vi-

olations occur but could not help explain the reason. In contrast,

pro�lers report hotspot functions within the program concerning

execution time, memory consumption, invocations, etc. To answer

this question, we do a pro�ling comparison between poor execu-

tions and normal/baseline execution. The former has signi�cantly

deteriorated performance while the latter is a high-performance

execution that meets SLO, usually given by domain experts. By com-

paring hotspot functions in poor execution to those in the normal

baseline execution, pro�ling can help locate performance-violating

hotspot functions under poor execution.

RQ3: How do performance-sensitive options lead to per-

formance violations?

RQ1 discovers performance-sensitive options and RQ2 identi-

�es hotspot functions causing performance violations. RQ3 tries to

build connections between those two in order to explain the cause-

e�ect relationship between options and performance violations.

To answer this question, we use performance-related operations

as the intermediary. Once the options are used in statements that

in�uence the hotspot functions (e.g., branch/loop conditions, in-

vocations), both performance-sensitive options and performance-

violating hotspot functions become traceable. We build cause-e�ect

chains by correlating information-�ow paths (between options and

operations) in § 3.3 and call-chains (between operations and hotspot

functions), and evaluate the e�ectiveness of this approach in § 5.3.

3 METHODOLOGY

In this section, we �rst brie�y introduce our prototype tool Diag-

Config and then describe the work�ow steps in each subsection.

DiagConfig is a white-box con�guration diagnosis system and

is general enough to adapt to software systems under di�erent

con�gurations, workloads, and environments. Figure 2 shows the

overview of DiagConfig. It consists of two parts: 1) o�ine anal-

ysis, and 2) online diagnosis. O�line analysis (§ 3.1) identi�es

performance-sensitive options by revealing the dependencies be-

tween con�guration options and performance-related operations.

This procedure requires two inputs: 1) the target system’s source

code, and 2) a list of speci�c prerequisites. The prerequisites contain

statements that load con�guration option values (as sources) and

performance-related operations (as sinks) in the source code. It

builds information-�ow paths from option values to performance-

related operations via taint tracking, extracts options’ static per-

formance properties, and then classi�es performance-sensitive op-

tions and information-�ow paths. Online diagnosis (§ 3.2 and

§ 3.3) continuously monitors system runtime behavior, locates

performance-violating hotspot functions, and collects call-chains

for the performance-violating hotspot functions from the pro�l-

ing. It builds cause-e�ect chains with information-�ow paths and

call-chains, which further reveals the data- or control-�ow de-

pendency between individual options and performance-violating

hotspot functions. When a new performance violation occurs, Di-

agConfig can apply these cause-e�ect chains to guide diagnosis

and to recommend crucial con�guration options for performance

tuning. It can work as a daemon process that continuously analyzes

performance-violating con�guration options for auto-tuning.
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Figure 2: Overview of DiagConfig

3.1 Identi�cation of Performance-sensitive
Options

The identi�cation of performance-sensitive options is the goal

of the o�ine analysis. For each option, DiagConfig �rst com-

putes the information-�ow paths that record the data- and control-

�ow dependencies between variables derived from the option and

performance-related operations via taint tracking. Subsequently,

DiagConfig characterizes these paths as performance property

(i.e., feature vector), which is utilized as input for a random forest

model to determine whether the option is performance-sensitive or

not. The training process of the random forest is presented in § 5.2.

Taint tracking. Taint tracking tracks the propagation of vari-

ables in source code with a "coloring" technique. It �rst tags each

program variable that stores an option value and then analyzes

the dependencies between the colored variables and performance-

related operations. The initial taints are program variables obtained

from standard con�guration loading statements, which are called

sources. Taints are then propagated and transformed along the pro-

gram’s data-�ow paths, until they are consumed in sink statements.

Besides pre-de�ned performance-related operations (i.e., sinks),

DiagConfig marks if/switch statements with branches containing

performance-related operations and loop startup/jump-out state-

ments with the body containing performance-related operations

as expanded sinks (see§ 4). Once the taints reach sinks, Diag-

Config builds the information-�ow paths for the corresponding

options that record performance-related operations, taints propa-

gation paths, and location (e.g., source code �le name, source code

line number) of code snippets where the dependencies between

options and performance-related operations occur.

Example. As shown in Figure 3.(a), DiagConfig captures the if-

related control and loop-related control dependencies between the

option jobs and thread-related operations (i.e., call(), invokeAll()) via

taint tracking. Then,DiagConfig builds information-�ow paths for

the option jobs that records the thread-related operations and the

location where the dependencies occur, including method signature,

if statement, loop startup statement, and source code line number.

Note that not all performance-related operations signi�cantly af-

fect system runtime performance. To identify performance-sensitive

CompressedOutputStream.

processBlock()

public CompressedOutputStream

(…, Map<String, Object> ctx){…

int tasks =(Integer) 

ctx.getOrDefault("jobs", 1);

…

this.jobs = tasks;

…}

private void processBlock()

throws IOException{…

List<Callable<Status>> tasks =

new ArrayList<>(this.jobs);…

if (tasks.size() == 1){…

Status status =

tasks.get(0).call();

…}else{

for (Future<Status> result :

this.pool.invokeAll(tasks)){

Status status = result.get();

…}

}

…}

: Taint flow

DivSufSort.

ssMultiKeyIntroSort(IIII)V

DivSufSort.

ssSort(IIIIIIIZ)V

DivSufSort.

sortTypeBstar([I[II)I

DivSufSort.

computeBWT([B[B[IIII[II)I

CompressedOutputStream$EncodingTask.
encodeBlock(SliceByteArray;SliceByteArray;IJII)

+54 %

+Inf %

-98 %

+19 %

: Direct call

: The call ignores some callee

(a) Information-flow path (b) Call-chain

Figure 3: Example of building a cause-e�ect chain using an

information-�ow path (a) and a call-chain of the performance-

violating hotspot ssMultiKeyIntroSort to diagnose where, how, and

why the option jobs causing a performance violation in Kanzi [46].

DiagConfig backtracks the call-chain (b) and analyzes each callsite.

In the method processBlock, it identi�es the program dependencies

between the option jobs and thread-related operations that invoke

encodeBlock (the callee of the processBlock). Then, it connects the

information-�ow path and the call-chain to a cause-e�ect chain.

options, we still need to characterize the information-�ow paths of

the con�guration options as performance properties and build a

random forest classi�cation model with the labeled con�guration

options’ performance properties.

Characterization. Given information-�ow paths for one con-

�guration option, we count the number of performance-related

operations and characterize the performance property of the option

by constructing the counter vector + . The original performance

property is a high-dimensional (e.g., at least 176 classes and their

2221 methods under the java.nio package belonging to I/O opera-

tions for Java applications) and sparse vector where each count is

relatively small. It in�uences the splitting decision for the random

forest and makes the random forest struggle to generalize well.

Inspired by the best practices of feature abstraction for sparse high-

dimensional feature spaces in text classi�cation [7, 10, 64], we study

the information-�ow paths of con�guration options and conclude
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Code Snippets:

class ColumnFamilyStore implements…{…
ThreadPoolExecutor flushExecutor = new

JMXEnabledThreadPoolExecutor(

DatabaseDescriptor.getFlushWriters(),

…);
…}
// JMXEnabledThreadPoolExecutor

//     extends ThreadPoolExecutor

ThreadPoolExecutor(corePoolSize, 

maximumPoolSize, keepAliveTime, unit, 

workQueue, threadFactory, defaultHandler);

“memtable_flush_writers”

Cassandra-4.0.5 Code Snippets:

int write(…, WriteBuffer buff,…) {…
int compressionLevel =

store.getCompressionLevel();…
if (compressionLevel == 1) {

compressor = store.getCompressorFast();

compressType = DataUtils.PAGE_COMPRESSED;

} else {…}…
int compLen = compressor.compress(…);
if (compLen + plus < expLen) {

buff.put(…); …} 
…}

“COMPRESS”

H2 Database-2.1.210 Code Snippets:

void processBlock() throws … {…
List<Callable<Status>> tasks =

new ArrayList<>(this.jobs);…
for (Future<Status> result :

this.pool.invokeAll(tasks)) {

//  Wait for completion 

//   of next task and validate result

Status status = result.get();

}

…
}

Kanzi-2.0.0

“jobs”

(a) direct data dependency (b) if/switch-related control dependency (c) loop-related control dependency

Figure 4: Real-world examples of three target systems (see table 1 for more details) to illustrate the dependencies between performance-

related operations and options. The arrows show the data-�ow of option propagation. Con�guration options are quoted in the �gure, and the

performance-related operations are shaded.

four heuristic strategies for dimensionality reduction and trans-

formation. We cluster the counts based on performance-related

operations and dependency categories that we mentioned in § 2.2.

(1) We �rst introduce �1

4
= 4 aggregated features by clustering

counts based on performance-related operation categories. As

an illustration, we cluster all performance-related operations

that pertain to the java.io or java.nio packages for Java applica-

tions in our implementation.

(2) We next introduce �2

4
= 6 aggregated features by clustering

counts according to the pair-wise combination of performance-

related operations categories. This strategy is motivated by our

observation that one information-�ow path of options in�u-

ences two categories of performance-related operations at the

same time. Figure 4.(c) shows a real-world example that the

option jobs in Kanzi determines the concurrency and synchro-

nization of tasks (the operation invokeAll() creates threads for

tasks execution and holds for them to complete).

(3) We then introduce one aggregated feature by accumulating the

counts of four performance-related operations categories.

(4) We �nally introduce �1

4
· �1

3
= 12 aggregated features by cat-

egorizing the dependencies between performance-related op-

erations and options. Figure 4 shows three real-world exam-

ples of the dependencies. Figure 4.(a) shows that the option

memtable_�ush_writers directly determines the core pool size

of a thread pool; Figure 4.(b) gives an example that the option

COMPRESS decides whether WriteBu�er.put() is executed by

an if statement; and Figure 4.(c) shows that the option jobs

determines the task synchronization via loop control. These

aggregated features would prompt the random forest to learn

�ne-grained information about dependencies between options

and performance-related operations.

These heuristics are set to mitigate the risk of over�tting caused

by the sparse high-dimensional feature space for random forest

classi�cation model building.

Random Forest. Random forest is an appropriate algorithm for

our binary classi�cation task. It combines multiple tree predictors

and distinguishes classes by aggregating their predictions. It is also

more robust than a single tree predictor and more interpretable

than deep learning models because of explicit decision inference

paths in a tree. Besides, training a random forest model only needs

a small sample data which is readily satis�ed in our scenario. Given

these, to identify performance-sensitive options, we train a random

forest model which approximates the following function.

6(performance property) → performance-sensitive or not

The training data are performance properties of the con�guration

options with class labels (§ 5.2), namely performance-sensitive (i.e.,

1) or not (i.e., 0). Then, DiagConfig characterizes the information-

�ow paths of a new option as the performance property and feeds

it to the trained model. The random forest determines whether the

option is performance-sensitive or not. All performance-sensitive

options and their corresponding information-�ow paths are persisted

in a �le for cause-e�ect chains building in the online diagnosis.

3.2 Performance Violation Localization

Performance violation localization is the �rst step of the online di-

agnosis. The goal of this step is to detect the performance-violating

hotspot functions based on performance measurements for the se-

lected metrics. DiagConfig �rst leverages an o�-the-shelf pro�ler,

Jprofiler [20], to continuously monitor the end-to-end perfor-

mance of a system in sampled-based [3, 59] mode (see § 5.4). When

an SLO violation is detected in the end-to-end performance mea-

surement, it collects hotspot functions from the pro�ler. By com-

paring the execution time of hotspot functions in the performance

violated situation and the normal baseline execution, DiagCon-

fig calculates the performance variation of each hotspot function.

Most o�-the-shelf pro�lers are capable to measure the execution

time of each hotspot function excluding the callee’s performance

in�uence. Thus, DiagConfig determines that a hotspot function

with a signi�cant performance variation is performance-violating.

Here we choose the signi�cant variation factor to be 5% (see § 5.1).

Besides the measurement of performance variations, we also

extract call-chains for each hotspot function from the pro�ler. The

call-chains of a hotspot function can provide trace information

about how the hotspot function is triggered and impacts the system

performance. Since a system has many hotspot functions and a

hotspot function can be associated with multiple call-chains, we

use some rules to �lter and sort the hotspot functions and their

call-chains. We pre-set a signi�cant variation factor (5%), and those

hotspot functions whose performance variations under the fac-

tor will be discarded. Then, we sort the hotspot functions and

call-chains according to performance variation and performance

contribution to the system performance.

Example. A call-chain is shown in Figure 3.(b), each box is a

hotspot function and the corresponding performance variation is
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marked in the upper right corner. Hotspot functions with signi�cant

performance deterioration are culprits of performance violation.

3.3 Cause-e�ect Chain Building

Despite information-�owpaths showing howperformance-sensitive

options a�ect performance-related operations, not all performance-

related operations lead to performance violations at runtime. Be-

sides, quantifying the importance of options for system perfor-

mance violations is still an open question, which cannot be an-

swered by static code analysis alone. Moreover, some function calls

are dynamic binding (e.g., thread invocation, re�ection, callbacks)

that static analysis tends to miss. Therefore, our approach leverages

the call-chains of performance-violating hotspot functions from

the pro�ler to complement the runtime information of a system

that is missing from static code analysis. DiagConfig backtracks

the call-chains of hotspot functions and analyzes the callsite at

the statement/block-level to determine whether there are program-

dependencies between the performance-violating hotspot func-

tions and performance-related operations. When a hotspot func-

tion in the call-chains involves performance-related operations or is

called by the operations, DiagConfig correlates the corresponding

information-�ow paths and the call-chains to construct trackable

cause-e�ect chains (i.e., conditional pairs consisting of information-

�ow paths and call-chains). Associating performance variations of

hotspot functions with options corresponding to information-�ow

paths allows for quantifying and ranking options’ importance.

Algorithm 1 describes how we build cause-e�ect chains based

on information-�ow paths and call-chains. The information-�ow

path records the con�guration option (source) and the location of

performance-related operation (sink). For each call-chain of the se-

lected hotspot function (line 4), we backtrack it from callee to caller

and check whether the caller is contained by the information-�ow

paths (line 5). If all callers in the call-chain of a hotspot function are

not contained by the information-�ow paths, this means that the

hotspot function is not in�uenced by the options. Since the branch

or loop body is involved in if/switch- or loop-related dependency,

we get the code snippet where dependency between the option and

the performance-related operation occurs (line 10). Then, we build

a cause-e�ect chain by connecting the call-chain and information-

�ow path if the caller directly invokes the performance-related

operation or the callee is invoked by the performance-related oper-

ation based on the call graph (line 11).

Example. Figure 3 shows that DiagConfig builds a cause-e�ect

chain between the option jobs and the hotspot function ssMultiKey-

IntroSort. It backtracks the call-chain and �nds that the option jobs

in�uences the frequency of the hotspot function ssMultiKeyIntroSort

by thread-related operation and if/loop-related control dependency

in the method processBlock. Then it builds a cause-e�ect chain by

connecting the call-chain and the information-�ow path.

4 IMPLEMENTATION

Our prototype tool DiagConfig is built on the top of the Soot

compiler infrastructure [67], FlowDroid [4], Scikit-learn [56], and

Jprofiler [20] and specially targets con�gurable Java applications.

To ensure its scalability, we focus on the standard library APIs

and bytecode instructions that contribute positively to execution

Algorithm 1: Cause-e�ect Chains Building

Input: Perf.-Sensitive Info.-�ow paths P, Selected hotspots with call-chains H
Output: Cause-e�ect chains C

1 C = 4<?C~(4C ( )

2 for h ∈ H do
/* Get the call-chains for each hotspot */

3 20;;�ℎ08=B ← ?0AB4 (h)

4 for 20;;�ℎ08= ∈ 20;;�ℎ08=B do
/* Backtrack the call-chain from callee to caller.

Caller doesn’t appear in P, indicating that no

option-related performance operations involved */

5 for 20;;4A ∈ 20;;�ℎ08= ∩ P do
6 %0CℎB ← P.64C (20;;4A )

7 26← (24=4.E ( ) .64C�0;;�A0?ℎ ( )

8 20;;44 ← %A4E (20;;4A )

9 for ?0Cℎ ∈ %0CℎB do
10 1;>2: ← 64C%4A 5 $?'4;0C43�;>2: (?0Cℎ)

/* Check whether caller invokes perf.

operations or callee is invoked by perf.

operations */

11 if 8B�=5 ;D4=243 (26, 20;;4A, 20;;44,1;>2: ) then
12 C.033 (;8=: (20;;�ℎ08=, ?0Cℎ) )

13 end

14 end

15 end

16 end

17 end

18 return C

time and memory consumption. These are the basic application-

independent performance-related operations in the Java ecosystem.

DiagConfig treats these performance-related operations as sinks

through method signatures and type analysis based on Jimple, the

intermediate-representation provided by the Soot. For example, the

array allocation-related operations are represented by JNewArray-

Expr and JNewMultiArrayExpr, and the I/O-related time-expensive

operations are usually pre�xed with java.io or java.nio for their

standard library API signatures.

In the o�ine analysis, we utilize the popular static taint analy-

sis framework, FlowDroid [4], to support con�guration options

taint tracking. By treating con�guration loading statements as

sources and performance-related operations as sinks, it reveals

the direct data dependency between the con�guration options and

the performance-related operations. But the if/switch-related and

loop-related control dependencies are missed out. Therefore, we

slightly modi�ed the sink manager component of FlowDroid with

program-dependence graphs [23] for our purposes to mark if/switch

statements with branches containing performance-related opera-

tions and loop startup/jump-out statements with body contain-

ing performance-related operations as expanded sinks. Then, if

the conditions of if/switch statements or loop startup/jump-out

statements have a direct data dependency with an option, there

is if/switch-related or loop-related dependency between the op-

tion and the operations inside the branches or loop body. We also

customized FlowDroid’s source manager component to support

those systems without standard con�guration loading operations.

Additionally, we set the depth of alias analysis at �ve for FlowDorid

to balance the taint tracking precision and computational overhead.

This is the default value provided by FlowDroid, and the larger

the depth the higher the taint tracking overhead required. Next,

we build the random forest with Scikit-learn for identi�cation of

performance-sensitive options. In the online diagnosis, we use a
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Table 1: Overview of target systems

System Domain #Opt. #KLOC V/ID Overhead

BATIK* SVG rasterizer 31 360 1.14 6h

Cassandra+ Database 172 697 4.0.5 10h

Catena* Password hashing 12 6.6 9c89da4 ≤1h

DConverter* Image Density Converter 24 491 bdf1535 ≤1h

H2* Database 28 340 2.1.210 3h

Kanzi* Data compressor 40 28.8 2.0.0 ≤1h

Prevayler+ Database 12 14.4 2.6 3h

Sun�ow* Rendering engine 6 27.4 0.07.2 ≤1h

1 : Includes source code for several libraries invoked by image processing;
* :The system targets at low execution time (latency);
+ :The system targets at high throughput;

Opt: The number of options; V/ID: Version/Commit ID; Overhead: Time required for static

con�guration options taint tracking;

pro�ler well-known in the industry for its low overhead, Jprofiler,

to monitor the execution time of each method in the system.

We consider a performance violation occurs when the system

su�ers a performance degradation over 5% compared to the base-

line under its benchmark. Then we compute performance variation

for each hotspot method by hotspot comparison built within the

pro�ler and collect call-chains of the hotspot methods with perfor-

mance variation over 5% for root cause inference. The 5% is our

empirical unacceptable value, based on the measurement variation

(see § 5.1) which is up to 4% known from the prior work [75]. We

implement an inter-procedural callsite analysis using the call graph

provided by the Soot to build cause-e�ect chains.

5 EVALUATION

In this section, we evaluate the e�ectiveness of our summarized

information above (§ 2.2) to help stakeholders diagnose the per-

formance violations of con�gurable software systems. Moreover,

we further answer the following research questions to evaluate the

e�ectiveness of our approach.

RQ4: The performance of DiagConfig. Can DiagConfig

work well for performance violation diagnosis of con�gurable sys-

tems? Can DiagConfig speed up the existing auto-tuning process?

5.1 Experiment Setup

Hardware.We used two environments, one with 128GB of RAM,

24 cores, and 48 threads of Intel Xeon Silver 4116 processor running

Ubuntu 18.04, which was only used for static taint analysis, and

the other with 48GB of RAM, 4 cores, and 8 threads of Intel Core

i7-7700 processor running Ubuntu 20.04 desktop version.

Target Systems. We selected eight con�gurable, real-world,

open-source Java systems from various domains shown in Table 1.

All of them satis�ed the following criteria: (1) systems with binary,

enumerated, and continuous con�guration options; (2) systems

used for evaluation by previous research on performance modeling.

We reused the workloads and benchmarks evaluated in the existing

literature [75] for each target system.

Measurement and Con�guration Variation. To con�rm the

measurement stability in our environment, we chose one con�gura-

tion with normal execution (i.e., normal con�guration) for each of

the four target systems according to their artifacts (e.g., documenta-

tion, release notes, benchmark results), and repeated 50 times in the

benchmarks. Figure 5.(a) shows that execution time variations of

Batik, H2 database, Kanzi, and throughput variation of Cassandra
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Figure 5: Performance variation of normal con�guration and

problematic con�gurations in 50 repetitions.

in 50 repetitions with normal con�guration are all below 5%. The

<40BDA4<4=C E0A80C8>= = |
?8−<40=
<40= | where 8 ∈ [1, 50], ?8 is the

performance of the i-th execution and<40= is the average perfor-

mance of 50 repetitions. Each point in Figure 5.(a) represents the

performance variation of a single repetition compared to the aver-

age performance. Moreover, to capture the variation in a system’s

performance due to loading problematic con�guration, we �rst

randomly generated 100 con�gurations derived from the normal

con�guration for each system, repeated measurement 50 times, and

�ltered out the con�gurations with average performance variation

below 5% compared to the normal con�guration. This leaves us

with 49, 31, 32, and 38 con�gurations for Batik, Cassandra, H2, and

Kanzi, respectively. Then we randomly selected 30 problematic con-

�gurations (i.e., average performance variation over 5%) from these

�ltered con�gurations to understand the sensitivity of performance

violations. Figure 5.(b) shows that the performance degradation

(i.e., con�guration variation) caused by problematic con�gurations

with 50 repetitions varies from 11.2% in Batik to 196% in Kanzi. The

2>=5 86DA0C8>= E0A80C8>= = |
2 9−=>A<0;

=>A<0;
| where 9 ∈ [1, 30], 2 9 is the

average performance for the j-th problematic con�guration and

=>A<0; is the average performance for the normal con�guration.

Each point in Figure 5.(b) represents an average performance varia-

tion of 50 repetitions for one problematic con�guration. The dashed

vertical line denotes theminimal con�guration variation (i.e., 11.2%).

From Figure 5, we can conclude that in our environment, the per-

formance variation under repeated executions is below 5% and the

con�guration variation is above 11.2%. Therefore, we regarded the

measurement result of 5 repetitions as approximate to the result of

50 repetitions and use 5% as the threshold of performance violation

conservatively. Note that measurement and con�guration variation

is the rationale for our derived performance violation threshold.

5.2 RQ1: Accuracy of DiagConfig in
identifying performance-sensitive options

In this section, we describe how we labeled data for random forest

classi�cation modeling, and the details about the identi�cation of

performance-sensitive options, followed by the result analysis. Note

that we also conduct data labeling for Cassandra and use the labeled

data as the ground truth for the evaluation of identi�cation results.

Data Labeling. To label performance-sensitive options accu-

rately, we conducted experiments to study the performance in�u-

ence of each option. For each option in each system, we changed
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Figure 6: Results of performance-sensitive options identi�cation.

its value, re-deployed the system, followed common practices [32,

33, 75] to measure �ve repetitions, and calculated the average per-

formance variation before and after the value change. Then, the

options with any observed variation larger than 5% were labeled

as performance-sensitive. Speci�cally, for options of binary and

enumerated types, we explored all possible values, and for continu-

ous options, we obtained a set of their values by Plackett-Burman

sampling [73]. For some continuous options that were not identi�ed

as performance-sensitive in the sampling space, we further tried

our best to analyze their in�uence in small incremental steps (e.g.,

we used 2mb as a step from 1mb to 4096mb to analyze the in�uence

of the option �le_cache_size_in_mb of Cassandra).

Random forest modeling. To build a well-generalized random

forest classi�cationmodel, we simulated a scenario where themodel

is trained on existing systems and tested on unseen systems. Given

this, we used Batik, Catena, H2, Prevayler, and Sun�ow (i.e., 89

options) as the training set and Dconverter, Kanzi (i.e., 64 options) as

the test set. Our classi�cation model constructed from the training

set �gured out 93.3% (14/15) of performance-sensitive options on

the test set, so our model is valid and used for further evaluation.

Comparison.The remaining target system, Cassandra, was used

to further evaluate the e�ectiveness of our classi�cation model.

We chose Cassandra since it was evaluated in another state-of-

the-art tool SafeTune [29], which identi�es performance-related

parameters by building learning-based models and analyzing on

system con�guration-related documentation. SafeTune made its

dataset publicly available, so we used it to compare with our results.

Result and Analysis. We collected the set of performance-

sensitive options by running Cassandra in NoSQLBench [22], tlp-

stress [21], cassandra-stress [53] and the YCSB [17] benchmark. We

fed 172 options to taint tracking, 67 of which in�uence pre-de�ned

performance-related operations. And we identi�ed 37 performance-

sensitive options based on the random forest model. In comparison,

SafeTune identi�ed 64 performance-related parameters.

The results are shown in Figure 6. The circled area labeled ‘Perf.-

Sensitive’ provides the ground truth for the comparison analysis.

Among the 37 reported performance-sensitive options byDiagCon-

fig, 32 are true positives (i.e., region 101 + region 111) and 5 are false

positives (i.e., region 100 + region 110), having a precision of 86.4%

and a recall of 65.3%. SafeTune reported 64 performance-sensitive

options. Among them, 23 are true positives (i.e., region 011 + region

111) and 41 are false positives (i.e., region 010 + region 110), having

a precision of 35.9% and a recall of 46.9%.

Both approaches produce false negatives. DiagConfig missed

17 performance-sensitive options (i.e., region 001 + region 011) and

SafeTune missed 26 (i.e., region 001 + region 101). We studied

the 17 performance-sensitive options that we misclassi�ed and

summarized some of the sources that resulted in the misclassi�ca-

tion as follows: (1) the considered performance-related operations

are not complete; e.g., the option ideal_consistency_level depen-

dent on consistency maintenance-related operations that are not

included in the Java standard library; (2) performance property

is a simple count, which does not fully re�ect runtime perfor-

mance behavior; e.g., the performance property of the option peri-

odic_commitlog_sync_lag_block_in_ms indicates that it is thread-

related, but the small count causes it to be misclassi�ed.

DiagConfig and Safetune are complementary to each other

since each has identi�ed new options missing in the other. Diag-

Config identi�ed 20 performance-sensitive options (i.e., region 101)

missed by SafeTune, and SafeTune identi�ed 11 performance-

sensitive options (i.e., region 011) that were missed in DiagConfig.

Summary for '&1: For performance-sensitive option identi�ca-

tion, our static code analysis-based approach introduces fewer false

positives (i.e., 5 vs 41) than the documentation-based approach. This

is because the data- and control-�ow dependencies between options

and performance-related operations in source code can better re�ect

the runtime behavior of the system than documentation.

5.3 RQ2 and RQ3: E�ectiveness of cause-e�ect
chains identi�ed by DiagConfig

In this section, we focus on the diagnosis of performance violations

caused by con�guration changes and evaluate our code analysis-

based approach by comparing it with a statistic-based approach.

Diagnosis of Con�guration Changes. First, we selected a

baseline or default con�guration based on the relevant document

and treated the application performance under this con�guration

as the SLO for each system. Then, we mutated the con�guration to

produce scenarios of performance violations for further diagnosis.

Similar to the sampling strategy for accurate performance modeling

which is described in Weber et al [75], we selected feature-wise and

pair-wise sampling for options of binary type and Plackett-Burman

sampling [73] for enumeration and continuous types. We �rst man-

ually �ltered out the invalid con�gurations derived from sampling,

loaded only valid ones into the system, and got corresponding

performance measurements in a speci�c benchmark. Those con�g-

urations with an average performance in �ve repetitions over 5%

compared to the SLO would be fed to the process of diagnosis.

Note that in the evaluation, the goal is not to �nd the optimal

con�gurations, but to diagnose performance violations. The e�ec-

tiveness of diagnosing performance violations was reported via

precision and recall metrics. Precision is the ratio between the set

of correctly identi�ed options and the set of predicted options while

recall is the percentage of correctly identi�ed options causing a

performance violation and the set of options whose values had

changed compared to the baseline.

Comparison.We ranDiagConfig to obtain the set of con�gura-

tion options responsible for performance violations, and compared

our results to Unicorn, a statistics-based approach for con�gurable

systems performance debugging and optimization via causal perfor-

mance models. In debugging mode, Unicorn repeatedly generates

new con�gurations to replace the loaded one for the system in the
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Table 2: Average Precision and Recall of Comparison.

System Batik Catena H2 Kanzi Prevayler
Average

Con�gurations 128 2433 573 494 118

Precision
Unicorn 0.787 0.705 0.871 0.964 0.756 0.817

DiagConfig 0.911 0.809 0.905 0.806 0.788 0.844

Recall
Unicorn 0.116 0.774 0.049 0.274 0.234 0.289

DiagConfig 0.807 0.956 0.815 0.932 0.952 0.892

Con�gurations: The total number of valid and performance-violating con�gurations (invalid ones are �ltered out)
obtained by sampling, which is traded o� against the performance measurement overhead.

deployed environment, measures the performance, then pinpoints

the critical options related to performance issues.

Result and Analysis. Table 2 summarizes the average preci-

sion and recall of Unicorn and DiagConfig for each system in

diagnosing performance violations. Catena has a much bigger con-

�guration size because in the �xed time duration sampling runs

faster due to its small source code size and number of options. It

also uncovers the reason for Unicorn’s exception recall in Catena

since a small number of options means that the correlation between

options and performance metrics is easier to learn during training.

The relatively low recall of Unicorn reveals its limitations.

When generating one new con�guration to debug, Unicorn only

considers one crucial option at a time, changes its value, deploys

and measures the system, and targets normal metrics. The list of

candidate options is short and relies on the accuracy of causal cor-

relations between options and performance metrics captured by

causal performance models, resulting in an incomplete diagnosis.

In contrast, DiagConfig captures the cause-e�ect relationships

between options and performance behaviors and supports a more

comprehensive diagnosis via code analysis. However, DiagConfig

also produced false negatives and false positives.

For the reasons of false negatives, we double-checked the of-

�ine analysis corresponding to the missed options and concluded

that (a) some information-�ow paths of options are lost due to the

level of variables indirectly referencing the options exceeding the

depth of alias analysis we set (i.e., 5) in taint tracking; (b) a few

options in�uence compute-intensive operations (e.g., operations of

primitive numeric types and hash computation) without involving

the performance-related operations we have agreed upon, leading

to incomplete information-�ow paths. Also, we found more op-

tions responsible for performance violations (which lead to loss of

precision) that deserve further tuning.

Summary for '&2 and '&3: Treating the system as a white box

and taking advantage of performance-related operations, Diag-

Config e�ectively diagnoses performance violations by building

cause-e�ect chains. In addition, the cause-e�ect chains achieve �ne-

grained interpretability (like Figure 3), which helps stakeholders

understand the root causes of performance violations.

5.4 RQ4: Performance of DiagConfig

Overhead.As Figure 2 shows,DiagConfig consists of o�ine analy-

sis and online diagnosis. The o�ine analysis overhead includes data

labeling, static con�guration options taint tracking, classi�cation

model building, and performance-sensitive options classi�cation

with their information-�ow paths �ltering. Among them, data la-

beling and classi�cation model building are only required in the

preparation stage so that when a new system is fed into Diag-

Config, it can directly apply the classi�cation model after taint
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Figure 7: Performance distribution of four software systems in

non-pro�ling, sample-based pro�ling, and instrumentation-based

pro�ling. The small top left plot reports the average performance

degradation caused by sample-based pro�ling for each system, while

instrumentation-based pro�ling incurs unacceptable overhead.

tracking and characterization. Thus, data labeling and classi�ca-

tion model building are conducted only once and used forever. The

performance-sensitive options classi�cation with their information-

�ow paths �ltering are comparatively negligible compared to the

static taint tracking, which is required for each new system. Table 1

lists the overhead for static taint tracking of each target system

in our evaluation. It is relatively heavy but acceptable because we

only need to run static taint tracking once. Moreover, the software

vendors generally can provide the results of this part.

The overhead of online diagnosis includes pro�ling overhead

and cause-e�ect chain building overhead. To check the overhead

incurred by our chosen pro�ler, we selected 50 con�gurations for

each of the four target software systems. We measured these soft-

ware systems with 50 repetitions using non-pro�ling, sample-based

pro�ling [3, 59], and instrumentation-based pro�ling [48], respec-

tively. We visualized the performance distribution of these soft-

ware systems loaded one con�guration in Figure 7 to show the

variation of the results. Each point in Figure 7 represents the per-

formance of a single repetition. For all four software systems, the

performance degradation incurred by sample-based pro�ling (i.e.,

|<40=B−<40==

<40== | where <40== is the average performance under

non-pro�ling and<40=B is the average performance under sample-

based pro�ling) is below 6%. Additionally, the performance distribu-

tion is similar for all con�gurations, indicating that the con�gura-

tion does not impact the measurement stability, which is consistent

with the insight of Weber et al [75]. Despite the extensive research

on lightweight online monitoring tools and sophisticated industrial

pro�lers [83], our experimental pro�ling results suggest that the

overhead of sample-based pro�ling is acceptable and DiagConfig

may not need to replace industry-class pro�lers but build on them

to achieve performance violation detection in online diagnosis.
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Table 3: Overhead of Cause-e�ect Chains Building.

Batik Catena H2 Kanzi Prevayler

Total Time 666.105 s 37.419 s 324.705 s 46.569 s 23.020 s

Cold Start (Maximum) 68.248 s 24.207 s 47.920 s 19.903 s 20.638 s

Second Largest 6.104 s 73ms 3.716 s 531ms 155ms

Minimum 2.915 s 3ms 220ms 3ms 10ms

Mean 4.7233 s 5.65ms 549.8ms 56.2ms 20.9ms

Standard Deviation 769.1ms 101.8ms 267.3ms 88.5ms 21.8ms
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Figure 8: Tuning Example. Comparison of OtterTune tuning process

with (14 options) and without (42 options) DiagConfig aid.

Regarding the overhead of the building of cause-e�ect chains,

we recorded the execution time of each diagnosis when diagnosing

performance violations (§ 5.3). A summary of the metrics is shown

in Table 3. The cold start is that DiagConfig loads the necessary

program static information to build the call graph when construct-

ing the cause-e�ect chains for the �rst time. It is a one-shot cost.

The acceptable cost shows that our approach is suitable for the vast

majority of online production environments and can be integrated

into the existing auto-tuners for diagnosis before tuning starts.

Case Study. DiagConfig can recommend crucial options to

guide tuning tools (e.g., SmartConf [74], OtterTune [68], DAC [86],

BestCon�g [90]) to reduce the huge con�guration space. We con-

ducted a case study with OtterTune, a representative auto-tuner,

to show the e�ectiveness of DiagConfig’s recommendation. Ot-

terTune supports MySQL and PostgreSQL, but neither of them is

a Java system. Thus, we extended OtterTune to work for the Java

database Cassandra. We applied DiagConfig to �gure out the cru-

cial options when a performance violation occurs and then ran

OtterTune to improve performance. We recorded OtterTune’s tun-

ing time spent to validate how much DiagConfig accelerates the

tuning process. In the case study, we simulated a situation where

Cassandra suddenly su�ered signi�cant throughput and latency

degradation under the YCSB benchmark. The stakeholders pointed

out the options related to this performance violation and then lever-

aged OtterTune to improve the system’s performance. By contrast,

we ran DiagConfig to select crucial options before tuning.

Result and Analysis. DiagConfig recommended 14 options,

while the stakeholders o�ered 42 relevant options according to

their experience. We fed these two sets of options to OtterTune

separately. The tuning process is shown in Figure 8. OtterTune got

stuck in the con�guration space that consists of the 42 options.

Tuning with DiagConfig required only 11 minutes to achieve 98%

of the throughput obtained by tuning withoutDiagConfig through

45 minutes. This was an almost 4× acceleration. Moreover, after the

87th minute, the tuning with DiagConfig further achieved better

throughput. Similarly, the acceleration of OtterTune by DiagCon-

fig was also manifested in the latency.

Summary for '&4: The auto-tuners can be stuck in a huge con-

�guration space leading to a slow tuning speed; DiagConfig with

acceptable overhead is complementary to them, which accelerates

the tuning process by compressing con�guration space.

6 LIMITATIONS AND THREATS TO VALIDITY

Limitations of the Static Taint Analysis.DiagConfig computes

information-�ow between options and performance-related oper-

ations in the o�ine analysis may produce inaccurate results. The

main source of inaccuracy is that static taint analysis requires a

trade-o� between accuracy and overhead when confronted with

path explosion and alias analysis, leading to over-tainting or loss of

taint. If the analysis misses all information-�ow, then DiagConfig

will fail to construct cause-e�ect chains. In contrast, if the analysis

falsely reports too many information-�ow paths, resulting in many

redundant cause-e�ect chains. Additionally, while FlowDroid [4]

holds a high accuracy, the analysis is challenged by the explosion of

paths between source and sink as well as the size of the call graph.

As a result, these challenges limit the scale of the target system

that DiagConfig can analyze. Our evaluation demonstrates the

overhead of DiagConfig based on FlowDroid for static taint track-

ing in the target system. Although the cost of analyzing large-scale

con�gurable software systems is relatively heavy, it is acceptable.

Threats to Validity. The selection of the pro�ler for perfor-

mance violation detection is a threat to construct validity. Pro�ling

generally indicates an overhead, resulting in performance degrada-

tion of the software system. We mitigated this threat by selecting a

lightweight pro�ler, Jprofiler, for performance-violating hotspot

functions detection and localization. Besides, the setting of the pro-

�ler is also a threat. Our evaluation of the target system Batik SVG

Rasterizer (128 valid con�gurations generate 51GiB call-chains)

showed that persisting pro�ling information for each hotspot func-

tion leads to expensive storage costs. Mitigating this threat requires

the user to understand the target system well enough and set the

pro�ler blacklist to ignore speci�c program elements. The selection

and setting of the pro�ler are threats to internal validity.

The choice of target systems threatens external validity, onwhich

we evaluate the e�ectiveness of our approach. To alleviate this

threat, we introduced various systems with multiple options from

di�erent areas in our evaluation. They were collected from previ-

ous work [70, 71, 75] and were usually used to evaluate sampling

strategies and performance-modeling methods. We further ran our

approach with OtterTune on the Cassandra database to show the

feasibility of large-scale con�gurable software systems.

7 DISCUSSION

Interpretability of documentation and source code.Accurately

identifying performance-sensitive options requires understanding

the relationship between con�guration options and performance

behaviors. This information can be obtained from system docu-

mentation and source code analysis. SafeTune is a documentation

analysis-based tool, while DiagConfig emphasizes source code

analysis. The information that documentation can provide is mostly

systematic and macroscopic, while the information provided by the

source code is mostly rational-logical and microscopic. Both Safe-

Tune and DiagConfig can identify performance-sensitive options
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that the other has missed. Therefore, the information provided by

documentation and source code is complementary to each other.

Dynamic workload and environment. Dynamic workloads

and environments are non-trivial for evaluating system perfor-

mance. For RQ1, both SafeTune and our evaluation were limited

by the workload and environment. In our evaluation, we �rst con-

�rmed the measurement and con�guration variation (§ 5.1), then

tried our best to identify performance-sensitive options in multiple

rich workloads. In contrast, previous work [29] only considered

multiple workloads without accounting for measurement and con-

�guration variation, thus may lead to inaccurate results. For RQ2

and RQ3, due to the wide variety of workloads and environments,

the performance violations caused by dynamic workloads and en-

vironments migration are out of the scope of this paper.

Multiple metrics for performance issues troubleshooting.

A wide range of metrics has been spawned for monitoring var-

ious aspects of systems’ runtime behaviors. While DiagConfig

focuses on the diagnosis of single-objective (most prior works also

target single-objective [61, 68, 70–72, 75, 86, 90]) performance vio-

lations , we will accommodate multiple and mixed metrics with the

appropriate modi�cation of monitoring components for in-depth

performance issues diagnosis in the future. For instance, thread ac-

tivity and concurrency metrics (e.g., thread on-CPU cycles, synchro-

nization delays) for unusual thread behavior and CPU contention

detection, and lock contention metrics (e.g., the level of locks) for

problematic code-sharing designs uncover.

8 RELATED WORK

Generally speaking, software con�guration tuning has three steps,

namely detection of performance violations, identi�cation of root

causes, and searching for optimal con�gurations. DiagConfig

mainly targets the second step.

Performance violations occur frequently due to changes in work-

load and environment as well as miscon�gurations. There is sub-

stantial literature on detecting [31, 87, 89], testing [15, 41, 65, 80],

diagnosing [5, 6], and �xing [43, 76] miscon�gurations. Speci�cally,

Con�gX [89] employs a tailored static analysis of con�guration-

related code snippets to extract the speci�cation constraint among

options. It does not consider runtime performance behaviors and is

therefore well-suited for detecting miscon�guration that may re-

sult in unexpected and hard-to-observed functional behavior rather

than performance behavior before the con�guration is loaded in.

While these solutions help reduce miscon�gurations introduced by

users’ mistakes, interpretability is still an open problem. Our goal

is to restore the cause-e�ect relationships between performance-

sensitive options and performance violations based on the program

logic. In particular, stakeholders want a clear explanation of why

there was a performance violation when they had set up a con�gu-

ration that seems better according to the documentation.

There is no silver bullet to �nding a con�guration that performs

well in all situations. O�-the-shelf pro�lers [20, 38, 52], targeted

pro�ling techniques [16, 85], and visualizations [1, 16] help detect

performance problems and locate performance bottlenecks. How-

ever, there is not enough evidence to explain why options cause

performance violations, particularly to determine which options

are responsible for performance violations. DiagConfig strives to

recommend crucial options by cause-e�ect chains.

Similarly, most previous works aim to stakeholders understand

why, where, and how options and their interactions a�ect the

performance behavior of con�gurable software systems by build-

ing white-box performance-in�uence models [61, 70, 71, 75]. Con-

�gCrusher [70] �rst relies on static taint analysis to determine

which options a�ect which code regions. Then it leverages option-

a�ected code region expansion and merging with instrumentation

to reduce the cost of measurement and construct interpretable

performance-in�uence models. However, the instrumentation is

overhead and does not support numeric options and multi-threaded

programs. COMPREX [71] builds white-box performance-in�uence

models based on expensive dynamic taint analysis and incomplete

con�guration speci�c local code performance measurement. Weber

et al. [75] propose an approach based on SPLConqueror [61–63]

to build white-box performance models over binary and numeric

options at the method level for understanding options and their in-

teractions. It achieves relatively high precision because it combines

coarse and �ne pro�ling to reduce the in�uence of performance

variance on the models. All approaches based on performance mod-

els involve repeated performance measurements of the system in

speci�c workloads and environments. In addition to the di�culty of

model transfer [33, 49], the performance of the models themselves

varies depending on the sampling strategy and learning tricks.

Optimizers for con�guration tuning that treat the system as a

black box and contain limited interpretable information about the

relationship between options and performance behavior. They can

be classi�ed into two categories: control-theory-based [30, 74] and

machine-learning-based [12, 13, 32, 68, 82, 86, 90] approach.

9 CONCLUSION

We propose a white-box static code analysis-based approach to

diagnose performance violations of con�gurable software systems.

This approach combines static con�guration-related performance

information from source code and runtime performance behaviors

from pro�ling. Moreover, we implement a novel prototype, Diag-

Config, to diagnose performance violations. It performs option

tracking, performance violation localization, and construction of

cause-e�ect chains. Our evaluation with eight open-source systems

demonstrates the e�ectiveness and e�ciency of DiagConfig. More

importantly, DiagConfig can restore the complete evidence chain

of performance violations, highlight the con�guration options for

performance violations, help stakeholders explain the causes of

performance violations, and accelerate the con�guration tuning

process regardless of workloads and environments.
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