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FaaSDeliver: Cost-efficient and QoS-aware
Function Delivery in Computing Continuum
Guangba Yu, Pengfei Chen∗, Zibin Zheng IEEE Fellow , Jingrun Zhang, Xiaoyun Li, Zilong He

Abstract—Serverless Function-as-a-Service (FaaS) is a rapidly growing computing paradigm in the cloud era. To provide rapid service
response and save network bandwidth, traditional cloud-based FaaS platforms have been extended to the edge. However, launching
functions in a heterogeneous computing continuum (HCC) that includes the cloud, fog, and the edge brings new challenges:
determining where functions should be delivered and how many resources should be allocated. To optimize the cost of running
functions in the HCC, we propose an adaptive and efficient function delivery engine, named FaaSDeliver, which automatically unearths
a cost-efficient function delivery policy (FDP) for each function, including the FaaS platform selection and resource allocation. Real
system implementation and evaluations in a practical HCC demonstrate that FaaSDeliver can unearth the most cost-efficient FDPs
from among 180,200 FDPs after a few trials. FaaSDeliver reduces the average cost of function execution from 38% to 78% compared
to some state-of-the-art approaches.
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1 INTRODUCTION

S ERVERLESS Function-as-a-Service (FaaS) is a rapidly
evolving cloud computing paradigm for deploying

cloud applications. It promises to provide a simplified pro-
gramming model that facilitates the creation of cloud appli-
cations in a more accessible and cost-effective way. Many
public cloud platforms have released their FaaS services,
such as AWS Lambda [1], Azure Functions [2], and Google
Cloud Functions [3]. In the FaaS paradigm, most operational
concerns in FaaS platforms, such as provisioning and man-
aging servers, are delegated to FaaS platform providers [4],
[5]. Instead, FaaS users can focus on the logic programming
of functions, which provides generalized expressions of
computational tasks in heterogeneous environments.

Advances in FaaS frameworks make it easier to inte-
grate resources from cloud computing, away from users,
to fog and edge computing, which are closer to users [6],
[7], [8]. Nowadays, FaaS functions can be deployed on a
heterogeneous computing continuum (HCC) that contains
a multitude of heterogeneous resources, ranging from the
cheap and constrained devices of edge platforms to the
modestly priced and mid-range device of fog platforms,
to the cloud platforms with extensive resources [9], [10].
Such a feature provides more robust adaptability for FaaS
to handle different types of workload [11]. For example, a
simple time-sensitive task, such as generating a QRCode,
can be delivered to an edge device to reduce the time of
network transmission and provide a better user experience.

Although HCC offers a promising future of more generic
FaaS, an intuitive question from FaaS users is where functions
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Fig. 1: Functions delivery problem in the heterogeneous
computing continuum (HCC). f , f , f are FaaS functions
suitable for the platforms of edge, fog, and cloud, respec-
tively. FaaS users need to determine where functions should
be delivered and how many resources should be allocated.

should be delivered and how many resources should be allocated.
We refer to this problem as the Function Delivery problem,
as shown in Fig. 1. We identified three fundamental factors
affecting the cost of FaaS functions, namely function place-
ment, CPU allocation, and memory allocation. In this study,
we refer to the combination of these three factors as the
Function Delivery Policy (FDP), which is denoted as (platform,
CPU, memory). We aim to determine the optimal FDP that
resolves the function delivery problem while minimizing
users’ financial costs. We define the optimal FDP as the
policy with the lowest cost that satisfies the Service Level
Objectives (SLOs) of performance.

As we will elaborate in Section 2.2, launching functions
with insufficient resources or inappropriate platforms can
lead to SLO violations or even failures. On the other hand,
allocating more resources to a function than it requires in-
curs unnecessary costs. Therefore, choosing the appropriate
FDP for each function is crucial to make the fullest use of
the HCC’s capabilities and minimize cost. As the majority
of FaaS functions are recurring tasks, the cost savings from
a proper FDP are even more significant. However, for FaaS
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users, delivering functions to HCC with the cheapest policy
while satisfying SLO is at its core an intractable NP-hard
problem [12]. A straightforward approach to find the opti-
mal FDP is to explore all FDPs in the HCC like Costless [13].
However, it is not applicable in practice since exploring all
FDPs for each function is prohibitively expensive. Existent
function deliver engines like COSE [14] try to deliver func-
tions to heterogeneous FaaS platforms, but they do not take
into account the heterogeneity of FaaS platforms.

FaaSDeliver Framework. In order to optimize the cost
of launching functions in the HCC, we propose an adaptive
and efficient function delivery engine, named FaaSDeliver1,
which automatically unearths a cost-efficient FDP to guide
FaaS users in configuring functions. The key idea of FaaS-
Deliver is to build a performance model based on Tree-
structured Parzen Estimator (TPE) [15] that allows us to
distinguish optimal or near-optimal FDPs from the rest in
the tree-structured search space (details in § 3.3). To inte-
grate TPE into FaaSDeliver for the FaaS paradigm, we per-
form several customizations (details in § 3.3.2): (i) dynamic
resource space management; (ii) employing multivariate
TPE; (iii) downward-closure based memory pruning; (iv)
SLO violations penalization. For each function invocation,
FaaSDeliver employs the customized TPE to generate an FDP
that is expected to be less costly in launching the function.
The execution results are then fed back to the TPE to
update the online learning model incrementally. In addition,
FaaSDeliver applies a heuristic transfer learning approach to
narrow the search space when updating functions.

Overall, the key contributions of our work are as follows:
• We provide in-depth insights into running FaaS functions

in HCC. These insights provide some guidance for design-
ing an efficient and effective function delivery engine in
the HCC (§ 2.2).

• Building on the guidelines, we propose a lightweight
function delivery engine, named FaaSDeliver, that auto-
matically unearths the most cost-efficient FDP with adap-
tation to different functions and computing devices based
on the customized adaptive TPE approach (§ 3).

• We design and implement the FaaSDeliver prototype. Real
system implementation and evaluations in a practical
HCC demonstrate that FaaSDeliver can unearth the most
cost-efficient FDPs from among 180,200 FDPs after a few
trials. FaaSDeliver reduces the average cost of function
execution from 38% to 78% compared to some state-of-
the-art approaches (§ 4.2).

The rest of this study is organized as follows. The back-
ground and motivation are introduced in Section 2. Section 3
shows the basic idea and detailed design of FaaSDeliver.
Section 4 delineates the experimental setup and presents
the results obtained. Some discussions on the generality
and limitations of FaaSDeliver is conducted in Section 5.
The related work is examined in Section 6, followed by the
conclusion of this study in Section 7.

2 BACKGROUND AND MOTIVATION

2.1 Background
Heterogeneous Computing Continuum. As the pillar of
modern IT systems, a large number of heterogeneous com-

1. https://github.com/yuxiaoba/FaaSDeliver

puting devices interconnected via network interaction with
each other. This infrastructure is known as the heteroge-
neous computing continuum (HCC) including the edge
platforms [7], [16], the fog platforms [8], [17], the cloud
platforms [18], [19] and other devices. There are some differ-
ences between devices in HCC. The cloud achieves the best
scalability due to its massive scale, while the fog and edge
usually possess limited computational resources. However,
the edge has a lower inter-cluster transmission latency (less
than 1 millisecond (ms)) than the fog (less than 10 ms) and
the cloud (more than 10 ms) because the edge is closer to end
users [20]. Therefore, running applications in HCC is quite
attractive since it supports diverse types of applications by
leveraging the advantages of different computing devices

Function Delivery Network. Most existing FaaS func-
tions run only on the homogeneous cloud [4], [21] or only
on the edge [22], [23]. Attracted by the advantages of HCC,
Function Delivery Network (FDN) is proposed to extend
FaaS to HCC to support functions with varying compu-
tational requirements. FDN is a network of distributed
heterogeneous platforms analogous to Content Delivery
Networks [9]. A target platform in the FDN is a cluster of
heterogeneous devices and a FaaS platform on top of it. In
the FDN, delivering a given function can be regarded as
launching the function on a target platform with specifically
configured resources to handle a request. In contrast to
current heterogeneous platforms, FDN needs to consider the
different performance of heterogeneous platforms as well as
the network delay between platforms and end users.

An Example of FDN Use Cases. Cognitive mobile per-
sonal assistants monitor health data via biosensors and can
predict and raise alerts for urgent situations of a patient, like
low blood sugar levels [24]. Critical concerns in this case
are prediction accuracy and inference latency, and the latter
one can be reduced by launching functions in HCC [25].
The process of model training is split into two phases. The
service provider first trains a basic model on representa-
tive samples of the entire population. This is a resource-
intensive process that should be scheduled to cloud devices.
After that, accounting for patient-specific patterns, the basic
model is transmitted to fog devices and refined using trans-
fer learning and patient-specific data. This refined model
is then served on edge devices (i.e., the patient’s device),
thereby enabling a low-latency inference. Further, since the
model training and inference are not continuous, the event-
driven FaaS paradigm that allocates resources to a function
on demand is better than a long-running application.

2.2 Motivation
As mentioned in the introduction, an FDP consists of three
factors, namely FaaS platform, CPU allocation, and memory
allocation. We do not take the IO and network allocation
into account as COSE does, because neither public FaaS
platforms (e.g., AWS Lambda and Azure Function) nor
open-sourced FaaS platforms (e.g., Knative [26] and Open-
FaaS [27]) support IO and network configuration. However,
the IO and network delay are actually part of the FaaS
platform factor. In other words, if the edge platform is
chosen, the policy is equipped with a low network delay.

In this section, we present the characterization results for
three FaaS functions, i.e., Markdown, ImageInception, and
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(a) Response time and cost of QRCode function.
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(b) Response time and cost of Markdown fucntion.
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(c) Response time and cost of ImageInception function.
Fig. 2: The response time and execution cost of the QRCode,
Markdown, and ImageInception function under various
FDPs. The response time is normalized into the minimal
value and the execution cost is normalized into the lowest
cost of each function. The policy “100m, 128MB” denotes
launching functions with 100 millicores CPU and 128 MB
memory. In cases where functions cannot be launched with
the policy, we mark it with a ”Failed” label.

PageRank (details will be shown in Sec. 4.1), in a real HCC
environment in Table 2. Fig. 2 shows the response time and
execution cost of the above three functions under various
FDPs. Studying the characterizations in Fig. 2 offers insights
into designing a function delivery framework.

Motivation ¬: FaaSDeliver should consider the het-
erogeneity of the FaaS platforms. As shown in Fig. 2,
the performance of functions on different platforms exhibit
significant variations when the same amount of resource
allocation is provided. For instance, when allocated with 100
millicores (m) CPU and 128 MB memory, the Markdown
function satisfies its Service Level Objective (SLO) at the
edge, but fails to meet the SLO when delivered to both
the fog and the cloud. Such discrepancies stem from the
underlying platform heterogeneity, which encompasses the
computational capacity, IO bandwidth, and network delay.
These factors are platform-dependent and cannot be ade-
quately captured by the amount of CPU and memory alone.
Schedulers that ignore the platform property, e.g., COSE [14]
or KNative [26], may lead to inefficient executions of func-
tions or even failed launches.

Motivation : FaaSDeliver should consider both cost
and SLO in the search process. While minimizing the
execution cost is a primary objective for FaaS users, it
is important to note that the FDP with the lowest cost
may not always satisfy the strict SLO requirements. This is
evidenced by the Markdown function illustrated in Fig. 2b,

where the FDP with the lowest execution cost is (Cloud,
100m, 128MB), but the response time violates the strict SLO
due to excessive network transmission time, which is not
acceptable. Therefore, the primary goal of FaaSDeliver is to
locate the FDP with the lowest cost for a given function
while ensuring that the SLO of that function is satisfied.

Motivation ®: FaaSDeliver should skip the locally
optimal FDP of each platform to find the globally
optimal FDP. Figure 2a shows that the QRCode func-
tion has at least three locally optimal FDPs: (Edge, 500m,
512MB),(Fog,500m,512MB), and (Cloud, 250m,256MB). Con-
sequently, FaaS providers may become confined to one
locally optimal FDP, such as (Cloud, 250m, 256MB) in QR-
Code, and fail to identify the globally optimal FDP, such as
(Edge, 500m, 512MB) in QRCode, leading to unnecessary
expenses. Hence, FaaSDeliver must possess the ability to
transcend the limitations of multiple locally optimal FDPs.

Motivation ¯: FaaSDeliver can benefit from pruning
search space of memory. Each function necessitates a mini-
mum amount of memory, denoted as M , to initiate the func-
tion, which is typically unknown beforehand. Assigning less
memory than M to a function will result in the function
failing to initiate. As shown in Fig. 2c, allocating less than
1000 MB of memory for the ImageInception function on
edge will cause it to fail. Consequently, we can curtail
the lowest allocatable memory configuration for the search
space of ImageInception on edge to 1000 MB. This step will
decrease the search space, expedite the search process, and
reduce the number of function launch failures.

3 APPROACH

3.1 Problem Formulation

In our proposed approach, we transform the function
delivery task into a cost optimization problem. Sup-
pose launching a FaaS function f with an FDP p =
(platform,CPU,memory), the execution cost is given by,

Cf (p) = tf (p)× Pr(p),

where tf (p) denotes the execution time of f under p, and
Pr(p) is the price (cost per unit time) for the FDP p. As an
example, a function that runs on cloud for 1 seconds with a
100m CPU and 512MB memory (i.e., p = (Cloud, 100, 512))
would incur the following cost:

1× (100 ∗ 0.000016$ + 512 ∗ 0.000005$) = 0.00416$,

where 0.000016$ is the cloud-specific CPU price per
millicore-second, and 0.000005$ is the cloud-specific mem-
ory price per MB-second.

To account for the additional delays associated with dif-
ferent FaaS platforms in the HCC, our target is to select the
FDP expected to minimize execution cost while its response
time satisfying the SLO. The response time to run a function
(i.e., end-to-end latency) is given by:

T f (p) = tf (p) + d(p), (1)

where d(p) is the duration other than the execution time
of a function (e.g., cold start delay and network delay).
As measured in study [28], cold start time of a function is
relatively constant on the same platform, but varies from
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Fig. 3: An overview of FaaSDeliver framework. Step 1-6
execute every iteration during the optimization, while step
0.1 is run when a function is registered or updated, and step
0.2-0.3 are executed only when a function is updated.

platform to platform. If a FaaS platform has a longer cold
start time, it manifests itself as the larger d(p), which may
lead to an SLO violation.

According to the motivation , we formulate the func-
tion delivery problem of FaaS function f as follows:

minimize
p

Cf (p) = tf (p)× Pr(p)

subject to T f (p) ≤ SLO,
p ∈ P

, (2)

where SLO represents the upper boundary of acceptable
latency of functions specified by FaaS users, and P is the
set of all FDPs. Knowing tf (p) and T f (p) under all FDPs
would make it straightforward to solve Equation 2, but it
is prohibitively expensive to search all FDPs. To solve this
problem cost-efficiently, we propose FaaSDeliver, which can
automatically and rapidly select the optimal FDP for a given
function.

3.2 FaaSDeliver Overview

The overall architecture of FaaSDeliver is presented in Fig. 3.
FaaSDeliver is designed to identify the most cost-effective
FDP in order to guide FaaS users in configuring functions.
The system is composed of two primary components: (i)
an Online Optimizer component, which is responsible for
learning the function’s performance model, i.e., the relation-
ship between cost/runtime and FDP for the FaaS function,
and determining the optimal FDP that minimizes cost while
adhering to the SLOs; (ii) a Transfer Learner component,
which is responsible for narrowing the search space of FDPs
to expedite the optimization process when the function is
updated. In this study, FaaSDeliver is incorporated into an
HCC environment, but it could also be directly leveraged
by FaaS users.

Before invoking functions, FaaS users need to register
or update their functions within FaaSDeliver using standard
Application APIs (step 0.1 in Fig. 3). Figure 3 highlights the
interactions among users, the HCC environment, and our
FaaSDeliver framework during the search process for each
invocation. The process is as follows:
• Step 1. The user client issues a function request to the

ingress gateway of the HCC. The gateway then routes
the request to the FaaS platform defined in the last FDP

(the first request is selected randomly) to invoke the FaaS
function.

• Step 2. Upon receiving the request, the FaaS platform
launches the function to handle the request, and returns
the results to the client.

• Step 3. The monitor agent within the FaaS platform
reports the execution log (i.e., tf (p) and allocatable re-
source), and the client reports the request result (i.e.,
T f (p) and request status) to FaaSDeliver.

• Step 4. The Online Optimizer module of FaaSDeliver
queries the FDP results from the FDP database and in-
crementally updates the existent online learning perfor-
mance model to generate the new promising FDP for
exploration.

• Step 5. FaaSDeliver updates the function deployment to
the specific FaaS platform in the HCC based on the new
promising FDP. The corresponding FaaS platform sched-
uler takes over the scheduling for FaaS functions.

• Step 6. FaaSDeliver returns the new FDP to the gateway
for next request.

FaaSDeliver repeats step 1-6 above until the stop condition is
met and outputs the final optimal FDP.

If FaaS users update existent functions at step 0.1, FaaS-
Deliver needs to build a new performance model for the
modified function. Considering that FaaS users typically
update functions by making minor changes to the historical
code rather than writing an entirely new function, repetitive
learning from scratch is costly and unnecessary for these
subtle updates. Consequently, when updating existent func-
tions, FaaSDeliver incorporates a Transfer Learner module
to narrow the search space of FDPs, thereby accelerating
the optimization process. Transfer Learner queries the FDP
results of previous versions of the updated function at step
(0.2) and produces a compressed search space for Online
Optimizer. Specifically, step 0.1 is executed when a function
is registered or updated, while step 0.2-0.3 are performed
when a function is updated.

3.3 Online Optimizer

Online Optimizer is the core component of FaaSDeliver. On-
line Optimizer is designed to determine the subsequent FDP
to explore and converge to the optimal FDP finally. Consid-
ering that the variation of functions and the heterogeneity
of HCC, it is challenging to pre-define a performance model
to solve the problem in Equation 2. In this study, we use
an online learning technique, which can start without a pre-
defined performance model to find the most cost-efficient
FDP with recurring invocations of the same function. Specif-
ically, FaaSDeliver employs Tree-structured Parzen Estimator
(TPE) [15] to tackle the function delivery problem.

Why TPE? Acquiring insights from motivation ¬ and
®, this study intends to address the function delivery
problem by considering both the inherent heterogeneity of
the underlying platform and the need to effectively escape
local optima in order to identify the optimal FDP. Existing
performance modeling-based approaches [29], [30] and col-
laborative filtering-based techniques [31], [32] are hindered
by the high costs associated with offline profiles. Many state-
of-the-art approaches (e.g., Cherrypick [33] and COSE [14])
employ Gaussian Process Bayesian Optimization (GPBO) to
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Fig. 5: An illustration of the TPE search procedure. The top
part depicts how TPE splits evaluated observations based
on γ = 0.3. The bottom part shows how TPE selects the
next FDP to be explored.

solve optimization problems analogous to Equation 2. How-
ever, GPBO encounters difficulties in managing the tree-
structured hybrid characteristics of the FDP search space
(e.g., Fig. 4), which encompasses platforms (categorical
variables), CPUs (discrete variables), and memory (discrete
variables). Consequently, it falters in effectively addressing
the heterogeneity of platforms. The limitations of GPBO
in processing categorical variables can be attributed to its
utilization of Kriging as a surrogate [34]. Reinforcement
Learning (RL) is well suited for learning FDPs in the tree-
structured space, but it requires extensive training iterations
and more computing resources to converge to the optimal
FDP [23], [35].

In contrast, the tree-based TPE can naturally deal with
tree-structured inputs and scales linearly with the number
of observations due to it uses non-parametric Parzen kernel
density estimators to model the distribution of good and
bad configurations [15]. The non-parametric nature of TPE
makes it practical even when we have no knowledge about
function-specific logic and platform heterogeneity. Mean-
while, TPE provides a tight feedback loop for exploring FDP
space and generating optimal FDPs. It allows direct learning
from function invocations to understand the impact on the
performance of functions after tuning FDPs.

3.3.1 Leveraging TPE

In the context of FaaSDeliver, all possible FDPs comprise
the search space P and are referred to as sample points.
The objective function Cf (p) in Equation 2 is unknown
beforehand but can be observed through experiments. Every
time the function is invoked, the TPE iterates once. At each
iteration, TPE collects a new observation, and at the end of
the iteration the algorithm decides which FDP should be
explored next time.

To identify the global optimum of the objective
function, TPE intelligently explores P by evaluating
the objective function with different observations O =
{(p1, C1), ..., (pk, Ck)}. FaaSDeliver first splits the observa-
tions into good FDPs group Ol and bad group Og , defining
C∗ as the splitting value for these two groups (as shown
in the top part of Fig. 5). The value C∗ is selected to be a
quantile γ of the observed C values satisfying

P (C∗ > C) = γ.

We discuss how γ affects FaaSDeliver in Section 4.2.4. Then
TPE uses a kernel denisty estimator to model the densities
of good FDPs l(p) and bad FDPs g(p)

l(p) = p(y < C∗ | p,O)
g(p) = p(y > C∗ | p,O) (3)

over the input configuration space instead of modeling
the objective function f directly by p(Cf |O). Briefly, l(p)
models the density of better observations, and g(p) models
the density of poor observations. Due to the nature of kernel
density estimators, TPE easily supports mixed continuous
and discrete spaces [36]. Intuitively, the next expected FDP
is the one that is the most likely to be good and the least
likely to be bad. In other words, we prefer the FDP p
with a high probability under l(p) and a low probability
under g(p), i.e., maximum ratio of l(p)/g(p). TPE employs
the following expected improvement (EI) function as the
acquisition function to maximize improvement [37]:

EIC∗(p) =

∫ ∞
−∞

max (C∗ − C, 0) p(C | p)dC

=

∫ C∗

−∞
(C∗ − C) p(C | p)dC

∝
(
γ + (1− γ)g(p)

l(p)

)−1
.

(4)

We chose EI function because it has been shown to outper-
form others and it does not require parameter tuning [14].

TPE at work: To provide an estimate about the shape of
the cost model for TPE, an initial set of FDPs is generated
by randomly selecting Nr FDPs (Nr = 3 by default) from
each platform within the HCC (line 1 in Algorithm 1). The
multidimensional space exploration performed by TPE is
an iterative procedure, guided by the acquisition function,
and is informed by the historical data of previously assessed
FDPs. Throughout each iteration, the following steps are
executed:
1) TPE generates many candidates by sampling according

to l(p) and evaluates them based on the ratio l(p)/g(p).
2) The TPE algorithm returns the candidate p∗ with the

greatest EI as the next FDP (as shown in the bottom part
of Fig. 5).

3) FaaSDeliver updates the function deployment to the spe-
cific FaaS platform based on the new promising FDP.

4) Once the function is launched, TEP observes the objective
function results for the FDP and updates the good and
bad densities l(p) and g(p) accordingly.

5) The newly evaluated FDPs are incorporated into the
densities, which in turn influence the sampling of future
points.
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Algorithm 1: Adaptive TPE for FaaS Function f
Input: search space S, stop iteration Nt, random

number Nr, observations O, penal factor ξ,
default quantile γd

1 O ← RandomSample( Nr);
2 for iteration = 1 to Nt −Nr do
3 γ ← min(diteration ∗ 0.1e, γd);
4 Ol, Og ← SplitObservations(O,γ);
5 S ← GetCurrentResource();
6 l(p), g(p)← ProbabilityDensity (Ol, Og , S);

/* Sample candidates from l(p) */

7 c←
{
p(i,j) ∼ l(p)

}
;

/* Select best candidate by EI */
8 p∗ ← argmaxp∈c EIC∗(p);
9 success, tf (p∗), T f (p∗)← LaunchFunc(p∗);

10 if !success then
/* Downward memory prune */

11 p∗.platform.low memory← p∗.memory;
12 end
13 if T f (p∗) > SLO then

/* Penalize SLO violations */
14 Cf (p∗)← Cf (p∗) ∗ (T f (p∗)/SLO) ∗ ξ;
15 end
16 O ← O ∪

{(
p∗, Cf (p∗)

)}
;

17 end
18 return p with the minimun Cf value in O

The search process of TPE continues iteratively until the
maximum number of iterations, Nt (Nt = 300 by default),
is reached. We discuss the influence of Nt and Nr on
FaaSDeliver in Section 4.2.4. Ultimately, TPE identifies the
FDP with the lowest execution cost as the optimal FDP.

3.3.2 Adaptive TPE for FaaS functions

In order to enhance the effectiveness and efficiency of TPE
within the context of FaaS scenarios, we have introduced
a series of adaptive modifications to the traditional TPE
approach. These alterations have been carefully tailored to
address the unique requirements and challenges posed by
FaaS deployments. A comprehensive representation of the
adapted TPE algorithm can be found in Algorithm 1, which
offers a clear and concise pseudo-code breakdown of the
method employed.

(i). Dynamic resource space management. The con-
ventional TPE methodology presupposes that the search
space remains invariant throughout the optimization pro-
cess. Nevertheless, practical applications often deviate from
this assumption. In situations where a substantial number of
requests, pertaining to either the same function or distinct
functions, are initiated in rapid succession, the maximum
allocatable resources inevitably decline due to consumption.
To illustrate, the maximum allocatable CPU resources for an
edge device may decrease from 3000m to 1000m when an
excessive number of functions are executed on the edge. It
is imperative for FaaSDeliver to acknowledge and adapt to
these fluctuations, ensuring the selection of feasible FDPs
that maintain the stipulated SLOs within the constraints
of the available resources. In light of these considerations,

we have introduced dynamic adjustments to the TPE search
space prior to each selection, taking into account the prevail-
ing resource allocation conditions (line 5 of Algorithm 1).

(ii). Employing multivariate TPE. The traditional TPE
approach is characterized by its independence, which in-
advertently neglects the interdependencies that may exist
between parameters. For instance, within the context of an
independent TPE, given an FDP p̂ = (Cloud, 100, 128), the
likelihood density of favorable FDPs is estimated through
the product of univariate Parzen estimators, as follows:

l(p̂) = lplat(cloud) ∗ lcpu(100) ∗ lmem(128).

In this work, we have implemented a multivariate TPE
approach (line 6 in Algorithm 1), which directly models l(p)
and g(p) utilizing a singular multivariate Parzen estimator
predicated on Kernel Density Estimations (KDEs) [38]. In
other words, the likelihood density of p̂ can be calculated
as:

l(p̂) = l(cloud, 100, 128).

Through this methodology, the multivariate TPE is capable
of capturing the underlying dependencies between param-
eters, thereby offering a more comprehensive and robust
optimization process.

(iii). Downward-closure based memory pruning. As
discussed in the motivation ¯, each function necessitates
the minimum memory threshold, denoted as M , for a
successful initiation. The precise value of M for each func-
tion remains unknown in advance, due to the inherent
opacity of FaaS functions. In a scenario where function f
requires 256 MB of memory (M ) but TPE samples an FDP
p̂ = (Cloud, 100, 128), the function will inevitably fail to
launch due to insufficient memory (i.e., 128 < 256). From
this observation, it can be deduced that allocating less than
128 MB of memory would similarly result in the failure of
f . Consequently, FaaSDeliver can effectively adjust the lower
bound of the memory space from 1 to 128, as exploring a
portion of the search space incapable of launching the func-
tion would yield negligible insights into the optimal FDP.
To this end, we have incorporated a pruning mechanism
for the downward memory allocation following a failed
launch (lines 10-12 in Algorithm 1), thereby minimizing the
likelihood of subsequent failures.

(iv). SLO violations penalization. Gaining insights from
the motivation ¯, we proactively increase the execution cost
in instances where the selected FDP fails to comply with
its SLO, thereby discouraging the selection of proximate
FDPs in subsequent iterations. In this work, if the response
time T f (p) of function f exceeds its SLO, we incorporate
a penalty factor ξ to Cf (p) (line 13-15 in Algorithm 1) to
increase cost as follows,

Cf (p) = Cf (p)cost ∗ (T f (p)/SLO) ∗ ξ, (5)

where Cf (p)cost is the actual execution cost, T f (p)/SLO
indicates the degree of anomaly under p, and ξ (ξ = 100
default) represents the penalty factor. We will discuss how
ξ affects FaaSDeliver in Section 4.2.2.

3.4 Transfer Learner
In the majority of instances, FaaS developers tend to modify
an existing function by implementing minor alterations to
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its historical code, as opposed to developing an entirely
new function. Consequently, both the pre-update and post-
update functions may exhibit analogous execution logic and
resource demands. As a result, redundant learning from
scratch for functions with subtle updates is both costly and
unwarranted. Therefore, it is a logical approach to transfer
knowledge from historical versions to speed up the online
learning of updated functions.

Transfer Learner module calculates the performance simi-
larity between historical and updated versions of a function
f . When the versions exhibit similar performance under
certain well-chosen FDPs, it can be inferred that they possess
analogous resource requirements. As a result, it is justifiable
for the Transfer Learner module to refine the search space
for the updated version, transitioning from an extensive
space to a more restricted one based on the identified sim-
ilarities. This approach accelerates the optimization process
and reduces the computational overhead. Conversely, if no
discernible similarity is found, FaaSDeliver proceeds to es-
tablish a performance model for the updated function from
scratch. This ensures that the performance characteristics of
the updated function are accurately modeled, even if it does
not closely resemble its historical version.

Similarity calculation. A function may go through mul-
tiple updates in its history. We consider the latest update as
the updated version and the historical updates as historical
versions. In this study, we solely focus on the latest Nhis
(Nhis = 5 default) historical versions because the latest
five historical versions can help capture the most recent
trends in function development and changes, ensuring that
Transfer Learner module is working with the most up-to-
date information. Older versions may not reflect the cur-
rent development practices, dependencies, or performance
characteristics, therefore, may not be as beneficial for the
knowledge transfer process.

When function f is updated, we mark its updated ver-
sion as U and one of its historical versions as H . Given
the optimal FDP p of H and its corresponding execution
time tfH , Transfer Learner launches U under the same p and
gets the execution time tfU . If tfU is proximate to tfH , this
implies that they behave similarly under the same FDP.
Consequently, U has similar resource requirements to H .
FaaSDeliver computes the similarity score s between H and
U as follows,

s = 1−

∣∣∣tfU − tfH ∣∣∣
(tfU + tfH)/2

. (6)

The right part of Equation 6 is the symmetric mean absolute
percentage error (SMAPE), which is an accuracy measure
based on relative errors [39]. If the similarity score surpasses
the similarity threshold scoremin (scoremin = 0.8 default),
we determine the performance of U and H is similar. Sub-
sequently, we incorporate the similarity score and optimal
FDP of H into the similar group G. By selecting a threshold
of 0.8, we ensure that only those historical versions that ex-
hibit a strong resemblance in performance with the updated
version are considered for further analysis. This threshold
helps avoid including dissimilar historical versions, which
would not contribute valuable information for optimizing
the updated version’s performance. It is important to note

that the threshold value can be adjusted based on the
specific requirements of a given application or the desired
level of similarity. For the remaining historical versions, we
iteratively execute the aforementioned calculation process.
Ultimately, the group G = {(score1,p∗1), ..., (scoren,p∗n)} is
produced to constrict the search space of U .

Narrow search space. We introduce a straightforward
and generic method for devising a compact search space
tailored to the updated function. The core idea of Transfer
Learner is to ascertain the most compact search space P̂ that
encompassing all the optimal FDPs within the similar group
G.

Transfer Learner first constructs an initial tree-structured
search space P = {Pedge,Pfog,Pcloud} for updated func-
tions. We represent each subspace Pplatform as two bound-
ing boxes, i.e., Pplatform = {[`cpu, ucpu], [`mem, umem]}. Sub-
sequently, Transfer Learner divides FDPs in G into three
subgroups {Gedge, Gfog, Gcloud} based on the platform of
FDPs. The Pplatform is excluded from P if the corresponding
Gplatform is empty. Finally, motivated by [40], the bounding
boxes of each platform have a simple closed-form solution
P̂platform = {[ˆ̀cpu, ûcpu], [ˆ̀mem, ûmem]}, which can be defined
as,

P̂platform =


ˆ̀

cpu = min{bp∗i .cpu ∗ scoreic}ni=1

ûcpu = max{dp∗i .cpu ∗ (1 + (1− scorei))e}ni=1
ˆ̀

mem = min{bp∗i .mem ∗ scoreic}ni=1

ûmem = max{dp∗i .mem ∗ (1 + (1− scorei))e}ni=1
(7)

where n denotes the number of FDPs in the subgroups of
the platform. These solutions are both simple and intuitive.
Although the initial lower and upper bounds might de-
lineate excessively broad ranges, the newly defined ranges
represent the smallest intervals encapsulating all the FDPs
in G. Upon evaluating each platform, the Transfer Learner
obtains the novel search space P̂ , which comprises a tightly
constrained search space tailored to the updated function.

Example. We take the search space P in Fig. 4 and the
QRCode (QR) function as an example. Assume QR1, QR2

and QR3 are three historic versions of QRCode. QR1, QR2

and QR3 have reached their optimal FDPs (Edge, 225, 32),
(Edge, 425, 32), and (Edge, 500,32), respectively. Now, the
QR function is updated and represented as QR4. Similarity
Determiner computes the similarity scores between QR4 and
the other three historical versions as 0.3, 0.85, and 0.9,
respectively. Transfer Learner then obtains the similar group
G = {(0.85, (Edge, 425, 32)), (0.9, (Edge, 500, 32))}. Neither
fog nor cloud are in the optimal FDPs, Transfer Learner
excludes these two platforms and narrows down the search
space P to P̂Edge, where

P̂Edge = {[ˆ̀cpu, ûcpu], [ˆ̀mem, ûmem]}
= {[425 ∗ 0.85, 500 ∗ 1.1], [32 ∗ 0.85, 32 ∗ 1.15]}
= {[360, 550], [27, 37]}.

Since P̂ is more compact than P , TPE method converges to
the optimal FDP of QR4 without much effort.

4 EXPERIMENTAL EVALUATIONS

In the section, we evaluate the following questions:
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TABLE 1: The list of FaaS functions used in experiments.
Function Description Runtime

QRCode (QR) Generate QRCode of given text Golang
Markdown (MD) Render Markdown text to HTML Python
SentimentAnalysis (SA) Sentiment analysis of given text Python
ResizeImage (RI) Reset the size of given images C
ImageInception (II) Classify given image through DNN Python
PageRank (PR) Calculate PageRank of given graph C

• RQ1: How effective is FaaSDeliver in finding optimal
FDP?

• RQ2: What is the contribution of each design in adap-
tive TPE of FaaSDeliver?

• RQ3: What is the contribution of Transfer Learner when
updating functions?

• RQ4: How sensitive is FaaSDeliver to parameters and
environments?

4.1 Experimental Setup
Representative FaaS functions. We develop or refactor 6
FaaS functions 2 in Table 1, which can be launched on
servers with X86 and ARM CPU architecture in heteroge-
neous computing continuum (HCC). Some of these func-
tions have been widely used in other studies [9], [41]. This
group of functions represents different types of computa-
tion and SLO requirements that FaaS platforms typically
perform: (i) simple functions with strict SLO: lightweight but
time-sensitive functions (e.g., Markdown function) should
be launched at the edge paltform to reduce the time
of network transmission; (ii) medium functions with strict
SLO: these functions require more resources and should
be launched at the fog cluster due to the strict SLO (e.g.,
ImageInception function); (iii) complex functions: these are
resource-intensive functions that should be launched at the
cloud (e.g., PageRank function).

Heterogeneous computing continuum. We evaluate the
proposed function benchmarks on a real HCC including
three heterogeneous FaaS platforms ranging from edge,
fog to cloud. Table 2 shows the resource quota of each
platform, the FaaS platform used, the distance to users,
and the number of nodes. Cgroups [42] is enabled for fine-
grained resource isolation. We purchased 3 Raspberry Pi
and deployed them near to users (less than 100 meters)
to construct the edge platform. For the fog platform, we
purchased 5 Dell Desktops and deployed them in the com-
munity of users. We rented 5 VMs from a public cloud
provider to build the cloud platform. We do not use AWS
Lambda or Azure Functions directly because they can only
configure the memory of the function and not the CPU. We
would like to test FaaSDeliver in adjusting both memory
and CPU, encouraging public FaaS providers to unbind the
correspondence between CPU and memory.

Taking the actual cost of purchasing devices and renting
cloud VMs into account [43], the price of per CPU and
memory for edge, fog and cloud are set according to the
relation 1 : 4 : 6 in our experiments. Considering the
overhead of FaaS platforms, we set the search space P of
the HCC to be the same as Fig. 4. Note that FaaSDeliver
can be used for finer-grained resource allocation. To better
present experimental results, we set an offset of 25 m for

2. https://github.com/yuxiaoba/Serverless-Bechmark

CPU and 32 MB for memory when allocating resources. In
total, 180, 200 FDPs are available on our testbed.

Implementation Details. We implemented FaaSDeliver
based on Python 3.8. We adapt the TPE algorithm provided
by Optuna [44] to implement the adaptive TPE for FaaS
functions. In the Online Optimizer module, we set the quan-
tile γ and penalty factor ξ to 25 and 100 by default. During
the search process, we set Nr and and Nt to 3 and 300.
When the number of iterations corresponding to a function
is greater than 300, the search process for that function will
be terminated and the optimal result will be generated.
Our FaaSDeliver is compatible with two widely-used open-
source FaaS Frameworks, KNative [26] and OpenFaaS [27].
In addition, FaaSDeliver is easy to integrate with public FaaS
providers such as AWS Lambda. FaaSDeliver is deployed in
the cloud platform.

Baselines. We compare FaaSDeliver with several base-
lines:
• Random search (RS) is the approach that randomly

chooses FDPs from search space. This earlier study [45]
shows empirically and theoretically that RS are more effi-
cient for hyper-parameter optimization than grid search.
We treat RS as the basic approaches without any model.
RS are implemented based on Optuna [44].

• COSE is a framework that uses GPBO to find the opti-
mal configuration for FaaS functions in the homogeneous
platforms [14]. We compare COSE to evaluate whether the
GPBO-based approach can handle tree-structured search
space. COSE is coded based on BayesOpt [46].

• Independent COSE (ICOSE) runs COSE on each ho-
mogeneous platform independently and selects the best
result as the final FDP. We compare ICOSE to evalu-
ate whether running the GPBO-based approach indepen-
dently on each platform can handle tree-based spaces.

• Deep deterministic policy gradient (DDPG) is a re-
inforcement learning technique that combines both Q-
learning and Policy gradients [35]. We choose DDPG,
because it does not have additional components such as
Double Q-Learning, which may complicate the analysis of
this comparison.

4.2 Experiments and Results Analysis
4.2.1 Effectiveness Validation (RQ1)
We first validate the optimal FDP found by FaaSDeliver.
In our case, the optimal FDP of a function represents the
cheapest execution cost found while satisfying its SLOs.
Considering the search cost, we stop the search process after
300 iterations. For ICOSE, COSE is performed separately for
100 iterations on each platform and outputs the best result.
For each experiment, we repeat it 25 times and calculate the
average result. All results are normalized to the cost of the
oracle optimal FDP, which is the ground truth obtained by
exhaustive offline search.

FaaSDeliver unearths better FDPs with more stabil-
ity than other approaches under the same number of
iterations. Fig. 6 presents the normalized optimal cost of
FDPs suggested by each approach for 6 functions. Overall,
FaaSDeliver can find the optimal or sub-optimal FDPs near
to the oracle FDPs from 180, 200 FDPs. Across functions,
the cost of FaaSDeliver’s optimal FDPs is only 0-11% higher
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TABLE 2: Practical heterogeneous computing continuum used for evaluating functions in Table 1
Name PaaS Platform FaaS Platform CPU Processor Resource Quota Number Distance to User Source of Node

Edge K3S OpenFaaS ARMv7 rev 3 (v7l) @ 1.2 GHz 4 Core CPU, 4 GB Memory 3 <100 meters Purchase Raspberry Pi
Fog Kubernetes Knative Intel(R) Silver 4116 @ 2.10 GHz 8 Core CPU, 8 GB Memory 5 <1 kilometers Purchase Dell Desktops

Cloud Kubernetes Knative GenuineIntel @ 2.20GHz 12 Core CPU, 12 GB Memory 5 >100 kilometers Rent form Public Cloud
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Fig. 6: The cost of optimal FDPs found by different approaches after 300 iterations. The results are normalized by the cost
of the oracle FDP. The FDPs found by ICOSE, COSE, RS and DDPG are generally 2×, 4.8×, 2×, 1.5× more expensive than
FaaSDeliver’s.
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Fig. 7: Progression of the search processes for target functions. Not only does FaaSDeliver find better FDPs compared to
other baselines, but it also converges to optimal FDPs faster.

than the cost of oracle FDPs. For each function, FaaSDeliver
outperforms the other four approaches. Compared with
ICOSE, COSE, RS, DDPG approaches, FaaSDeliver can cut
the execution cost of functions by 48%, 78%, 52% and 36%
on average, respectively. The DDPG approach is the best
alternative approach because the RL algorithm can handle
tree-structure spaces better than other three approaches. In
addition, the tail of the FDPs suggested by ICOSE, COSE,
RS, and DDPG approaches could be further from oracle
FDPs than FaaSDeliver’s FDPs.

FaaSDeliver unearths the sub-optimal FDPs in a
shorter time than other approaches To better understand
the search process of FaaSDeliver and baseline approaches,
we present the results of different iterations in Fig. 7 to
show how approaches converge to their best FDP for these 6
functions. Because the invocations of functions are not con-
tinuous, we measure the convergence speed of approaches
by the number of iterations rather than the total time. Over-
all, the results in Fig. 7 show that FaaSDeliver achieves the
fastest convergence speed for all functions. We observe that
FaaSDeliver needs only 30 iterations to find an acceptable
FDP (2× optimal cost), while the other approaches usually
take at least 100 iterations. Further, FaaSDeliver converges
to the optimal or sub-optimal FDP in around 120 iterations.
It is counter-intuitive to observe that COSE approach is not

better than RS, which is consistent with previous work [47].
This deterioration is caused by the high uncertainty in
fitting a regression model due to the tree-structured search
space [48].

Why does FaaSDeliver perform well? All the above
optimization approaches have been proved to be able to
find the optimal (or sub-optimal) solution in a large search
space in previous work [14], [15], [35], [45]. The main reason
why FaaSDeliver performs better than other baselines is
that FaaSDeliver can recognize the target platform fast and
prune the sub search spaces of other platforms. However,
GPBO-based COSE have difficulty in handling the categor-
ical parameters that indicate what the conditional groups
are. Though DDPG is able to handle tree-structured spaces
but it needs more resources to calculate the next FDP and
more iterations to converge to the optimal FDP. Therefore,
FaaSDeliver is more suitable for the discrete tree-structured
search spaces of HCC (e.g., Fig. 4) than other approaches.

Table 3 shows the choices of platforms for 6 functions
during the search process, which allows us to dissect results
in a greater depth. From Table 3, we find that over 80%
of FaaSDeliver’s searches are effectively spent on target
platforms (e.g., the optimal FDP of Markdown is (Edge,
225 m, 32 MB)), and FaaSDeliver selects the edge platform
(262 times) more than fog (18 times) and cloud (20 times).
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TABLE 3: The distribution of the count of searches on
different platforms for different approaches.

Search CountFunction Approach Edge Fog Cloud
Optimal
Platform

RS 96 104 100
COSE 131 87 165
ICOSE 100 100 100

FaaSDeliver 18 265 17
QRCode

DDPG 128 88 84

Fog

RS 98 100 102
COSE 48 87 165
ICOSE 100 100 100

FaaSDeliver 262 18 20
Markdown

DDPG 120 98 82

Edge

RS 99 103 98
COSE 265 27 8
ICOSE 100 100 100

FaaSDeliver 16 268 16
SentimentAnalysis

DDPG 118 83 99

Fog

RS 106 94 100
COSE 273 6 21
ICOSE 100 100 100

FaaSDeliver 18 264 18
ResizeImage

DDPG 123 97 80

Fog

RS 81 111 108
COSE 64 44 192
ICOSE 100 100 100

FaaSDeliver 19 262 19
ImageInception

DDPG 123 90 87

Fog

RS 100 90 110
COSE 48 87 195
ICOSE 100 100 100

FaaSDeliver 18 33 249
PageRank

DDPG 121 81 95
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sessed by multivariate and indepen-
dent TPE. Multivariate TPE gives
higher scores than independent TPE
for CPU.

Compared with other approaches, FaaSDeliver can recognize
the target platform earlier and search for more local FDPs
on the target platform. COSE cannot recognize the target
platform because the tree-structured space generates a high
uncertainty in fitting performance models. DDPG selects
each platform more evenly, which is similar to RS and
ICOSE. Therefore, FaaSDeliver has a higher chance of finding
the optimal FDP with fewer iterations.

4.2.2 Adaptability Analysis (RQ2)
In this subsection, we validate the effectiveness of the adap-
tive TPE introduced in Section 3.3.2.

Contribution of multivariate TPE. To show the effec-
tiveness of multivariate TPE, we compare the number of
iterations required to find the optimal FDP for FaaSDeliver
with multivariate TPE and independent TPE, respectively.
From Fig. 8, FaaSDeliver with multivariate TPE reaches the
optimal FDP faster than independent TPE. For QRCode,
FaaSDeliver with multivariate TPE converges to the optimal
FDP with only half of the number of iterations required for
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Fig. 10: (a) The change curves of the minimum allocatable
memory during search processes. (b) Comparison of the
number of failed launches during search processes.
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Fig. 11: The cost of optimal FDP determined by FaaSDeliver
under different penalty factor ξ. ξ = 1 implies no active
penalty is added.

independent TPE. Moreover, in other functions not shown,
we observe similar results that the multivariate TPE has a
better performance.

The reason why multivariate TPE performs better than
independent TPE is that the multivariate TPE can cap-
ture dependencies among platforms, CPU, and memory,
whereas the independent TPE cannot. For the independent
TPE, the densities of good/bad parameters are estimated
as the product of univariate Parzen estimators. Multivariate
TPE, on the other hand, uses a single multivariate Parzen
estimator. We depict the importance of FDP parameters
assessed by multivariate and independent TPE in Fig. 9. We
find that multivariate TPE gives a higher score for CPU and
a lower score for memory than independent TPE. Actually,
both QRCode and Markdown are CPU-sensitive, requiring
more than 200 m CPU, and memory-insensitive, requiring
32 MB memory. Compared with independent TPE, multi-
variate TPE tends to tune the CPU more often, resulting in
faster convergence.

Contribution of downward-closure based memory
pruning. A function invocation may result in failure if
initiated with inadequate memory resources. To mitigate the
occurrence of failed invocations, FaaSDeliver incorporates
a downward-closure based memory pruning technique.
We subsequently investigate the impact of the downward-
closure based memory pruning by comparing two variants
of FaaSDeliver, namely one with memory pruning and the
other without memory pruning for the ImageInception and
PageRank functions. The selection of ImageInception and
PageRank functions is predicated on their relatively sub-
stantial memory requirements, necessitating 640 MB and
2176 MB of memory, respectively.

Figure 10 (a) illustrates the procedure through which
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FaaSDeliver modifies the minimum allocatable memory at
the fog platform for the ImageInception and PageRank
functions. This adjustment aims to eliminate the memory
space that is inadequate for initiating the functions, thereby
reducing the frequency of failed starts. Figure 10 (b) shows
the number of failed invocations for the ImageInception
and PageRank functions over the course of 300 iterations.
As evidenced in Fig. 10 (b), FaaSDeliver without memory
pruning exhibits a significantly higher rate of launch failures
(4-6×) in comparison to FaaSDeliver with memory pruning.
This disparity in performance underscores the critical role
of memory pruning in diminishing launch failures and,
ultimately, improving the user experience.

Contribution of penalizing SLO violations. In Equa-
tion 5, we actively increase the execution cost of failed FDPs
to avoid choosing an FDP near failed FDPs. In Fig. 11, we
investigate the influence of penalty factor ξ on the final
results across different functions. Fig. 11 shows FaaSDeliver
has a poor performance when not actively increasing execu-
tion cost (i.e., ξ = 1 ), which demonstrates the importance
of penalizing SLO violations. It is noticed that the cost of
the optimal FDP suggested by FaaSDeliver is less than the
optimal cost in PageRank when ξ is equal to 1. However,
when we check the FDP, we find that this FDP cannot
meet the SLO of PageRank. This is because some minor
SLO violations (e.g., 10 ms) may be hidden by a large
amount of resource allocation (e.g., 1000 MB memory). We
recommend that the value of ξ should be set greater than
100 in FaaSDeliver.

4.2.3 Effectiveness of transfer learning (RQ3)
In this part, we show transfer learning can significantly
reduce the overhead of online learning when updating the
ResizeImage function. We leverage the knowledge from his-
torical versions (RI1 and RI2) to help find the optimal FDP of
the updated version (RI3) of ResizeImage. Fig. 12(a) shows
the similarity result between 3 versions of ResizeImage.
In this experiment, RI1 and RI2 was profiled 300 times.
Figure 12 (a) depicts the similarity score among 3 versions of
ResizeImage function. RI2 and RI3 failed to launch under the
optimal FDP of RI1. Thus, the similarity score between RI1
and RI2 and the score between RI1 and RI3 are both equal to
0. As shown in Fig. 12 (a), RI1 has significant performance
differences from RI2 and RI3 (i.e., their similarity scores
s < scoremin, where scoremin = 0.8). Owing to the high
similarity score (i.e., 0.993) between RI2 and RI3, which
surpasses the predefined threshold scoremin, we deduce that
the performance of RI2 and RI3 is similar. As a result, we
designate RI2 as the transfer source and RI3 as the transfer
target.

Now we show the search processes of RI3 with trans-
fer learning from RI2 and without transfer learning in
Fig. 12 (b). From Fig. 12 (b), FaaSDeliver without Transfer
Learner needs more than 30× iterations to find the opti-
mal FDP than FaaSDeliver with Transfer Learner. Transfer
Learner considerably boosts TPE by narrowing down the
search space, thus accelerating the process of optimization.
In our experiments, Transfer Learner reduce search space
of RI3 based on RI2 from the complete search space to
P̂ = {Fog, [900, 950], [64, 128]}. These results imply that
FaaSDeliver can capture common characteristics between
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Fig. 12: (a) Similarity scores between 3 versions of the Re-
sizeImage function. (b) Comparison of the search progress
with and without Transfer Learner when updating the Re-
sizeImage function. The symbols F and N represent the
number of iterations required for FaaSDeliver to converge
to the optimal FDP with and without the Transfer Learner
module, respectively.

historical versions and the updated version of the same
function. Consequently, Transfer Learner introduces a posi-
tive contribution in reducing the overhead of FaaSDeliver.

4.2.4 Sensitivity Analysis (RQ4)

In this part, we extend our experiments with real workload
of Azure Functions and different configurations to inves-
tigate the FaaSDeliver’s sensitivity to co-running functions
and configurations.

Sensitivity to co-running functions under the real
workload. To evaluate the performance of FaaSDeliver in
real scenarios that with co-running functions in HCC, we
replay the real workload of functions invoked by HTTP
in the Azure Function dataset [49]. To construct a dataset
of invocation rates (i.e., RPS), we first analyzed the per-
minute function invocation count in the HTTP traces. For
the time intervals with no invocations, we treat them as
zero invocation rates. Considering the limited resources of
our testbed, we excluded functions with more than 100
invocations per minute. Subsequently, we randomly sam-
ple six invocation rates and utilize them to trigger the
functions under evaluations. We repeat the evaluation 25
times and calculate the average result. Fig. 13 shows the
results of average cost normalized to the optimal result
when functions are invoked 300 times in the real workload.
From Fig. 13, co-running functions have little effect on the
effectiveness of FaaSDeliver on average. For all functions, the
most significant difference in the cost with and without co-
running functions is only 0.02. While ICOSE and DDPG are
more sensitive to the co-running functions than FaaSDeliver.
For example, at PageRank function, ICOSE with co-running
functions cost 9× more than ICOSE without co-running
functions.

Sensitivity to configurations. Figure 7 shows how Nt

influences the results of optimal FDP for 6 functions. From
Fig. 7, we observed that FaaSDeliver requires at least 120
iterations (i.e., Nt = 120) to converge to the optimal or
sub-optimal FDP. Once FaaSDeliver has converged to the
optimal FDP, adding more iterations does not improve the
result. In Fig. 14 and Fig. 15, the x-axis presents various γ
values and Nr values, while the y-axis presents the average
cost normalized to the optimal FDP. From the Fig. 14, we
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Fig. 13: The cost of optimal FDPs found by different approaches when running six functions together in HCC by replaying
the real workload of Azure Functions. FaaSDeliver(single) means the results of FaaSDeliver without co-running functions.
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can find that FaaSDeliver has a poor performance when
γ is less than 10. This can be attributed to the role of γ
in distinguishing between favorable and unfavorable ob-
servations, as delineated in Equation 3. When a smaller
γ is employed, the likelihood of mis-classification from
negative observations to positive ones increases, leading to
suboptimal performance. As shown in Fig. 15, FaaSDeliver
is insensitive to Nr. FaaSDeliver can converge to the optimal
FDP under different values of Nr.

4.2.5 Scalability Analysis
In this part, we validate the scalability of FaaSDeliver when
expanding HCC from 3 to 12 platforms. Fig. 16 shows the
comparison results of FaaSDeliver over 300 iterations under
the different number of FaaS platforms. We consider 1 edge,
1 fog, and 1 cloud platform as one HCC set (3 platforms).
We scale platforms to two-fold HCC sets (i.e., 6 platforms),
three-fold HCC sets (i.e., 9 platforms) and four-fold HCC
sets (i.e., 12 platforms) to evaluate the scalability of FaaS-
Deliver. The new adding platforms have lower performance
(i.e., longer execution time) than the platforms in one-fold
HCC. Thus, the optimal FDP of the scaled platform remains
constant with 3 platforms. From Fig. 16, FaaSDeliver has
2%, 3%, and 11% cost increase on average from 3 to 6,
9, and 12 heterogeneous platforms, respectively. Although
the average cost does not show a significant rise, some
considerable tail costs are non-negligible as the scale of FaaS
platforms grows. For example, the worst result of QRCode
is 1.5× than its optimal result. FaaSDeliver can alleviate this
performance degradation by iterating more times.

4.2.6 Overhead Analysis.
To demonstrate the efficiency of FaaSDeliver, we evaluate its
runtime overhead. On average, FaaSDeliver takes 0.01 sec-
ond to calculate the next FDP in each iteration, excluding the
time required for function execution and network transmis-
sion. A recent study reported that the invocation interval for
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Fig. 16: The cost of optimal FDPs found by FaaSDeliver when
expanding HCC from 3 to 12 platforms.

more than 99% of functions in production serverless traces
by Azure is greater than one second [21]. Consequently, the
calculation of the next FDP is completed before the next
function invocation, ensuring that it does not impact the
subsequent invocations. If the invocation interval between
two requests is less than 0.01 seconds, FaaSDeliver reuses
the last FDP to handle the requests.

The resource requirements for FaaSDeliver are modest,
with 128 MB of memory and 0.1 CPU core. These require-
ments correspond to 0.1% of the 128 GB memory and 3%
of the 32-core CPU of the running server equipped with
the Intel Xeon Gold 6242 CPU. This demonstrates that
FaaSDeliver is an efficient solution with minimal overhead,
making it well-suited for optimizing FaaS performance in
HCC environments.

5 DISCUSSION

Performance SLOs. None of the commercial cloud provider
offers SLOs in terms of performance (availability only) [50],
which hinders the adoption of latency-critical functions on
HCC. In this study, we infer latency SLOs through profiling
functions based on FaaSProfiler [41], and assume that all
requests sent to the same function correspond to the same
SLO. Our SLO-aware FaaS delivery framework could poten-
tially enable the FaaS providers to offer SLO guarantees and
change pricing models to be SLO-aware. In cases where SLO
violations are unacceptable, we can initiate two function
instances for each request: one to ensure that user requests
are processed promptly, and the other for FDP exploration.
Once the TPE converges to the optimal FDP, only a single
function instance is required to handle the request. This
approach ensures that the performance SLOs are met while
still allowing for the exploration and optimization of FDPs.

Function Chain. As demonstrated in a previous
study [51], over 30% of FaaS applications are comprised of a
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single function. FaaSDeliver is good at delivering these appli-
cations effectively to HCC environments. However, for the
remaining applications that consist of multiple functions,
FaaSDeliver does not explicitly account for the dependencies
among functions within the same chain. Rather than di-
rectly addressing these dependencies, FaaSDeliver indirectly
tackles them through reactive performance measurements.
This approach enables the system to adapt to the perfor-
mance characteristics of individual functions within a multi-
function application, optimizing each function’s perfor-
mance without explicitly considering the interdependencies
among them. While this method may not fully exploit the
potential benefits of considering function dependencies, it
still provides a practical and efficient solution for optimizing
the performance of FaaS applications in HCC environments.

Function Input. We acknowledge that the same function
with different inputs may have different resource require-
ments. Fortunately, from Azure study [21], we find that
over a third of the functions are periodic tasks, which typi-
cally deal with similar inputs. The requirements varies very
slightly due to different inputs for these tasks. Furthermore,
in the private HCC, we can classify these inputs based on
their characteristics like OFC [52] to alleviate the impact of
input variations. For example, for ImageInception function,
we can classify images into different buckets according to
their size, i.e., [(0MB,5MB),(5MB-10MB),...]. FaaSDeliver then
maintains a performance model for each bucket-function
pair to mitigate the impact of different images.

Function Cold Start. To alleviate the impact of startup
process of functions, FaaSDeliver calculates the execution
cost in Equation 2 based on the execution time rather than
response time. Thus, the cold or warm start time would not
affect the execution cost. The response time is limited to
less than the SLO in Equation 2 to prevent an overly long
start time. If launching a function on a platform with a long
cold start time results in an SLO violation, FaaSDeliver will
not deliver the function to that platform or allocate more
resources to reduce execution time to meet SLO.

6 RELATED WORK

Delivering FaaS functions to cloud. In recent years,
many public cloud providers have introduced their server-
less computing solutions, including AWS Lambda, Google
Cloud Functions, and Azure Functions. Firecracker [53],
USETL [54], and Sock [55] focus on solving the cold start
problem of functions in FaaS platforms. However, these
studies do not provide insight into how the delivery of
functions to FaaS platforms can be optimized. Additionally,
several studies have been conducted to describe and under-
stand the architecture, resource allocation, and performance
variations of different commercial serverless platforms (e.g.,
AWS Lambda, Azure Functions, and Google Cloud Func-
tions) [28], [41], [56]. Nevertheless, the major focus of their
work is on performance profiling of various FaaS platforms
and not on delivering FaaS Functions.

Moreover, there have been some research works aimed at
delivering FaaS Functions to cloud platforms [5], [18], [57],
[58], [59], [60], [61]. AWS Compute Optimizer [57] recom-
mends optimal AWS resources for lambda-based functions
to reduce costs and improve performance by using machine

learning to analyze historical utilization metrics. One of the
major limitations of AWS Compute Optimizer is that non-
AWS users cannot benefit from the solution as it is a propri-
etary tool of AWS. Virtual serverless providers (VSPs) [18]
aggregate public serverless offerings on cloud to allow
developers to get rid of vendor lock-in problems and exploit
pricing and performance variation across providers. Lin et
al. [60] use the Probability Refined Critical Path Greedy
algorithm to model the performance and cost of FaaS func-
tions in the AWS Lambda. MBS [61] is a framework that
optimizes the batching of ML inference serving requests
on FaaS platforms to minimize their monetary cost while
meeting their SLOs. SLAM [58] detects the relationship of
multi-function serverless applications through distributed
tracing and models the execution time and memory to iden-
tify the optimal memory configurations for them. However,
it should be noted that these approaches based on FaaS
platforms in the cloud cannot be directly applied to HCC.

Delivering FaaS functions to edge. Amazon and Mi-
crosoft have extended their FaaS platforms closer to the edge
of the network with AWS Greengrass 3 and Azure Functions
on IoT Edge 4, which promise seamless integration into
the respective cloud ecosystems. Glikson et al. [62] and
Aske et al. [63] propose an extension of FaaS to the edge,
enabling IoT and Edge devices to be seamlessly integrated
as application execution infrastructure. Sledge [64] presents
a novel and efficient WebAssembly-based serverless frame-
work for the edge to support high density multi-tenancy,
low startup time, bursty client request rates, and short-lived
computations of serverless workload.

In regard to delivering FaaS functions to edge platforms,
Thomas et al. [22] and Anshul et al. [65] construct FaaS
platforms for operating edge AI applications in edge clouds,
but the target devices need to be configured by function
developers. Autoscale [23] employs an intelligent execution
scaling engine based on reinforcement learning that selects
the optimal execution target of edge inference. LaSS [66]
uses principled queuing-based methods to deliver functions
to edge platforms with an appropriate allocation. However,
Autoscale and LaSS only focus on edge platforms but ignore
the benefits of the cloud. EdgeFaaS [67] provides virtual
function interfaces for consistent function management and
optimizes the scheduling of functions and placement of
data according to their performance. On the other hand,
our work does a much more comprehensive assessment of
resource allocation.

Delivering FaaS functions to computing continuum.
Stefan et al. [68] propose a unified cloud and edge data
analysis FaaS platform, which extends the notion of FaaS
to the edge and facilitates managing data analysis. Sub-
sequently, research on delivering functions to the optimal
device in HCC has gained increased attention [9], [69], [70],
[71], [72], [73], [74]. Sebasti et al. [71] introduce an open-
source platform to support serverless computing for sci-
entific data-processing workflow-based applications across
the cloud continuum. FogFlow [72] is an open-source FaaS
platform supporting the deployment and orchestration of
functions, so-called fog functions, on Cloud and Edge in-

3. https://aws.amazon.com/greengrass
4. https://docs.microsoft.com/azure/iot-edge
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frastructures. FogFlow adopts a data-centric programming
model instead of the more classical topic-based approach.
SERVERLESS4IOT [73] presents Model-Driven Engineering
techniques for the design, deployment, and maintenance
of hybrid applications involving FaaS functions and other
software components over the Cloud-Edge-IoT continuum.
A3-E [74] provides a unified model for managing where to
execute a certain function based on the specific context and
user requirements. However, the major focus of their work
is on FaaS orchestration and not function delivery.

In the context of delivering functions to computing
continuum, Glikson et al. [75] present a novel heteroge-
neous FaaS platform that deduces function resource spec-
ification using Machine Learning (ML) methods, performs
smart function placement on Edge/Cloud based on a user-
specified QoS requirement, and exploits data locality for
function executions. Costless [13] constructs a cost graph
for function workflow and formulates the FDN problem as
a constrained shortest path problem to find the best delivery
policy. However, Costless needs to profile all possible FDPs
in the total search space. Anirban et al. [76] present a func-
tion placement framework that enables users to specify cost
and latency requirements for each function and determines
whether to execute the function on the edge device or in the
cloud. The framework also identifies the resource needed
to meet the performance goals. A similar work to ours
is COSE [14], which uses BO-based performance models
to select the optimal policy across cloud and cloud edge.
However, COSE assumes that the cloud and cloud edge
have homogeneous resources and cannot handle the tree-
structured search space in HCC (e.g., Fig. 4).

7 CONCLUSION

In order to deliver functions to the heterogeneous com-
puting continuum efficiently, we propose FaaSDeliver, a
lightweight function delivery engine to automatically find
a cost-efficient FDP for each function. FaaSDeliver continu-
ously learns the most cost-efficient FDP for FaaS functions
through an adaptive TPE performance model and a heuristic
transfer learning on the fly. Real system implementation
and experimental evaluations demonstrate FaaSDeliver has
a high chance to find the optimal (or sub-optimal) FDPs for
different types of functions via fewer trials than some state-
of-the-art approaches. We hope this paper will inspire more
research into delivering FaaS functions to HCC so that the
FaaS computing paradigm can be used in more scenarios.
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