
Graph based Incident Extraction and Diagnosis in Large-Scale
Online Systems

Zilong He, Pengfei Chen*
Sun Yat-sen University, China

hezlong@mail2.sysu.edu.cn,chenpf7@mail.sysu.edu.cn

Yu Luo, Qiuyu Yan
Tencent, China

{zekaluo,ireneyan}@tencent.com

Hongyang Chen, Guangba Yu
Sun Yat-sen University, China

{chenhy95,yugb5}@mail2.sysu.edu.cn

Fangyuan Li
Tencent, China

leiffyli@tencent.com

ABSTRACT
With the ever increasing scale and complexity of online systems,
incidents are gradually becoming commonplace. Without appro-
priate handling, they can seriously harm the system availability.
However, in large-scale online systems, these incidents are usu-
ally drowning in a slew of issues (i.e., something abnormal, while
not necessarily an incident), rendering them difficult to handle.
Typically, these issues will result in a cascading effect across the
system, and a proper management of the incidents depends heavily
on a thorough analysis of this effect. Therefore, in this paper, we
propose a method to automatically analyze the cascading effect of
availability issues in online systems and extract the corresponding
graph based issue representations incorporating both of the issue
symptoms and affected service attributes. With the extracted rep-
resentations, we train and utilize a graph neural networks based
model to perform incident detection. Then, for the detected inci-
dent, we leverage the PageRank algorithm with a flexible transition
matrix design to locate its root cause. We evaluate our approach
using real-world data collected from the WeChat® online service
system, the largest instant message system in China. The results
confirm the effectiveness of our approach. Moreover, our approach
is successfully deployed in the company and eases the burden of
operators in the face of a flood of issues and related alert signals.

CCS CONCEPTS
• Software and its engineering→Maintaining software.

KEYWORDS
Incident detection, incident diagnosis, online systems

ACM Reference Format:
Zilong He, Pengfei Chen*, Yu Luo, Qiuyu Yan, Hongyang Chen, Guangba Yu,
and Fangyuan Li. 2022. Graph based Incident Extraction and Diagnosis in
Large-Scale Online Systems. In 37th IEEE/ACM International Conference on
Automated Software Engineering (ASE ’22), October 10–14, 2022, Rochester, MI,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3556904

Graph based Incident Extraction and Diagnosis in Large-Scale
Online Systems

Zilong He, Pengfei Chen*
Sun Yat-sen University, China

hezlong@mail2.sysu.edu.cn,chenpf7@mail.sysu.edu.cn

Yu Luo, Qiuyu Yan
Tencent, China

{zekaluo,ireneyan}@tencent.com

Hongyang Chen, Guangba Yu
Sun Yat-sen University, China

{chenhy95,yugb5}@mail2.sysu.edu.cn

Fangyuan Li
Tencent, China

leiffyli@tencent.com

ABSTRACT
With the ever increasing scale and complexity of online systems,
incidents are gradually becoming commonplace. Without appro-
priate handling, they can seriously harm the system availability.
However, in large-scale online systems, these incidents are usu-
ally drowning in a slew of issues (i.e., something abnormal, while
not necessarily an incident), rendering them difficult to handle.
Typically, these issues will result in a cascading effect across the
system, and a proper management of the incidents depends heavily
on a thorough analysis of this effect. Therefore, in this paper, we
propose a method to automatically analyze the cascading effect of
availability issues in online systems and extract the corresponding
graph based issue representations incorporating both of the issue
symptoms and affected service attributes. With the extracted rep-
resentations, we train and utilize a graph neural networks based
model to perform incident detection. Then, for the detected inci-
dent, we leverage the PageRank algorithm with a flexible transition
matrix design to locate its root cause. We evaluate our approach
using real-world data collected from the WeChat® online service
system, the largest instant message system in China. The results
confirm the effectiveness of our approach. Moreover, our approach
is successfully deployed in the company and eases the burden of
operators in the face of a flood of issues and related alert signals.

CCS CONCEPTS
• Software and its engineering→Maintaining software.

KEYWORDS
Incident detection, incident diagnosis, online systems

ACM Reference Format:
Zilong He, Pengfei Chen*, Yu Luo, Qiuyu Yan, Hongyang Chen, Guangba Yu,
and Fangyuan Li. 2022. Graph based Incident Extraction and Diagnosis in
Large-Scale Online Systems. In 37th IEEE/ACM International Conference on
Automated Software Engineering (ASE ’22), October 10–14, 2022, Rochester, MI,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3556904

Figure 1: An issue impact topology, where red nodes de-
note abnormal services, and red edges denote abnormal call-
relationships. In this case, a fault occurs at Service A and
further cascades to Service C, D, G and H, while Service F is
not seriously affected because a degrade mechanism is im-
plemented for it for fault tolerance.

USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3551349.
3556904

1 INTRODUCTION
Online systems are becoming increasingly popular and indispens-
able in modern daily life. With the rapid evolution of functionalities
and the growth of users, the scale and complexity of these systems
are becoming larger and larger. Taking the examined real-world
system in this study as an example, the number of services is over
20K and the number of call-relationships among these services is
over 80K. As a result, maintaining such a large-scale system be-
comes extremely difficult. Despite a quantity of effort devoted to
service availability assurance, incidents are still inevitable. Without
timely and appropriate management, they can quickly result in a
great economic loss and a serious decrease of user experience. For
example, it is estimated that Amazon.com has lost over $100 million
for a single hour of downtime on Prime Day in 2018 [8]. Therefore,
it is a critical task to handle an incident quickly and properly.

Figure 1: An issue impact topology, where red nodes de-
note abnormal services, and red edges denote abnormal call-
relationships. In this case, a fault occurs at Service A and
further cascades to Service C, D, G and H, while Service F is
not seriously affected because a degrade mechanism is im-
plemented for it for fault tolerance.

USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3551349.
3556904

1 INTRODUCTION
Online systems are becoming increasingly popular and indispens-
able in modern daily life. With the rapid evolution of functionalities
and the growth of users, the scale and complexity of these systems
are becoming larger and larger. Taking the examined real-world
system in this study as an example, the number of services is over
20K and the number of call-relationships among these services is
over 80K. As a result, maintaining such a large-scale system be-
comes extremely difficult. Despite a quantity of effort devoted to
service availability assurance, incidents are still inevitable. Without
timely and appropriate management, they can quickly result in a
great economic loss and a serious decrease of user experience. For
example, it is estimated that Amazon.com has lost over $100 million

https://doi.org/10.1145/3551349.3556904
https://doi.org/10.1145/3551349.3556904
https://doi.org/10.1145/3551349.3556904
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3551349.3556904&domain=pdf&date_stamp=2023-01-05

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zilong He, Pengfei Chen*, Yu Luo, Qiuyu Yan, Hongyang Chen, Guangba Yu, and Fangyuan Li

for a single hour of downtime on Prime Day in 2018 [8]. Therefore,
it is a critical task to handle an incident quickly and properly.

This study targets at managing the incidents that affect the sys-
tem availability. Typically, these incidents are drowning in numer-
ous issues. Specifically, an issue denotes something abnormal that
is happening in a system, while an incident is an emergent issue.
Detailed definitions of these two concepts and examples illustrating
their differences will be presented in Section 2.1. Incident detection
is a task to identify incidents from issues. This task is important
yet challenging since various information need to be accumulated
and considered together to arrive at a judgment. Generally, an issue
occurring at some service will result in a cascading effect, which
can be represented as an impact topology. Figure 1 presents an
example of an issue and its impact topology. Various information
(e.g., the affected services and the issue symptoms) can be attached
to this impact topology to help incident detection and diagnosis.
Extracting the impact topology of an issue is to find its affected
services and call-relationships as well as collect this information.
We also name this process as issue extraction.

Most of the time, issue extraction is manually performed by op-
erators during incident diagnosis and reporting. However, such a
routine usually gives rise to an overdue and incomplete analysis
of the issue impact scope. As a result, some problems may arise.
The first problem is that operators can be exhausted to individu-
ally examine the overwhelming amount of alerts triggered by all
services in an issue impact topology. Even worse, since a full view
of the ongoing issue is not presented in advance, it might be not
until operators have wasted a lot of time that they eventually find
all the examined alerts are actually false alerts. This problem is
quite common especially in the management of a large-scale online
system. Another problem is that a manual process generally results
in a scrappy form of the extracted issue impact topology due to
the lack of a unified standard for issue extraction. As a result, the
fusion of incident-indicating information from different sources
can be difficult to perform, hindering a re-utilization of the wisdom
recorded in historical incident reports.

Faced with these problems, we argue that issue extraction needs
to be performed automatically and as early as possible, even earlier
than incident detection. Specifically, the combination of issue ex-
traction and incident detection is denoted as incident extraction in
this study. The extracted impact topology of an incident is treated
as an atomic unit over the subsequent incident management proce-
dures. This introduces a new paradigm of incident detection since
prior data-driven approaches [14, 35, 60] usually do not perform
issue extraction first and they treat the snapshot of the whole sys-
tem as an atomic unit for incident detection. This paradigm poses
several challenges, including: (i) How to better organize various
information of ongoing issues and represent them in a comprehen-
sive way? (ii) How to process and make full use of the obtained
issue representations to perform incident detection and diagnosis?

To address these challenges, we propose a Graph based Incident
Extraction and Diagnosis approach, namely GIED. To sum up, the
contributions of this paper are four-fold.

• We propose a method to extract the issue impact topology
at an early stage of incident management. The extracted rep-
resentation takes both the issue symptoms and the affected

Figure 2: The relationships between some basic concepts

services into account, which can help evaluate the impact of
the issue more accurately.

• To perform incident detection, we design a graph neural
networks based model, which can well handle various infor-
mation contained in an issue impact topology.

• We propose a flexible method to locate the root cause ser-
vice of an issue based on PageRank and the extracted im-
pact topology. With a flexible transition matrix design, the
method can concurrently consider various clues about the
root cause and perform root cause localization accurately.

• We conduct experiments to evaluate our approach based on
real-world data collected from the WeChat® online service
system, a very large-scale online system providing complex
functionalities such as messaging, banking and video play-
ing. The results confirm the effectiveness of our approach for
both incident detection and root cause service localization.
The proposed approach has beenmerged to the incident man-
agement in practice. Moreover, to facilitate reproduction, we
implement an artifact on a benchmark system. The artifact
is available at https://github.com/IntelligentDDS/GIED.

2 TERMINOLOGY AND RELATEDWORK
We will first introduce some basic concepts about incident manage-
ment for large-scale online systems in Section 2.1. Then Section 3.1-
3.2 will introduce the background motivating the proposed incident
extraction method, and Section 3.3 will introduce the background
motivating the proposed incident diagnosis method.

2.1 Basic Concepts in Incident Management
Figure 2 presents the relationships between some basic concepts in
incident management. We shall elaborate these basic concepts in
the following.

Definition 2.1. A KPI anomaly refers to an unusual KPI (Key
Performance Indicator) observation spotted by an anomaly detector.

When a KPI anomaly is detected, a corresponding alert will be
triggered and sent to on-call operators, who need to examine the
KPI anomaly and resolve the corresponding issue if needed.

Definition 2.2. An issue denotes a spatio-temporal aggregation
of multiple KPI anomalies caused by the same root cause.

Definition 2.3. An incident is an emergent issue that is or will be
affecting the user experience heavily.

Note that an issue does not necessarily imply an incident. For
example, a cron job which processes data once a day can result in a
sudden change in the CPU utilization of a corresponding server at
fixed time; the instability of the network can cause a momentary
fluctuation in the latency of some modules; an updated version
of the software can alter patterns in some related KPIs even it is

https://github.com/IntelligentDDS/GIED

Graph based Incident Extraction and Diagnosis in Large-Scale Online Systems ASE ’22, October 10–14, 2022, Rochester, MI, USA

harmless. These issues are not considered as incidents. Generally,
on-call operators need to pay more attention to incidents.

If an incident is hard to resolve in time, or it has a serious impact,
a corresponding incident report should be created.

Definition 2.4. An incident report is a detailed description of an
incident for continuous follow-up and postmortem analysis.

It should be written as clearly as possible, including a clear time-
line, a detailed diagnosis for the incident, a thorough analysis of
the impact scope and a subsequent optimization plan. As a result,
the quantity of generated incident reports should be carefully con-
trolled. Otherwise, an overwhelming amount of mutual related or
unnecessary reports will exhaust operators and cover up real im-
portant problems. In practice, the detailed rules about whether to
generate an incident report might vary across different systems.

2.2 Related Work
Issue Extraction. Recently, some researchers have found that
directly analyzing enormous alert signals in a large-scale online
system is exhausting, so they explore ways to ease this burden [13,
16, 41, 59]. For example, AlertSummary [59] handles alert storms
through a clustering based analysis and recommends the centroids
of alert clusters as representative alerts to operators. GRLIA [16] ag-
gregates service incidents to analyze their cascading impact through
graph representation learning. The objective of GRLIA is similar
with that of the issue extraction stage in GIED, but GRLIA stops
after the issue impact topologies have been extracted, while GIED
focuses on more downstream tasks, including incident detection
and diagnosis with the use of the extracted issue impact topologies.

Incident Detection. In recent years, we have witnessed a dozen
of researches [10, 14, 23, 26, 35, 40, 60, 61] investigating the problem
of incident detection in large-scale online systems1. Among them,
some work [14, 35] detects incident using metrics, which are pre-
sented as time series data, while other work [10, 23, 26, 40, 60, 61]
detects incident using logs, alerts, reports or user feedback, which
are mainly textual data. Since the storing and processing of met-
rics can be more light-weight, GIED follow the metric-based work
and use metrics to perform incident detection. Warden [35] is a
state-of-the-art metric-based incident detection method, which first
prioritizes alert signals through Weighted Mutual Information anal-
ysis and perform incident detection using a Balanced Random Forest
based classifier. Compared with it, GIED takes the advantage of the
extracted issue impact topologies to prioritize incident-indicating
alert signals and considers relevant service attribute information,
allowing more accurate incident detection for service availability
assurance. However, it should still be noted that methods from
different perspectives are necessary and can be applied together to
ensure high system availability.

Incident Diagnosis. A great deal of effort [9, 11, 24, 29, 30,
38, 42, 45, 51–53, 55, 56, 58, 62–65] has been devoted into inci-
dent diagnosis for online systems. Among them, MonitorRank [30],
MicroRCA [53], AutoMAP [45] and MicroRank [55] employ the

1Some previous work uses the term “incident prediction”, and thus the start time of
every incident needs to be precisely specified to claim some detection results as pre-
dictions. This is hard to achieve for all incidents yet, so we focus on incident detection,
which is also of vital importance. However, since a prediction can be considered as an
early detection, we also include the related work of incident prediction in this section.

PageRank algorithm to analyze metric data to perform root cause
localization, and MicroHECL [42] locates root cause using extracted
impact topologies as inputs. However, thesemethods are not flexible
enough to take various clues into consideration when performing
root cause localization, which will be discussed in details in Section
3.3. Therefore, GIED is proposed as an extension of these methods.

3 BACKGROUND AND MOTIVATION
In this section, we discuss the background that motivates GIED.
Section 3.1-3.2 will introduce the background motivating the pro-
posed incident extraction method, and Section 3.3 will introduce the
background motivating the proposed incident diagnosis method.

3.1 Service Call Failures as Issue Symptoms
In an online system, services need to cooperate to process user
requests. The cooperation is achieved through service calls (e.g.,
Remote Procedure Calls). A call failure can be defined as the case
that a service calls another service but it cannot receive a correct
response. For example, if gRPC (google Remote Procedure Call)
is used, a response whose status code is not equal to 0 can be
considered as a call failure. Issues usually manifests themselves as
call failures across services. For example, a software bug that crashes
a service will abort a service call and increase the corresponding
call failure count. Another example is the performance issues which
affect the request time. Since modern online systems are usually
armed with a timeout mechanism, a severe increase in request time
will also result in an increase in call failures. As a result, call failure
count is also known as a Key Performance Indicator (KPI) or golden
metric [7]. In the following, we use the term FC to denote the call
Failure Count per minute for simplicity. Though this metric is not
a silver bullet yet (more discussions are detailed in Section 5.4.3),
it is useful enough for the assessment of many issue symptoms,
so we extract issue impact topologies with its help. Specifically,
we use FC in the granularity of call-relationships, so each service
caller-callee pair is associated with a corresponding FC. This metric
can be reported by each service when it calls another service, and
then aggregated by a monitoring agent. If services do not provide
APIs to collect this information, techniques in [21, 28] might help.

3.2 Service Attribute Management
In order to manage services appropriately in a large-scale online
system, operators usually sort out and store abundant service in-
formation in the Configuration Management Database (CMDB).
Service attributes are an important class of service information.
The service attributes such as the online status, the functionality
provided, the importance level, are very helpful when operators
are evaluating what is happening in the system and how urgent
it is. For example, an incident affecting the banking service tends
to be more urgent than one which impacts the mail service; an
incident that takes place at a stable service which provides basic
functions is inclined to receive more attention than one occurring
at a fast-evolving service which targets at delivering new functions.

However, this information has not been fully utilized when decid-
ing whether to trigger an alert. Typically, operators use the service
attributes along with their understanding about the system to man-
ually set alert thresholds. In this way, the alert rules are complex

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zilong He, Pengfei Chen*, Yu Luo, Qiuyu Yan, Hongyang Chen, Guangba Yu, and Fangyuan Li

Figure 3: The overview of GIED

and there is no a unified standard to set thresholds. As a result,
operators tend to set a conservative threshold in most situations,
which might lead to a large number of false positive alerts in prac-
tice. By contrast, this study proposes to use the affected service
attributes as features when training an incident detection model.
To the best of our knowledge, we are the first to explicitly take
the affected service attributes into consideration when applying a
learning based method to cope with incident detection.

3.3 Drawbacks of Previous Root Cause
Localization Methods

It is difficult to locate the root cause of an issue. Typically, operators
need to find and examine clues according to their domain knowl-
edge to complete this task. There mainly exist three representative
types of clues which can be used to infer where the root cause is, i.e.,
(i) Similarity-based clues: Assuming that the root cause service
is one whose metrics exhibit a similar abnormal pattern with a
metric that trigger the diagnosis process (e.g., business metric or
frontend sensor). (ii) Depth-based clues: Assuming that the root
cause service is one that resides in the bottom of an issue impact
topology. (iii) Strength-based clues: Assuming that the root cause
service is one that bears the strongest alert signal.

Though these clues are reasonable to some extent and have
inspired plenty of work (e.g., similarity-based clues for [30, 42,
53] and depth-based clues for [11, 30, 38, 53]), they expose some
drawbacks if they are used alone. Taking similarity-based clues as
an example, when an issue occurs, there may be several abnormal
services that exhibit a very similar pattern due to the cascading
effect. As a result, if one just assume that the root cause is the
service whose metrics exhibit the most similar abnormal pattern
with the abnormal frontend sensor, the localization result is very
likely to be false because the examined metrics in an issue impact
topology are usually similar with each other and the highest ranked
one might actually be not significant enough. However, prior work
either only uses one type of clues [11, 38, 42] or combines clues in
a rather hard-coded way [30, 53]. They are not flexible enough to
combine different clues and not extensible for new clues, resulting
in a not accurate localization result. Therefore, this study introduces
a mathematical formulation for clues and proposes a root cause
localization method based on this formulation to flexibly combine
different clues, achieving more accurate root case localization.

4 THE PROPOSED APPROACH
In this study, we propose GIED, a novel technique for incident
extraction and diagnosis in large-scale online systems. Figure 3
presents an overall workflow of GIED. It consists of five major

phases, namely ➊ KPI anomaly detection, ➋ issue extraction, ➌

incident detection, ➍ incident diagnosis and ➎ incident reporting.
The last phase is conducted by operators manually with extracted
information from the first four phases. In the following, we will
elaborate the first four processes in detail.

4.1 KPI Anomaly Detection
4.1.1 Problem Formulation. Abnormal call-relationships need to be
picked out first in real time, acting as an entry point to other phases.
As discussed in Section 3.1, FC is a useful issue symptom indicator.
Therefore, GIED identifies abnormal call-relationships based on
their FC. Specifically, we denote the latest window of a service
caller-calee pair’s FC as an FC curve and use it to perform anomaly
detection. Given that the caller in a call-relationship is Service
𝑖 and the callee is Service 𝑗 , the FC curve of this service caller-
callee pair (𝑖, 𝑗) is formulated as a tuple 𝑒𝑖, 𝑗 = ⟨(𝑖, 𝑗),w𝑖, 𝑗 ⟩, where
w𝑖, 𝑗 = [𝑣𝑡−𝑙+1, · · · , 𝑣𝑡−1, 𝑣𝑡] ∈ R𝑙 contains the latest observations,
with 𝑣𝑡 as the observation at the latest time 𝑡 and 𝑙 as the window
length. The objective of KPI anomaly detection is to find out the
FC curves that the corresponding w𝑖, 𝑗 behaves abnormally.

4.1.2 Chain Difference based Anomaly Detection. In practice, we
employ a chain difference based method, a mature anomaly detector
for KPIs, to perform anomaly detection on the collected FC data
from all call-relationships of a system. Specifically, chain difference
is defined as the difference between the current value of a KPI and
its value at the same time in the previous day. If the chain differ-
ence of the FC of a call-relationship exceeds a preset threshold, an
anomaly is detected. For detected abnormal call-relationships, their
FC and call count in the latest time window, forming abnormal FC
curves and call count curves, will be used for analysis in the future
phases. One can also replace this anomaly detection algorithm with
anomaly detectors from either classical anomaly detectors such as
a 3-sigma algorithm [3] or novel techniques developed in recent
years such as those mentioned in [32, 47, 48, 54, 57].

4.2 Issue Extraction
4.2.1 Problem Formulation. Given that a set of abnormal FC curves
Ê = {𝑒𝑖, 𝑗 , 𝑒𝑝,𝑞, · · · } have been detected, the objective of issue extrac-
tion is to divide them into several disjoint subsets, each of which is
caused by the same issue. The FC curves in each subset constitute
an issue impact topology 𝑇 = ⟨V, E⟩, with V representing a set of
nodes, each corresponding to an affected service, and E ⊆ Ê repre-
senting a set of edges over V , each corresponding to an abnormal
call-relationship. Finally, the output of issue extraction is a set of
issue impact topology T = {𝑇0,𝑇1, · · · }.

Graph based Incident Extraction and Diagnosis in Large-Scale Online Systems ASE ’22, October 10–14, 2022, Rochester, MI, USA

(a) The issue impact topology
and its global level features

(b) An example of the node features presenting the affected service
attribute information of the issue

(c) An example of the edge features presenting the issue symptom information,
which is constructed using the latest windows of KPIs

Figure 4: An example of feature engineering to the issue impact topology of a fault injected to the simulation environment

4.2.2 Clustering Based Issue Impact Topologies Extraction. There
might be multiple ongoing issues in a large-scale online system. If
the detected FC anomalies are caused by different issues, we need
to separate these anomalies to accurately assess the impact scope
of each issue. Inspired by [43, 53], we assume that if two abnormal
FC curves satisfy the following two conditions, they are caused
by the same root cause: (i) they have similar abnormal temporal
patterns (e.g., curve shapes) over a sliding window ending at the
current time; (ii) they are in one of the connected components in a
graph composed of the detected abnormal call-relationships.

Tomeet the condition (i), we first perform shape-based clustering
on the FC curves Ê to separate call-relationships with different
abnormal patterns. The shape-based distance between each two
abnormal FC curves, e.g., 𝑒𝑖, 𝑗 and 𝑒𝑝,𝑞 , can be calculated as follows,

Dist(𝑒𝑖, 𝑗 , 𝑒𝑝,𝑞) =
{
1 if |𝜌 (w𝑖, 𝑗 ,w𝑝,𝑞) | >= 0.9
2 otherwise

. (1)

Specifically, if the absolute Pearson Correlation |𝜌 (𝑤𝑖, 𝑗 ,𝑤𝑝,𝑞) | be-
tween two FC curves is higher than 0.9, we consider them as similar
in shape and assign them a smaller distance value as shown in
equation (1). Based on this distance measure, we apply DBSCAN
algorithm [20] to group the FC curves into multiple clusters. DB-
SCAN is selected here because it does not require the number of
clusters to be specified in advance, which is more suitable in our
scenario. Then, to meet the condition (ii), connected components
are assembled from each cluster based on the call-relationships
and form issue impact topologies. Through the above steps, each
extracted issue impact topologies are connected graph with all
call-relationships exhibiting similar abnormal patterns. In practice,
we can filter out impact topologies with few edges (e.g., ≤ 3) to
strike a balance between efficiency and accuracy. This is because
there might be frequent fluctuations in a real-world online system,
which usually affect few services and are mostly transient. Since
such a fault does not cascade to many services and only a few
call-relationship behave abnormally for a while, excluding the cor-
responding issues from the successive phases can greatly alleviate
the analysis overhead.

4.3 Incident Detection
4.3.1 Problem Formulation. Given an issue impact topology 𝑇 =

⟨V, E⟩, the objective of incident detection is to determine whether
𝑇 implies an incident. This is accomplished through two processes,
namely an offline training process and an online inference process.

In the offline training process, we use historical data to train a
function that takes 𝑇 as an input and then calculates an output
𝑦 ∈ {0, 1}, which indicates whether an incident is detected. This
function can be parameterized with a couple of trainable model
parameters Θ. Then in the online inference process, we use the
trained function to detect incidents from the extracted issues T .

4.3.2 Preparation of Training Data. To train an incident detection
model, we require training data with labels. Historical issue impact
topologies can be indexed with their diagnosed root cause services
(more details in Section 4.4) and their occurrence time, so labelled
positive samples (impact topologies of incidents) can be acquired
and extracted based upon the occurrence time and the root cause
service analyzed in historical incident reports. In addition, new
issue impact topologies with alerts can be labelled by operators. By
default, if an issue lasts for a period of time and results in a series of
extracted impact topologies in successive timestamps, we only keep
the one that appears earliest to slim the dataset in practice. If an
impact topology is not associated with an incident report and not
labeled by operators as an incident, it will be treated as a negative
sample (i.e., an unimportant issue).

4.3.3 Feature Engineering. The seriousness of an issue can be as-
sessed mainly from two perspectives, namely the affected service
attributes and the issue symptoms. Since each service affected by
an issue can be considered as a node in the issue impact topol-
ogy, we denote the affected service attributes as the node features
X ∈ R |V |×𝑛 with 𝑛 as its feature dimension. Node features consist
of the importance level (e.g., important, ordinary), the function (e.g.,
messaging, banking), the online status (e.g., online, offline), the
service type (e.g., proxy service, key-value cache, database) and the
configured fault tolerance strategy (e.g., different degrade or retry
policies) of a service. These features can reveal the location of an
issue and reflects whether it is emergent. All the selected node fea-
tures are categorical features, so we process them using one-hot en-
coding before feeding them to the model. As for the issue symptoms,
we construct features using KPIs of each abnormal call-relationship
in the issue impact topology. Since each call-relationship can be rep-
resented as an edge in the issue impact topology, the constructed
features are denoted as edge features E ∈ R | E |×𝑠 , with 𝑠 as its
feature dimension, including a binning of FC values, a division of
FC by the corresponding call count per minute and a division of
current FC by its historical values. These features can describe the
degree of abnormality in the KPI values. Another type of features

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zilong He, Pengfei Chen*, Yu Luo, Qiuyu Yan, Hongyang Chen, Guangba Yu, and Fangyuan Li

Figure 5: A demonstration of the graph based model

that can describe the issue symptoms is the graph-level features of
the issue impact topology, which can be denoted as global features
G ∈ R𝑚 , with𝑚 as its feature dimension. Global features consist
of the topology size, the important service count and the total FC
count of an issue. The constructed global features and edge features
are numerical features and will be processed with a logarithmic
transformation to avoid a negative effect from the long-tailed fea-
ture distribution and a Z-score normalization to ensure no specific
dimension will dominate the statistics. An example illustrating the
feature engineering process is in Figure 4.

4.3.4 Offline Model Training. We use a graph neural networks
based model to learn to detect incidents using the extracted features.

Why do we choose Graph Neural Networks? To support an
end-to-end learning, especially considering the complex interac-
tions between nodes and edges as well as the uncertain dimension
of the input (i.e., |V| and |E |), we design the graph neural networks
based model. Vanilla machine learning models cannot handle this
complexity and thus may not achieve a good efficacy.

As in Figure 5, this model includes an edge-conditioned graph
layer [49] to aggregate both node features and edge features, a
couple of optional graph layers [50] to further process the calculated
hidden representations, a global attention pooling layer [36] to
calculate a summarized representation of thewhole impact topology
and a linear layer to obtain the output based upon the summarized
representation and global features.

Suppose the node features of nodes 𝑖 , 𝑗 are represented as X𝑖 ,
X𝑗 ∈ R𝑛 , respectively, and the edge features between them are rep-
resented as E𝑖, 𝑗 ∈ R𝑠 , the feed-forward process of edge-conditioned
graph layer [49] to calculate node 𝑖’s hidden representation X′

𝑖
∈ R𝑑

with 𝑑 representing the hidden dimension, is as follows:

X′
𝑖 = X𝑖Θ1 +

1
|N (𝑖) |

∑︁
𝑗∈N(𝑖)

X𝑗ℎΘ2 (E𝑖, 𝑗), (2)

where N(𝑖) denotes node 𝑖’s neighborhood derived from V and
E, Θ1 ∈ R𝑛×𝑑 refers to a trainable weight, and ℎΘ2 : R

𝑠 → R𝑛×𝑑
refers to a trainable filter which first applies a trainable weight
Θ2 ∈ R𝑠×𝑢 , with 𝑢 = 𝑛 × 𝑑 , to edge features E𝑖, 𝑗 and then reshape2

the result E𝑖, 𝑗Θ2 ∈ R𝑢 into a matrix of the form ℎΘ2 (E𝑖, 𝑗) ∈ R𝑛×𝑑 .
With the edge-conditioned graph layer, we obtain a synthesized

representation for each service considering both of its service in-
formation and KPI information. Afterwards, optional graph layers

2An example of reshape: https://pytorch.org/docs/stable/generated/torch.reshape.html.

such as that in [50] can also be added to construct a deeper network
to produce a more comprehensive representation for each service.

When the final hidden representation of each service is deter-
mined, the next step is to calculate a summarized representation
S for the whole impact topology through a pooling operation on
hidden representations of all the nodes. Suppose the calculated rep-
resentation X′

𝑖
represents the final hidden representation of node 𝑖 ,

a global attention pooling layer [36] is formulated as:

S =
∑︁
𝑖∈V

softmax
(
X′
𝑖Θ3

)
⊙ X′

𝑖 , (3)

where Θ3 ∈ R𝑑×1 is a trainable weight to assign a score for each
node, softmax(·) is applied over node scores to decide which nodes
are relevant to the task and ⊙ denotes element-wise multiplication.

The calculated graph-level representation S ∈ R𝑑 is concatenated
with the global features G ∈ R𝑚 and fed to a linear layer with
parameters Θ4 ∈ R(𝑑+𝑚)×1, producing the incident score 𝑦:

𝑦 = concat (S,G) Θ4 . (4)
During the offline training phase, we adopt the cross-entropy

as the loss function and Adam [31] as the optimizer to train the
parameters including Θ1,Θ2,Θ3,Θ4 and possibly the parameters
of the optional graph layers with the use of historical data. With 𝑦
representing the label for the impact topology and 𝜎 (·) representing
a sigmoid operation, the loss function is defined as:

𝐿(𝑦,𝑦) = −𝑦 log (𝜎 (𝑦)) − (1 − 𝑦) log (1 − 𝜎 (𝑦)) (5)

4.3.5 F1-score-sensitive Threshold Selection. Only a minority of
impact topologies might imply an incident. To better handle the
data imbalance problem, we do not directly apply the value 0 as the
threshold to classify the samples. Instead, we select a threshold 𝜏
which can make detection results maximize the F1-score in training
data. F1-score is a metric describing the effectiveness of a detection
model. We will explain this metric more detailedly in Section 5.1.2.

4.3.6 Online Incident Detection. During the online inference phase,
samples with an incident score𝑦 higher than 𝜏 will be detected as an
incident and corresponding alerts will be sent to on-call operators.

4.4 Incident Diagnosis
4.4.1 Problem Formulation. Given an incident whose impact topol-
ogy is 𝑇 = ⟨V, E⟩, the objective of incident diagnosis is to locate
its root cause service 𝑟 , which is the culprit of the incident.

4.4.2 PageRank Algorithm for Root Cause Localization. Typically,
when an operator is diagnosing an issue, he/she will investigate
along the service topology and try to find out clues to approach the
root cause service. This process can be simulated using PageRank
algorithm [46], with the PageRank vector ®𝑣 representing the root
cause scores of the services. The transition probability matrix P can
be calculated with the use of pre-configured clues.

Definition 4.1. A clue is a function from (𝑠𝑟𝑐, 𝑑𝑒𝑠) to 𝑝 , where
(𝑠𝑟𝑐, 𝑑𝑒𝑠) represents a service pair with source 𝑠𝑟𝑐 and destination
𝑑𝑒𝑠 , and 𝑝 ∈ R+ is calculated with an expression based on (𝑠𝑟𝑐, 𝑑𝑒𝑠),
whose result is correlated with the possibility that the destination
𝑑𝑒𝑠 is close to the root cause.

https://pytorch.org/docs/stable/generated/torch.reshape.html

Graph based Incident Extraction and Diagnosis in Large-Scale Online Systems ASE ’22, October 10–14, 2022, Rochester, MI, USA

Figure 6: An example of the diagnosis process on the issue impact topology of a fault injected to the simulation environment

Table 1: Clues configured in this study, where 𝐷𝑖, 𝑗 repre-
sents the FC chain difference for the caller-callee pair (𝑖, 𝑗),
B stands for services in the bottom of an impact topology

Clue Expression Domain
𝑐𝑙𝑢𝑒0 (𝑖, 𝑗) (𝐷𝑖,𝑗)+ { (𝑖, 𝑗) |𝑒𝑖,𝑗 ∈ E}
𝑐𝑙𝑢𝑒1 (𝑖, 𝑖) (max𝑧 𝐷𝑧,𝑖 − max𝑧 𝐷𝑖,𝑧)+ { (𝑖, 𝑖) |𝑖 ∈ V}
𝑐𝑙𝑢𝑒2 (𝑗, 𝑖) (∑𝑧 𝐷𝑖,𝑧 − 𝐷𝑖,𝑗)+ { (𝑖, 𝑗) |𝑒𝑖,𝑗 ∈ E}
𝑐𝑙𝑢𝑒3 (𝑗, 𝑖) (max𝑧 𝐷𝑧,𝑖 − 𝐷𝑖,𝑗)+ { (𝑖, 𝑗) |𝑒𝑖,𝑗 ∈ E ∧ 𝑗 ∈ B}

For example, Table 1 shows clues configured in this study. Specif-
ically, (·)+ denotes𝑚𝑎𝑥 (·, 0). The purpose of applying these clues
is to make a service with a stronger alert signal more likely to
be identified as the root cause. Here, 𝑐𝑙𝑢𝑒0 allows a callee with a
more abnormal FC to be visited more often, and 𝑐𝑙𝑢𝑒1 allows the
localization process stuck in a more abnormal service, and 𝑐𝑙𝑢𝑒2
and 𝑐𝑙𝑢𝑒3 allow a service’s abnormal siblings to be visited more
often. Such clues can be designed based on domain knowledge or
observations from historical incident cases.

When multiple clues are considered, we can preprocess them
with a logarithmic transformation to avoid the negative effect
brought by the long-tailed distribution of some clues. Besides, a
Z-score normalization can be applied across all the clues to ensure
no specific clues will dominate the statistics, if needed.

Suppose the 𝑘𝑡ℎ clue is defined as 𝑐𝑙𝑢𝑒𝑘 and its expression for a
service pair (𝑖, 𝑗) is represented as 𝑐𝑙𝑢𝑒𝑘 (𝑖, 𝑗), the transition proba-
bility matrix P can be formulated as:

A𝑖, 𝑗 =

{
max𝑘 (𝛼𝑘𝑐𝑙𝑢𝑒𝑘 (𝑖, 𝑗)) if ∃𝑘, (𝑖, 𝑗) ∈ dom(𝑐𝑙𝑢𝑒𝑘)
0 otherwise

, (6)

P𝑖, 𝑗 =
A𝑖, 𝑗∑
𝑗 A𝑖, 𝑗

. (7)

Here, max𝑘 (·) is a maximization operation applied over different
clues, 𝛼𝑘 stands for a strength parameter for 𝑐𝑙𝑢𝑒𝑘 , and dom(𝑐𝑙𝑢𝑒𝑘)
represents the domain of 𝑐𝑙𝑢𝑒𝑘 . Each 𝛼𝑘 can be set based upon
domain knowledge, or based on grid search according to the local-
ization performance in historical incidents. Taking the service pair
(frontend, checkout) in Figure 6 as an example, since it is also a call-
relationship, it is in the domain of 𝑐𝑙𝑢𝑒0, and thus we can use the
corresponding expression to calculate 𝑐𝑙𝑢𝑒0(frontend, checkout).
However, it is not in the domain of 𝑐𝑙𝑢𝑒1, 𝑐𝑙𝑢𝑒2 and 𝑐𝑙𝑢𝑒3, so finally
Afrontend,checkout = 𝛼0𝑐𝑙𝑢𝑒0(frontend, checkout).

With the transition probability matrix P defined above, the
PageRank equation can be formulated as:

®𝑣 = (1 − 𝑐)P®𝑣 + 𝑐 ®𝑢, (8)

where 𝑐 denotes the damping parameter and ®𝑢 denotes the addi-
tional teleportation vector. By default, ®𝑢 = [1

|V | ,
1

|V | , · · · ,
1

|V |]
𝑇 .

The root cause service localization result 𝑟 is then calculated as:

𝑟 = argmax𝑖 ®𝑣𝑖 . (9)

Table 2: Statistics of real-world datasets for RQ1∼3
Sets #Cases #Incidents #Test Cases #Test Incidents
A 3222 297 1335 100
B 4174 372 1809 75
C 5168 453 1827 81

5 EVALUATION
In this section, we carry out experiments to evaluate our approach.
We aim at answering the following research questions:

• RQ1: Can the extracted graph based issue representations
help incident detection?

• RQ2: How effective is the graph neural networks based
model for incident detection?

• RQ3: How useful is each type of features in the extracted
graph based issue representations for incident detection?

• RQ4: How effective is the root cause service localization
method for incident diagnosis?

• RQ5: Can the proposed approach help early incident man-
agement in industrial practice?

5.1 Experiment Setting
5.1.1 Datasets. We use both datasets from the real-world produc-
tion environment and the simulation environment to evaluate GIED.

Datasets from the real-world production environment are
collected from the company. As described in Section 1, this system
is large-scale, managing thousands of services and serving billions
of users. Monitoring metric data for call-relationships in this system
can be over 500TB per day.We extract issues in real time based upon
these monitoring data and store them in a database for analysis.
The datasets for the incident detection evaluation (RQ1∼3) are
collected for about 3 months, and divided into 3 parts, namely
A, B, and C, according to the time. Each dataset contains over
3K issues which have occurred in the system. For each of the
datasets, the last 15-day period is used for testing, with the rest for
training. Statistics of these datasets are displayed in Table 2. Then,
among the incidents, 77 incidents containing detailed diagnosis
information in corresponding incident reports are selected for the
incident diagnosis evaluation (RQ4). To avoid the data leakage
problem, these 77 cases are gathered after the design and tuning of
the proposed root cause localization method have been completed.

The dataset from the simulation environment is collected
from a benchmark system Online Boutique [6] consisting of 11
services (10 services are from the original benchmark, and we
implement an additional database service for the benchmark to
simulate real-world systems). We deploy it on a Kubernetes cluster
with 13 nodes and collect monitoring data for 12 days. Specifically,
to mimic the real-world workload pattern, we replace its load gen-
erator to one that is driven by the real-world user logs. Besides, we
equip a timeout mechanism for services in this benchmark using

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zilong He, Pengfei Chen*, Yu Luo, Qiuyu Yan, Hongyang Chen, Guangba Yu, and Fangyuan Li

Istio [5]. Then, two types of issues are considered, including: (i)
Availability issues: we implement multiple faulty versions for
each service which can abort its processing for some types of re-
quests, and randomly select one service and update it with one of
its faulty versions. (ii) Performance issues: We use chaosblade
[4] to randomly inject performance issues such as CPU exhaustion,
network delay, database delay into an arbitrary service instance.
For incident detection, since this task is closely related to the real
user experience and a simulation benchmark cannot reproduce this
complexity, this simulation dataset is not used for the comparison
among different incident detection methods. Instead, we only define
some simple rules to label some issues as incidents, and then we use
this dataset as a showpiece of how GIED works in the open-sourced
artifact. For incident diagnosis, a total of 200 availability issues and
202 performance issues are considered. This simulation dataset is
available in the artifact.

5.1.2 Evaluation Metrics. For RQ1∼2, we use Precision, Recall,
and F1-score to evaluate the effectiveness of the proposed incident
detection method. Precision measures the percentage of incidents
that are correctly detected over all alerts triggered by a method,
while Recall measures the percentage of incidents that are correctly
detected over all actual incidents. F1-score is the harmonic mean
of Precision and Recall, weighting them equally.

For RQ3, we use the Precision-Recall (PR) curve and the area
under it (also known as average precision, AP) to evaluate the
usefulness of node, edge and global features. The PR curve can give
an informative picture of the performance of the detection results,
and it is well suited for an imbalanced dataset [19].

For RQ4, we useAccuracy (also denoted asHR@1 in some liter-
ature [42]) to evaluate the root cause localization method. Accuracy
denotes the proportion of the correct localization results (generated
as in equation (9)) to the total number of cases examined.

For RQ5, we will evaluate the difference between the time that an
incident topology is detected by GIED and the alert time and report
time described in a corresponding incident report. For simplicity,
we name this difference as the lead time in the following.

5.1.3 Hyper-parameter Setting. The length of the latest sliding win-
dow of FC curves for analysis is set as 1 hour for real-world datasets
and 10 minutes for the simulation dataset. The minimal number
of FC curves in an issue impact topology for real-world datasets
is set to 3 and that for the simulation dataset is set to 1 (issue im-
pact topologies with a size smaller than this minimal number are
filtered out). Then for other hyper-parameters, the setting for the
simulation dataset is the same as that for the real-world datasets,
which are detailed in the following. For issue extraction, the max-
imum distance between two FC curves for one to be considered
as in the neighborhood of the other in DBSCAN [20] is set to 1.5.
The issue extraction method with these hyper-parameters has run
on the company for more than 1 years. As for incident detection
and diagnosis, the hyper-parameters are set with a cross-validation
approach. As for the graph based incident detection model in GIED,
the hidden dimension of the edge-conditioned graph layer (equa-
tion (2)) is set to 20. A graph attention layer [50] is used as the
middle optional graph layer and its hidden dimension is set to a
value equal to the dimension of the global features. The model is
trained with a learning rate of 0.001 and 60 epochs. For the root

Table 3: The comparison of GIED with some state-of-the-art
methods based on raw alert signal information

Datasets A B C
Methods P R F1 P R F1 P R F1
AirAlert 0.56 0.24 0.34 0.38 0.24 0.30 0.38 0.16 0.23
Warden* 0.36 0.21 0.26 0.26 0.2 0.23 0.21 0.10 0.13
GIED 0.85 0.86 0.85 0.87 0.87 0.87 0.81 0.88 0.85

cause localization algorithm, different clues are preprocessed using
a logarithmic transformation. Then 𝛼0, 𝛼1, 𝛼2, 𝛼3 are set to 1, 1, 0.3,
0.3, respectively, and the damping parameter 𝑐 is set to 0.15.

5.2 Evaluation Results
5.2.1 RQ1:Can the extracted graph based issue representations help
incident detection? To validate the incident detection efficacy of
the extracted graph based issue representations, we compare GIED
with some state-of-the-art methods which detect incident using
alert signal information, i.e., (i) AirAlert [14]: A method based on
Bayesian network analysis [17] and XGBoost [12]. It detects inci-
dents using raw alert signal information. We implement it based
on our alert signals and use its full mode to detect incidents. (ii)
Warden [35]: A method based on Weighted Mutual Information
analysis, feature extraction and Balanced Random Forest [33]. Some
features needed in Warden are not persistently stored for analy-
sis, e.g., detailed engineer activities, so we only evaluate Warden
using raw alert signal information here. Specifically, we denote
the version of Warden without the process of its feature extraction
asWarden*. Then, for each issue impact topology, we construct
an input for the above baseline methods by setting the values of
non-alerting signals outside an issue impact topology as 0. GIED
uses the extracted graph based issue representations for incident
detection.

Table 3 shows the experimental results. We can observe that the
extracted graph based issue representations by GIED can benefit
incident detection to a great extent. This is because there are too
enormous alert signals in a large-scale online system, rendering
the learning of a map from these signals to incidents extremely
difficult. Previous methods [14, 35] usually cope with this problem
with a selection of incident-indicating alert signals in advance.
One of their assumptions is that there exist incident-indicating
alert signals that work well for most incidents and thus need to be
picked out first. However, since incidents can happen anywhere,
the incident-indicating alert signals for one specific incident are
not bound to be incident-indicating alert signals that work well for
most incidents. If such signals are filtered out after the alert signal
selection phase, the incident detection performance will suffer a
lot. As for GIED, the issue extraction phase can be regarded as a
selection of alert signals too. This selection is conducted on demand
in the light of the extracted impact topologies, and each extracted
impact topology is a group of selected alert signals. After this phase,
the number of concerned alert signals can be effectively reduced
and only alert signals that are closely related to some ongoing
issues in the system are preserved. In a word, the graph based issue
representations enhance incident detection to a great extent.

5.2.2 RQ2: How effective is the graph neural networks based model
for incident detection? To answer this research question, we com-
pare our approach with some baseline models implemented with

Graph based Incident Extraction and Diagnosis in Large-Scale Online Systems ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 4: The comparison of different models for incident
detection based on extracted impact topologies.

Datasets A B C
Methods P R F1 P R F1 P R F1

LR 0.79 0.61 0.69 0.83 0.71 0.76 0.74 0.80 0.77
KNN 0.76 0.28 0.41 0.59 0.44 0.50 0.71 0.49 0.58
RF 0.87 0.51 0.64 0.85 0.56 0.68 0.77 0.76 0.77

GBDT 0.90 0.55 0.68 0.89 0.67 0.76 0.76 0.79 0.78
Warden** 0.52 0.91 0.66 0.55 0.93 0.69 0.53 0.96 0.68
GIED 0.85 0.86 0.85 0.87 0.87 0.87 0.81 0.88 0.85

conventional classification algorithms including Logistic Regres-
sion (LR [27]), K Nearest Neighborhood classifier (KNN [18]), Ran-
dom Forest (RF [37]) and Gradient Boosting Decision Tree (GBDT
[22]). These classification algorithms have been employed as part of
the model or for comparison in some related researches [14, 39, 60].
We also evaluate the model used in Warden [35] on our extracted
features and denote it as Warden**. For the baseline models, a
summation aggregator is utilized to get a representation of the set
of node features (i.e.,

∑
𝑖∈V 𝑋𝑖) and edge features (i.e.,

∑
𝑒𝑖,𝑗 ∈E 𝐸𝑖, 𝑗).

Then both of the aggregated representations and the global features
are normalized and then act as inputs for the baseline models.

Table 4 presents the evaluation results of GIED and the base-
line models. In our scenario, a high Recall with a low Precision
is unacceptable because on-call operators will tend to underes-
timate or even neglect the alerted incident if the Precision of a
detection method is low, and a low Recall with a high Precision is
unacceptable too because if too many incidents might be missed,
the detection method is actually of no use. Therefore, we attach
the most importance to F1-score since it comprehensively cover
evaluations from Precision and Recall. The results show that GIED
outperforms all the baseline models in F1-score. Besides, the perfor-
mance of GIED is stable under different datasets. This shows that
performing an end-to-end learning with the designed graph neural
networks based model is useful for improving the performance in
incident detection. The baseline models lose insight into the inter-
actions between services and their call-relationships, accounting
for their suboptimal performance compared with GIED.

5.2.3 RQ3: How useful is each type of features in the extracted
graph based issue representations for incident detection? To answer
this question, we employ the LRmodel as the base model (because it
is the most similar model to us, and it is the runner-up model on the
evaluations in Table 4) to assess the usefulness of different features.
Each type of features will be fed to the LR model individually,
and the resulting cases are named “Only Node”, “Only Edge” and
“OnlyGlobal”, respectively. Besides, we test the performancewhen
different features are simply concatenated together as the model
input, and the resulting case is named “Direct Aggr”.

Figure 7 presents the results. We can see that if each type of the
features is used alone, the performance drops compared with those
achieved by all features (“Direct Aggr” and GIED). This indicates
that all types of features play an important role in incident detec-
tion. Besides, we can observe that only using node features (“Only
Node”) results in a very low performance, and in two datasets (A
and C), using all features through a simple concatenation (“Direct
Aggr”) only shows a slight improvement over that using only edge
features (“Only Edge”). These two observations further demon-
strate the necessity of applying graph neural networks to better

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Dataset A
GIED (AP=0.91)
Direct Aggr (AP=0.83)
Only Node (AP=0.44)
Only Edge (AP=0.79)
Only Global (AP=0.64)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Dataset B
GIED (AP=0.96)
Direct Aggr (AP=0.85)
Only Node (AP=0.39)
Only Edge (AP=0.76)
Only Global (AP=0.69)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Dataset C
GIED (AP=0.94)
Direct Aggr (AP=0.85)
Only Node (AP=0.35)
Only Edge (AP=0.83)
Only Global (AP=0.61)

Figure 7: The PR curves for the efficacy of different features

Table 5: The Accuracy comparison of root cause localization

Datasets SL SD MicroHECL MonitorRank* GIED
Production 0.88 0.86 0.55 0.90 0.99
Sim-Avail 0.99 0.93 0.73 0.78 0.99
Sim-Perf 0.62 0.89 0.53 0.74 0.88
Sim-Total 0.81 0.91 0.63 0.76 0.94

incorporate both node and edge features. This is because the af-
fected service attributes are of little use if the corresponding issue
symptom information is not well attached and considered together.

5.2.4 RQ4:How effective is the root cause service localizationmethod
for incident diagnosis? To answer this research question, we con-
duct experiments to validate the accuracy of the root cause service
localization method in GIED. Four methods are compared, which
are: (i) Simple Largest (SL): The callee in a call-relationship with
the largest FC in the issue impact topology is selected as the root
cause service localization result. (ii) Simple Deepest (SD): The
deepest service in the issue impact topology is selected as the root
cause service localization result (if there is more than one deep-
est service, we select the one that whose FC is the largest). (iii)
MicroHECL: A root cause localization method proposed in [42].
(iv)MonitorRank: A root cause localization method proposed in
[30]. Specifically, because some KPIs of the whole service topology
(including thousands of services) have been lost in many historical
cases in practice, we use MonitorRank on the extracted impact
topology and name it as the modified versionMonitorRank*.

Table 5 shows the experimental results on both the production
dataset and the simulation dataset. The simulation dataset is fur-
ther divided into two parts according to the injected fault types,
namely “Sim-Avail” for availability issues and “Sim-Perf” for
performance issues. From the results on these datasets, we find that
if a corresponding impact topology can be extracted, the root cause
localization at a service granularity is not a very tricky problem
because even simple strawman strategies can achieve a good result
(both of SL and SD achieve a good accuracy on both datasets). Mi-
croHECL achieves the worst result in the comparison (note that its
accuracy here, i.e., 0.55 and 0.63, complies with the HR@1 result
presented in its original paper [42]). Overall, GIED outperforms all
these methods. Specifically, GIED achieves a competitive result on
each type of injected faults in the simulation dataset and achieves a
super result in the production dataset. This demonstrates that the
designed clues for root cause service localization are effective, and

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zilong He, Pengfei Chen*, Yu Luo, Qiuyu Yan, Hongyang Chen, Guangba Yu, and Fangyuan Li

(a) Compared with the alert time (b) Compared with the report time

Figure 8: The distribution of the lead time of GIED

our formulation of the transition probability matrix helps improve
the root cause localization performance.

5.2.5 RQ5: Can the proposed approach help early incident manage-
ment in industrial practice? To answer this research question, we
first introduce two concepts, namely the alert time and the report
time of an incident. The alert time is defined as the time that the
earliest manually configured alert is triggered when an incident
occurs, and the report time is defined as the time that an operator
decides to begin an incident report. We carefully record the alert
time and the report time from each historical incident report in one
month if a corresponding issue impact topology can be extracted.
The records will be compared with the time that GIED detects the
corresponding issue as an incident, and then the lead time (defined
in Section 5.1.2) of GIED can be calculated.

Figure 8 shows the distribution of the recorded lead time of GIED.
In 68% of the recorded cases, GIED detected the incidents earlier
than the manually configured alerts. In these cases, GIED has an
average lead time of 4 minutes compared to the alert time. Besides,
in 88% of the recorded cases, GIED detected the incidents earlier
than the time that an operator reported the corresponding incident.
In these cases, GIED has an average lead time of 61 minutes
compared to the report time. In the comparison with the alert time,
though the superiority of GIED is not significant, it should be noted
that this superiority is meaningful. Because many alerts might not
be noticed by operators in time since they are not assigned a high
priority due to their high false alert rate. For GIED, benefited from
its Precision declared in Section 5.2.2, we can set its corresponding
alerts with a high priority, ensuring a relatively quick action for the
incident. In general, these results show that GIED can help early
incident detection and report in large-scale online systems.

5.3 Case Studies
In the following, we present some real cases. Some confidential
details are anonymized.

Real Case I: This is an incident caused by an overload to a
database service. At the beginning of this incident, an offline proxy
service suddenly load a great volume of new data into a database,
rendering its memory allocation time much longer. As a result,
the overloaded database service fails to process online requests,
and many important services, e.g., services for video playing, are
affected. A simplified version of the extracted impact topology of
this incident is presented in Figure 9. With its help, the root cause
is diagnosed as the database service. Moreover, the system is finally
recovered by stopping the data loading operations.

Figure 9: A simplified issue impact topology for Real Case I

Figure 10: A simplified issue impact topology for Real Case
II

Table 6: The execution time of the dominated part in is-
sue extraction when different numbers of abnormal call-
relationships are detected in a minute

#Anomalies 2.5K 5K 10K 20K 40K 80K
Avg Time 0.17s 0.56s 2.22s 8.51s 34.30s 3.29min

Table 7: The execution time of offline model training and
online incident detection and diagnosis

Procedure Offline
Training

Per-Sample
Detection

Per-Sample
Localization

Avg Time 1.17min 0.29ms 6.44ms

Real Case II: This is an incident caused by a program bug. The
error handling logic of a service (i.e., retrieve service in Figure 10)
is not correctly implemented. As a result, when it receives a bad
input with incomplete content, a memory out of bound error hap-
pens and the service finally crashes. This incident seriously affects
the recommendation function of the system. Figure 10 presents a
simplified version of the extracted impact topology of this incident.
After operators examined the issue impact topology and identified
the root cause of this incident, they rollbacked the input to the root
cause service and restarted it to recover the system.

5.4 Discussions
5.4.1 Mitigation of Anomaly Flood. GIED can help operators filter
out irrelevant anomalies and concentrate on the real important
incidents. Specifically, at the incident detection phase, about 95%
of issues are filtered out. Moreover, at the incident diagnosis stage,
the search space of root causes is narrowed down by 96%, since
the average size of an incident impact topology in our system is 26
while only one of them is recognized as the root cause. With this
mitigation, operators can focus on the key information of incidents
and diagnose an incident more quickly.

5.4.2 Time Efficiency of GIED. GIED is very efficient and particu-
larly suitable for large-scale online systems. Table 6 and 7 present
the execution time of GIED on a server with 32 Intel(R) Xeon(R)
E5-2667 v4 CPUs and a 251GB RAM. For issue extraction, since this
procedure is executed in real time and its execution time depends
on the number of detected abnormal FC curves, we simulate inputs
with different numbers of detected abnormal FC curves to evaluate
its efficiency under different stresses. It can be seen that even when
a half of the system behaves anomalously (the real-world system
contains a total of around 80K call-relationships and 40K of them
are detected as anomalies), the execution time of issue extraction is
just around half a minute. Most of the time, the execution time of
issue extraction is much shorter when there is a smaller number
of abnormal call-relationships detected. For incident detection and

Graph based Incident Extraction and Diagnosis in Large-Scale Online Systems ASE ’22, October 10–14, 2022, Rochester, MI, USA

Figure 11: The frequencies of different situations

diagnosis, since after issue extraction, only relevant information
are left for analysis, the execution is very efficient. For example, the
offline training on each real-world dataset can be completed in less
than 2 minutes. Besides, the per-sample detection and localization
can be completed in a millisecond level.

5.4.3 Limitation of GIED. Limitations of GIED mainly lie in two
aspects. The first limitation is that due to some configurations of the
approach or the target online system, GIED may fail in extracting
impact topologies for some issues based on call failures. Cases influ-
enced by this limitation can be divided into two categories, namely
Filtered and No Fail, which will be detailed in the following. The
other limitation is, as introduced in Section 1, GIED targets at avail-
ability issues / incidents of online systems, so it cannot handle
issues that do not manifest themselves in the backend availability
monitoring, such as some functionality issues. Cases influenced by
this limitation are referred to as Others in the following. Overall,
there are four categories of situations, i.e., (i) Success: The impact
topology of the incident is successfully extracted. (ii) Filtered: The
incident only affects FC of one caller-callee pair, so since we filter
out impact topologies with only one edge as described in Section 4.2,
it results in no extracted impact topology. (iii)No Fail: The incident
does not give rise to call failures though it does affect some services
according to other metrics. For example, if the timeout mechanism
is not set properly, a performance issue might not manifest itself
in call failures. (iv) Others: The incident does not affect any of
the currently collected data for the availability monitoring. For
example, a bug may not always manifest itself at backend, which is
also named as a Silent Backend Issue in [61].

Figure 11 shows the frequency of each situation calculated ac-
cording to all recorded incident reports in one month. It can be
seen that nearly a half of the incident reports are associated with
an extracted impact topology. For the other situations, we may
take the measures listed below. For Filtered, usually the involved
services are near the frontend or are extremely important since
though only two services are affected, the case is still considered
as an incident. We can pay special attention to these services and
set specific alert rules for them. Actually, since these services are
usually important, most of them have already been armed with
specific alert rules designed for them at the very beginning. For No
Fail, we will develop a more comprehensive impact topology ex-
traction algorithm which can consider and incorporate more types
of metrics in the future. For Others, incident detection based on
user feedback can be employed, which are discussed in Section 2.2.

5.4.4 Generalizability of GIED. Incident management is a crucial
problem for all online systems. Though different companies may
apply different specific software technologies, their incident man-
agement processes [1, 2, 8, 15, 35, 44] are usually similar to the

process that we describe in Section 2.1. Therefore, the techniques
proposed in GIED can be merged into their incident management
practice too. Specifically, the incident detection method in GIED
applies a data-driven framework, which is widely employed and has
been validated in some related research [14, 35, 60]. We believe such
a framework is applicable and effective in industrial practice. As for
the incident diagnosis method proposed in GIED, it is designed to
be a highly extensible framework. One can easily implement clues
configured in this study to validate our method, or further optimize
it on their systems by exploring more clues if needed.

6 THREATS TO VALIDITY
The internal threat to validity mainly lies in the implementation
of our approach and the baseline approaches. We implement the
baseline approaches [14, 30, 35, 42] by ourselves since they have
no publicly available implementations. To alleviate this threat, we
have followed their papers, implemented them based upon matured
machine learning toolbox [12, 25, 34] and carefully checked the
implementations. Besides, some baselines are modified versions
of the original work because not all their requirements can be
fulfilled in our system. This is normal in the research of incident
management for modern online systems. To alleviate this threat,
we have tried to implement approximated versions for them.

The external threat to validity mainly lies in the target system.
Though we have applied GIED in the real production system, the
system may not represent all online systems in other companies.
We discussed the generalizability of GIED in Section 5.4.4. Besides,
to facilitate the promotion of GIED to other systems, we have
implemented an artifact based on an open-sourced benchmark
system and thus in the future we can test GIED in other systems.

7 CONCLUSION AND FUTUREWORK
We propose GIED, a novel approach to perform incident detection
and diagnosis based upon extracted issue impact topologies, so
as to ensure the availability of online systems. We make use of
the DBSCAN algorithm as well as the service call-relationships
to extract issue impact topologies from online systems. Then a
graph neural networks basedmodel is leveraged to perform incident
detection and the PageRank algorithm is employed to perform root
cause service localization. We have evaluated GIED using both real-
world datasets and the simulation dataset, and have successfully
merged it to the incident management of a real production system.
The experimental results and real deployment of GIED confirm its
effectiveness. In the future, we plan to consider more information to
provide a more effective incident extraction and diagnosis method.

ACKNOWLEDGMENTS
The research is supported by the Key-Area Research and Devel-
opment Program of Guangdong Province (No. 2020B010165002), the
Natural Science Foundation of Guangdong Province
(No. 2019A1515012229), the National Natural Science Foundation
of China (No. 62272495), and the Basic and Applied Basic Research
of Guangzhou (No. 202002030328), the Wechat Rhino-Bird Joint
Research Program (No. JR-WXG-2021621). The corresponding
author is Pengfei Chen.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zilong He, Pengfei Chen*, Yu Luo, Qiuyu Yan, Hongyang Chen, Guangba Yu, and Fangyuan Li

REFERENCES
[1] 2021. Computer Security Incident Handling Guide. https://nvlpubs.nist.gov/

nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf
[2] 2021. Google Cloud: Data incident response process. https://services.google.com/

fh/files/misc/data_incident_response_2018.pdf
[3] 2022. 3-sigma rule. https://en.wikipedia.org/wiki/68-95-99.7_rule
[4] 2022. ChaosBlade. https://github.com/chaosblade-io/chaosblade
[5] 2022. Istio. https://istio.io/
[6] 2022. Online Boutique: A Cloud-Native Microservices Demo Application. https:

//github.com/GoogleCloudPlatform/microservices-demo
[7] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. 2016. Site

reliability engineering: How Google runs production systems. " O’Reilly Media,
Inc.".

[8] Junjie Chen, Xiaoting He, Qingwei Lin, Yong Xu, Hongyu Zhang, Dan Hao, Feng
Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. An empirical
investigation of incident triage for online service systems. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 111–120.

[9] Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Feng Gao,
Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. Continuous Incident
Triage for Large-Scale Online Service Systems. In 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2019, San Diego, CA, USA,
November 11-15, 2019. IEEE, 364–375.

[10] Junjie Chen, Shu Zhang, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao,
Yu Kang, Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2020.
How Incidental are the Incidents? Characterizing and Prioritizing Incidents for
Large-Scale Online Service Systems. In 35th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2020, Melbourne, Australia, September
21-25, 2020. IEEE, 373–384.

[11] Pengfei Chen, Yong Qi, and Di Hou. 2019. CauseInfer: Automated End-to-End
Performance Diagnosis with Hierarchical Causality Graph in Cloud Environment.
IEEE Trans. Serv. Comput. 12, 2 (2019), 214–230.

[12] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016.
ACM, 785–794.

[13] Yujun Chen, Xian Yang, Hang Dong, Xiaoting He, Hongyu Zhang, Qingwei
Lin, Junjie Chen, Pu Zhao, Yu Kang, Feng Gao, Zhangwei Xu, and Dongmei
Zhang. 2020. Identifying linked incidents in large-scale online service systems. In
ESEC/FSE ’20: 28th ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, Virtual Event, USA, November
8-13, 2020. ACM, 304–314.

[14] Yujun Chen, Xian Yang, Qingwei Lin, Hongyu Zhang, Feng Gao, Zhangwei Xu,
Yingnong Dang, Dongmei Zhang, Hang Dong, Yong Xu, et al. 2019. Outage
prediction and diagnosis for cloud service systems. In The World Wide Web
Conference. 2659–2665.

[15] Zhuangbin Chen, Yu Kang, Liqun Li, Xu Zhang, Hongyu Zhang, Hui Xu, Yangfan
Zhou, Li Yang, Jeffrey Sun, Zhangwei Xu, Yingnong Dang, Feng Gao, Pu Zhao, Bo
Qiao, Qingwei Lin, Dongmei Zhang, andMichael R. Lyu. 2020. Towards intelligent
incident management: why we need it and how we make it. In ESEC/FSE ’20:
28th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020.
ACM, 1487–1497.

[16] Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, XueminWen, Xiao Ling,
Yongqiang Yang, and Michael R. Lyu. 2021. Graph-based Incident Aggregation for
Large-Scale Online Service Systems. In 36th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2021, Melbourne, Australia, November
15-19, 2021. IEEE, 430–442.

[17] Diego Colombo, Marloes H Maathuis, Markus Kalisch, and Thomas S Richardson.
2012. Learning high-dimensional directed acyclic graphs with latent and selection
variables. The Annals of Statistics (2012), 294–321.

[18] Thomas Cover and Peter Hart. 1967. Nearest neighbor pattern classification.
IEEE transactions on information theory 13, 1 (1967), 21–27.

[19] Jesse Davis and Mark Goadrich. 2006. The relationship between Precision-
Recall and ROC curves. In Machine Learning, Proceedings of the Twenty-Third
International Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29,
2006 (ACM International Conference Proceeding Series, Vol. 148), WilliamW. Cohen
and Andrew W. Moore (Eds.). ACM, 233–240.

[20] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise.. In
Kdd, Vol. 96. 226–231.

[21] Rodrigo Fonseca, George Porter, Randy H Katz, and Scott Shenker. 2007. X-
trace: A pervasive network tracing framework. In 4th {USENIX} Symposium on
Networked Systems Design & Implementation ({NSDI} 07).

[22] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[23] Jiazhen Gu, Chuan Luo, Si Qin, Bo Qiao, Qingwei Lin, Hongyu Zhang, Ze Li,
Yingnong Dang, Shaowei Cai, Wei Wu, Yangfan Zhou, Murali Chintalapati, and

Dongmei Zhang. 2020. Efficient incident identification from multi-dimensional
issue reports via meta-heuristic search. In ESEC/FSE ’20: 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Virtual Event, USA, November 8-13, 2020. ACM, 292–303.

[24] Xiaofeng Guo, Xin Peng, Hanzhang Wang, Wanxue Li, Huai Jiang, Dan Ding,
Tao Xie, and Liangfei Su. [n.d.].

[25] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,
dynamics, and function using NetworkX. Technical Report. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).

[26] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R. Lyu, and
Dongmei Zhang. 2018. Identifying impactful service system problems via log
analysis. In Proceedings of the 2018 ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018. ACM,
60–70.

[27] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. 2013. Applied
logistic regression. Vol. 398. John Wiley & Sons.

[28] Jinho Hwang, Guyue Liu, Sai Zeng, Frederick Y Wu, and Timothy Wood. 2014.
Topology discovery and service classification for distributed-aware clouds. In
2014 IEEE International Conference on Cloud Engineering. IEEE, 385–390.

[29] Jiajun Jiang, Weihai Lu, Junjie Chen, Qingwei Lin, Pu Zhao, Yu Kang, Hongyu
Zhang, Yingfei Xiong, Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei
Zhang. 2020. How to mitigate the incident? an effective troubleshooting guide
recommendation technique for online service systems. In ESEC/FSE ’20: 28th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020.
ACM, 1410–1420.

[30] Myunghwan Kim, Roshan Sumbaly, and Sam Shah. 2013. Root cause detection in
a service-oriented architecture. In ACM SIGMETRICS / International Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS ’13, Pittsburgh,
PA, USA, June 17-21, 2013. ACM, 93–104.

[31] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

[32] Nikolay Laptev, Saeed Amizadeh, and Ian Flint. 2015. Generic and Scalable
Framework for Automated Time-series Anomaly Detection. In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 1939–1947.

[33] Guillaume Lemaitre, Fernando Nogueira, and Christos K. Aridas. 2017.
Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets
in Machine Learning. J. Mach. Learn. Res. 18 (2017), 17:1–17:5.

[34] Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. 2017.
Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets
in Machine Learning. Journal of Machine Learning Research 18, 17 (2017), 1–5.
http://jmlr.org/papers/v18/16-365.html

[35] Liqun Li, Xu Zhang, Xin Zhao, Hongyu Zhang, Yu Kang, Pu Zhao, Bo Qiao, Shilin
He, Pochian Lee, Jeffrey Sun, Feng Gao, Li Yang, Qingwei Lin, Saravanakumar
Rajmohan, Zhangwei Xu, and Dongmei Zhang. 2021. Fighting the Fog ofWar: Au-
tomated Incident Detection for Cloud Systems. In 2021 USENIX Annual Technical
Conference, USENIX ATC 2021, July 14-16, 2021. USENIX Association, 131–146.

[36] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated
Graph Sequence Neural Networks. In 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings.

[37] Andy Liaw, Matthew Wiener, et al. 2002. Classification and regression by ran-
domForest. R news 2, 3 (2002), 18–22.

[38] JinJin Lin, Pengfei Chen, and Zibin Zheng. 2018. Microscope: Pinpoint Perfor-
mance Issues with Causal Graphs in Micro-service Environments. In Service-
Oriented Computing - 16th International Conference, ICSOC 2018, Hangzhou, China,
November 12-15, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 11236).
Springer, 3–20.

[39] Qingwei Lin, Ken Hsieh, Yingnong Dang, Hongyu Zhang, Kaixin Sui, Yong Xu,
Jian-Guang Lou, Chenggang Li, Youjiang Wu, Randolph Yao, Murali Chintalapati,
and Dongmei Zhang. 2018. Predicting Node failure in cloud service systems. In
Proceedings of the 2018 ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018. ACM, 480–490.

[40] Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, and Dongmei Zhang. 2016. iDice:
problem identification for emerging issues. In Proceedings of the 38th International
Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016,
Laura K. Dillon, Willem Visser, and Laurie A. Williams (Eds.). ACM, 214–224.

[41] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen.
2016. Log clustering based problem identification for online service systems. In
Proceedings of the 38th International Conference on Software Engineering, ICSE
2016, Austin, TX, USA, May 14-22, 2016 - Companion Volume. ACM, 102–111.

[42] Dewei Liu, Chuan He, Xin Peng, Fan Lin, Chenxi Zhang, Shengfang Gong, Ziang
Li, Jiayu Ou, and Zheshun Wu. 2021. MicroHECL: High-Efficient Root Cause
Localization in Large-Scale Microservice Systems. In 43rd IEEE/ACM International

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf
https://services.google.com/fh/files/misc/data_incident_response_2018.pdf
https://services.google.com/fh/files/misc/data_incident_response_2018.pdf
https://en.wikipedia.org/wiki/68-95-99.7_rule
https://github.com/chaosblade-io/chaosblade
https://istio.io/
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
http://jmlr.org/papers/v18/16-365.html

Graph based Incident Extraction and Diagnosis in Large-Scale Online Systems ASE ’22, October 10–14, 2022, Rochester, MI, USA

Conference on Software Engineering: Software Engineering in Practice, ICSE (SEIP)
2021, Madrid, Spain, May 25-28, 2021. IEEE, 338–347.

[43] Ping Liu, Yu Chen, Xiaohui Nie, Jing Zhu, Shenglin Zhang, Kaixin Sui, Ming
Zhang, and Dan Pei. 2019. FluxRank: A Widely-Deployable Framework to Auto-
matically Localizing Root CauseMachines for Software Service FailureMitigation.
In 2019 IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 35–46.

[44] Jian-Guang Lou, Qingwei Lin, Rui Ding, Qiang Fu, Dongmei Zhang, and Tao
Xie. 2013. Software analytics for incident management of online services: An
experience report. In 2013 28th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013.
IEEE, 475–485.

[45] Meng Ma, Jingmin Xu, Yuan Wang, Pengfei Chen, Zonghua Zhang, and Ping
Wang. 2020. AutoMAP: Diagnose Your Microservice-based Web Applications
Automatically. InWWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24,
2020. ACM / IW3C2, 246–258. https://doi.org/10.1145/3366423.3380111

[46] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[47] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou,
Tony Xing, Mao Yang, Jie Tong, and Qi Zhang. 2019. Time-Series Anomaly De-
tection Service at Microsoft. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 3009–3017.

[48] Alban Siffer, Pierre-Alain Fouque, Alexandre Termier, and Christine Largouet.
2017. Anomaly detection in streams with extreme value theory. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 1067–1075.

[49] Martin Simonovsky and Nikos Komodakis. 2017. Dynamic Edge-Conditioned
Filters in Convolutional Neural Networks on Graphs. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017. IEEE Computer Society, 29–38.

[50] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In Proceedings of the
International Conference on Learning Representations.

[51] Hanzhang Wang, Zhengkai Wu, Huai Jiang, Yichao Huang, Jiamu Wang, Selçuk
Köprü, and Tao Xie. 2021. Groot: An Event-graph-based Approach for Root
Cause Analysis in Industrial Settings. In 36th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2021, Melbourne, Australia, November
15-19, 2021. IEEE, 419–429.

[52] YaohuiWang, Guozheng Li, ZijianWang, Yu Kang, Yangfan Zhou, Hongyu Zhang,
Feng Gao, Jeffrey Sun, Li Yang, Pochian Lee, Zhangwei Xu, Pu Zhao, Bo Qiao,
Liqun Li, Xu Zhang, and Qingwei Lin. 2021. Fast Outage Analysis of Large-
scale Production Clouds with Service Correlation Mining. In 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30
May 2021. IEEE, 885–896.

[53] Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. 2020. MicroRCA: Root Cause
Localization of Performance Issues in Microservices. In NOMS 2020 - IEEE/IFIP
Network Operations and Management Symposium, Budapest, Hungary, April 20-24,
2020. IEEE, 1–9. https://doi.org/10.1109/NOMS47738.2020.9110353

[54] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li,
Ying Liu, Youjian Zhao, Dan Pei, Yang Feng, et al. 2018. Unsupervised anomaly
detection via variational auto-encoder for seasonal kpis in web applications. In
Proceedings of the 2018 World Wide Web Conference. International World Wide

Web Conferences Steering Committee, 187–196.
[55] Guangba Yu, Pengfei Chen, Hongyang Chen, Zijie Guan, Zicheng Huang, Linxiao

Jing, TianjunWeng, Xinmeng Sun, and Xiaoyun Li. 2021. MicroRank: End-to-End
Latency Issue Localization with Extended Spectrum Analysis in Microservice
Environments. In WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana,
Slovenia, April 19-23, 2021. ACM / IW3C2, 3087–3098.

[56] Xu Zhang, Chao Du, Yifan Li, Yong Xu, Hongyu Zhang, Si Qin, Ze Li, Qingwei
Lin, Yingnong Dang, Andrew Zhou, Saravanakumar Rajmohan, and Dongmei
Zhang. 2021. HALO: Hierarchy-aware Fault Localization for Cloud Systems. In
KDD ’21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, Virtual Event, Singapore, August 14-18, 2021. ACM, 3948–3958.

[57] Xu Zhang, Qingwei Lin, Yong Xu, Si Qin, Hongyu Zhang, Bo Qiao, Yingnong
Dang, Xinsheng Yang, Qian Cheng, Murali Chintalapati, YoujiangWu, Ken Hsieh,
Kaixin Sui, Xin Meng, Yaohai Xu, Wenchi Zhang, Furao Shen, and Dongmei
Zhang. [n.d.].

[58] Xu Zhang, Yong Xu, Si Qin, Shilin He, Bo Qiao, Ze Li, Hongyu Zhang, Xukun Li,
Yingnong Dang, Qingwei Lin, Murali Chintalapati, Saravanakumar Rajmohan,
and Dongmei Zhang. 2021. Onion: identifying incident-indicating logs for cloud
systems. In ESEC/FSE ’21: 29th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, Athens, Greece,
August 23-28, 2021. ACM, 1253–1263.

[59] Nengwen Zhao, Junjie Chen, Xiao Peng, Honglin Wang, Xinya Wu, Yuanzong
Zhang, Zikai Chen, Xiangzhong Zheng, Xiaohui Nie, GangWang, YongWu, Fang
Zhou, Wenchi Zhang, Kaixin Sui, and Dan Pei. 2020. Understanding and handling
alert storm for online service systems. In ICSE-SEIP 2020: 42nd International
Conference on Software Engineering, Software Engineering in Practice, Seoul, South
Korea, 27 June - 19 July, 2020. ACM, 162–171.

[60] Nengwen Zhao, Junjie Chen, Zhou Wang, Xiao Peng, Gang Wang, Yong Wu,
Fang Zhou, Zhen Feng, Xiaohui Nie, Wenchi Zhang, et al. 2020. Real-Time
Incident Prediction for Online Service Systems. In The 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Sacramento, California, United States,November 8-13, 2020. ACM.

[61] Wujie Zheng, Haochuan Lu, Yangfan Zhou, Jianming Liang, Haibing Zheng, and
Yuetang Deng. 2019. iFeedback: Exploiting User Feedback for Real-Time Issue
Detection in Large-Scale Online Service Systems. In 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2019, San Diego, CA, USA,
November 11-15, 2019. IEEE, 352–363. https://doi.org/10.1109/ASE.2019.00041

[62] Zibin Zheng, Tom Chao Zhou, Michael R Lyu, and Irwin King. 2011. Compo-
nent ranking for fault-tolerant cloud applications. IEEE Transactions on Services
Computing 5, 4 (2011), 540–550.

[63] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding.
2021. Fault Analysis and Debugging of Microservice Systems: Industrial Survey,
Benchmark System, and Empirical Study. IEEE Trans. Software Eng. 47, 2 (2021),
243–260.

[64] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin Xiang, and
Chuan He. 2019. Latent error prediction and fault localization for microservice
applications by learning from system trace logs. In Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia,
August 26-30, 2019. ACM, 683–694.

[65] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Wenhai Li, Chao Ji, and Dan Ding.
2018. Delta debugging microservice systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018, Montpellier,
France, September 3-7, 2018. ACM, 802–807.

https://doi.org/10.1145/3366423.3380111
https://doi.org/10.1109/NOMS47738.2020.9110353
https://doi.org/10.1109/ASE.2019.00041

	Abstract
	1 Introduction
	2 Terminology and Related Work
	2.1 Basic Concepts in Incident Management
	2.2 Related Work

	3 Background and Motivation
	3.1 Service Call Failures as Issue Symptoms
	3.2 Service Attribute Management
	3.3 Drawbacks of Previous Root Cause Localization Methods

	4 The Proposed Approach
	4.1 KPI Anomaly Detection
	4.2 Issue Extraction
	4.3 Incident Detection
	4.4 Incident Diagnosis

	5 Evaluation
	5.1 Experiment Setting
	5.2 Evaluation Results
	5.3 Case Studies
	5.4 Discussions

	6 Threats to Validity
	7 Conclusion and Future Work
	Acknowledgments
	References

