
2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)

A Learning-based Dynamic Load Balancing Approach for Microservice Systems in
Multi-cloud Environment

Jieqi Cui
School of Systems Science and Engineering
Sun Yat-sen University, Guangzhou, China

cuijq5@mail2.sysu.edu.cn,

Abstract-Multi-cloud environment has become common
since companies manage to prevent cloud vendor lock-in for
security and cost concerns. Meanwhile, the microservice archi
tecture is often considered for its flexibility. Combining multi
cloud with microservice, the problem of routing requests among
all possible microservice instances in multi-cloud environment
arises. This paper presents a learning-based approach to route
requests in order to balance the load. In our approach, the
performance of microservice is modeled explicitly through
machine learning models. The model can derive the response
time from request volume, route decision, and other cloud
metrics. Then the balanced route decision is obtained from
optimizing the model with Bayesian Optimization. With this
approach, the request route decision can adjust to dynamic
runtime metrics instead of remaining static for all different
circumstances. Explicit performance modeling avoids searching
on an actual microservice system which is time-consuming.
Experiments show that our approach reduces average response
time by 10% at least.

Keywords-multi-cloud; microservices; load balancing; perfor
mance modeling; request routing;

I. INTRODUCTION

As cloud-computing technology continues to develop,
multi-cloud becomes a common deployment scheme for
large-scale systems like Microsoft Azure and OpenStack [1].
Multi-cloud solution can prevent vendor lock-in by distribut
ing the system to each independent cloud service provider.
If any of the clouds or services goes down, replica or backup
servers on other clouds can still guarantee availability in case
of this partial fault. Multi-cloud also allows the enterprise
to combine various cloud services to meet the demand of
both cost and performance [2]. To better accommodate the
cloud environment, microservice architecture is leveraged to
construct a system with individual service components [3].
Unlike the monolithic system that requires build, deploy and
run all components simultaneously, a microservice system
is decoupled into separate components, usually deployed
in form of containers, enabling distributed deployment and
running in a multi-cloud environment. Currently with the

*Corresponding author.

2690-5965/20/$31.00 ©2020 IEEE
DOl 10.1109/lCPADS51 040.2020.00052

Pengfei Chen*, Guangba Yu
School of Data and Computer Science

Sun Yat-sen University, Guangzhou, China
chenpj7@mail.sysu.edu.cn, yubg5@maiI2.sysu.edu.cn

help of service mesh and container orchestration platform
like Istio1 and Kubernetes2 , multi-cloud microservice archi
tecture could be built with little effort.

Though leveraging microservice in multi-cloud environ
ment offers much benefit, the problem balancing load among
services across clouds arises. Microservice system is com
posed of multiple independent running servers. For each of
these microservices, replicas can reside in different clouds
and provide identical service together. Requests aimed at
these services needed to be route among all replicas appro
priately for best performance. Meanwhile, all microservices
load in the system should be balanced simultaneously for
optimizing the overall response time of external requests to
the microservice system.

While traditional load balancing focuses on the static
mapping of request to server and preconfigured route, the in
creasingly complex multi-cloud environment and microser
vice system have deeply impacted the performance of this
method [4]. In multi-cloud microservice environment, there
are following challenges.

• Varied latency. The latency between clouds often
fluctuates significantly caused by the instability of
network connection. The latency is also affected by the
geographical distance of clouds.

• Dynamic replicas. The number of service replica is
not static due to replica scaling or container crashes.

• Fluctuated requests. The number of user requests to
each cloud also rises and falls frequently.

• Complexity of microservice system. Microservice
system has heterogeneous services which differ greatly
in performance and rather complicated service depen
dence relationship that can cause a chain reaction,
dampening the overall response time.

The above challenges pose a great challenge for load
balancing in multi-cloud microservice environment. In this
scenario, an approach that can adjust load balancing strategy
dynamically and efficiently is demanded to cope with the
constantly changing environment. In order to tackle these

11stio [https://istio.io/]
2Kubernetes [https://kubernetes.io/]

334

20
20

 IE
EE

 2
6t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 S

ys
te

m
s (

IC
PA

DS
) |

 9
78

-1
-7

28
1-

90
74

-7
/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

PA
DS

51
04

0.
20

20
.0

00
52

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 01,2022 at 02:48:36 UTC from IEEE Xplore. Restrictions apply.

Cloud 1 Cloud m

Figure 1. System overview.

Multi cloud microservice environment
Controller

Route update
Load balancing procedure

detected, controller will start load balancing regarding the
whole multi-cloud microservice system by optimizing the
route of each microservice.

Figure 2. Multi-cloud microservice environment.

A. Multi-cloud Microservice Environment

In multi-cloud microservice environment, all clouds coor
dinate to run exactly one microservice system as shown in
Fig. 2. For each microservice, there exists multiple replicas
in each cloud and the number of replicas may differ. Along
the request chain of microservice system, requests for each
microservice are routed among all available clouds for load
balancing.

Environment setting Each cloud is orchestrated by Ku
bernetes and all microservices are deployed on it as Pods
which are collection of containers. The number of service
replica cloud be scaled and discovered with Kubernetes
API. Istio as service mesh connects all microservices and
clouds. Routing is implemented by Virtual Service and
Destination Rule of Istio. If the destination microservice is
at other clouds, requests will be proxied to the dedicated
Istio gateway of that cloud and route to the corresponding
service.

challenges, we propose a learning based load balancing
approach. Our approach consists of two major parts:

1) The performance of each microservice under various
conditions is modeled explicitly with machine learn
ing. An optimal load balancing route for individual
microservice can be obtained by running Bayesian
Optimization [5] search algorithm on the model.

2) Providing the optimal route of individual microservice,
our approach merges all request chains into request
tree and adjust the route of each microservice down
the tree whenever condition change is detected.

Our approach breaks down the microservice system into
individual microservices and optimizes them separately,
avoiding optimizing the whole system at once which is
comparatively more challenging. Load balancing of every
microservice along the request path also guarantees the
overall response time is optimized. On top of our approach,
a system containing running environment, monitor and con
troller are built for validation, in which controller responsible
for load balancing implements our approach. Experiments
show that our approach achieves a 10% response time
reduction in the evaluation.

This paper makes the following contributions:
• Our approach considers dynamic runtime factors such

as cross-cloud latency, service replica number, and user
requests to each cloud for load balancing.

• Our approach can find out the best load balancing route
every quickly with explicit modeling of microservice
performance which consumes little time.

• Our approach combines the optimal load balancing
route of individual microservice for the overall response
time optimization.

The remainder of this paper is organized as follows.
Section II shows an overview and details of our system.
Section III presents our experiments and discussions The
related work is summarized in Section IV. Finally, we
conclude this paper in Section V.

II. SYSTEM DESIGN

The whole system consists of a multi-cloud environment,
monitor, and controller as illustrated in Fig. 1. All clouds
host the microservice system together and generate metrics
for monitoring. User requests are issued to the clouds
directly. The monitor is responsible for runtime metrics
collection from clouds which is used as a data source
for controller. Runtime metrics are mostly conditions of
clouds and microservice system that affect performance and
quality of service that reflects performance. These metrics
are provided to controller for load balancing decision. All
metrics are collected and provided dynamically at runtime.
Controller is the main implementation of our approach.
At any moment, controller will check runtime metrics for
environment condition changes. When distinct changes are

335

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 01,2022 at 02:48:36 UTC from IEEE Xplore. Restrictions apply.

Figure 3. Microservice route.

User requests. Similar to real-life multi-cloud environ
ment, user requests to the microservice system can arrive at
any of the cloud depending on region and preference. Also,
the number of requests often fluctuates considerably as time
goes by. Therefore significant variation exists in request,
implying the need for dynamic load balancing.

Microservice route As illustrated in Fig. 3, route for
microservice is done at each cloud separately. Each route
contains n weighted destinations, corresponding to microser
vices in all n clouds. All route works together for individual
microservice load balancing. The weight of the destination
represents the probability of routing requests to that cloud.

When a user request hits anyone of the clouds, it will first
be received by the gateway. Next, gateway will issue internal
requests aiming at Service 1. This request will be routed to
service 1 at the cloud specified by route. Then service 1 will
send requests for service 2, which is also routed the same
way described above. Any request in the request chain is
routed in this manner. Requests routed to microservice will
be evenly distributed to all replicas of it.

B. Monitor

The monitor collects dynamic runtime metrics of three
aspects: environment, microservice, and quality metrics.

• Environment metrics. Environment metrics include
the number of each microservice replica, latency (RTT)
among all clouds and user requests to each cloud.

• Microservice metrics. Microservice metrics include
service request per second (RPS), service request count
sum, service response time sum, and children services
that are invoked. These metrics are collected at each
cloud separately. Service RPS is averaged within a
specified period. Service response time and request
count sum are accumulated within the same specified
period. Service response time sum here contains pro
cessing time and network latency of both service itself
and its children services.

• Quality metrics. Quality metrics are the response time
of external user requests.

336

The monitor in our system is implemented based on
APIs provided by Istio and Prometheus3 . Due to lack of
tracing, the service response time metric is collected in the
form of the sum of all requests instead of each request
individually. Most runtime metrics like RPS (Request Per
Second), request count, and response time are collected
within a specified period because of scrape interval setting
of Prometheus. In our approach, the period is 10 seconds.
Service response time which does not include children re
sponse time is computed by removing the latter one. Metrics
of environment, quality, and microservice including average
response time are provided to controller for searching the
optimal route on model and experiments for benchmarking.

C. Controller

The controller is composed of four components: metrics
variation check, BO on performance model, route update and
load balancing procedure. Notice that BO on performance
model implements our approach. While metrics variation
check takes care of detecting the changes of metrics, load
balancing procedure will run BO on performance model
and route update for each microservice along request tree
to optimize the overall workload.

• Metrics variation check. The metrics variation check
is invoked every preconfigured cycle. When the metrics
variation check is invoked, it will retrieve environment
metrics mentioned in Section II-B and compare these
metrics to metrics retrieved at the last invocation.
If more than a preconfigured degree of changes are
detected in any of these metrics, load balancing will be
started to accommodate environment changes. In our
approach, the cycle is set to 20 seconds and the degree
of changes is configured to 20%.

• BO on performance model. This component contains
both BO and performance modeling, which are the core
of our approach. Performance model takes environment
and microservice metrics as input and outputs microser
vice response time. BO treats the route as parameters
and searches for the minimal response time based on
the performance model. Details of performance model
and BO are stated in the following.

• Route update. Route update is responsible for individ
ual microservice route update. Route update configures
the Virtual Service settings of microservice at each
cloud.

• Load balancing procedure. The load balancing proce
dure is illustrated in Fig. 4. Notice that in our approach,
a request path is the union of all request chains of
external requests. In other words, it is the architecture
of microservice system. The procedure starts from the
first service, usually frontend service, and execute route

3Prometheus [https://prometheus.io/l

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 01,2022 at 02:48:36 UTC from IEEE Xplore. Restrictions apply.

1. Move cotent of next queue to queue
2. Empty next queue

End

Figure 4. Load balancing procedure.

update layerwise. This is because when the route of
parent service changes, the load status of it at each
cloud will change correspondingly. Then this will lead
to changes in the sub request for children service at
each cloud. To sum up, changing the route of parent
service will result in RPS changes of children at each
cloud. Therefore, parent service is needed to update
before children services and services at the same layer
on the request tree can be updated simultaneously.
When one layer of route update finishes, controller
has to wait for 10 seconds to guarantee that metrics
are accurate after route update. This is necessary due
to latency in route update and monitor scrape interval
mentioned in Section II-B. The procedure ends when
all microservice load are balanced.

1) Peiformance Modeling: The performance modeling is
a common technique to model performance of all sorts of sit
uations including server and network [6], [7]. Briefly speak
ing, performance modeling explicit construct the numerical
relationship between factors that impact performance and
performance metric. In our approach, model depicts the
performance of individual microservice under all sorts of
environments where replica at each cloud, clouds latency,
and route are different. The chosen machine learning model
is neural network because it excels at regression task. The
training of model is detailed in Section III. Model details
are stated as following:

Explicit performance modeling. Notice that BO actually
can search route on the system directly, but each step could
take up 10 seconds because from applying route to retrieving
response time requires such a long time. On the one hand,
this long optimization step could lead to extremely low
convergence. On the other hand, environment status may

337

Figure 5. Network architecture.

vary from the ones when BO just starts. Based on this
discussion, explicit performance modeling is adopted in our
approach.

Inputs and Output. All inputs and output belong to
the same microservice, thus reflecting single microservice
performance. Output of model is average service response
time, a critical metrics that reflect performance. Inputs to
model includes environment metrics, microservice metrics,
and request shift:

• Environment metrics include service replica at each
cloud and latency (RTT) among clouds, representing
capacity of microservice and cost to route request to
other clouds respectively.

• Microservice metrics are RPS at each cloud and stan
dard processing times. They carry the information of
load status and service capacity characteristics.

• Request shift supplements route status to model.
Standard processing time. Standard processing time is

service response time under a range of RPS while other
factors remain identical. Therefore it acts as a performance
characterization of microservice. This metric will be fed to
performance model as input. Standard processing time is
used to indicate the capacity of different services, which
can be regarded as performance modeling in a static envi
ronment.

Request shift. Request shift is the compact version of
route, which is the actual parameters to search with BO.
Each shift represents the amount of traffic shift between
a pair of clouds. Postive and negative values indicates the
direction of shift. This is because for n clouds, there will be
n *n weight variables since the route is done at each cloud
separately as mentioned in II-A.

Neural networks model. Artificial neural networks [8] is
mathematical abstraction of biological neural networks. The
key of neural networks is multiple layers of linear transform,
convolution, activation, and other structures [9]. This multi
layer architecture large empowers the modeling ability of
neural networks.

In our approach, a neural network of 5 layers is proposed
as shown in Fig. 5. Each layer of network consists of linear

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 01,2022 at 02:48:36 UTC from IEEE Xplore. Restrictions apply.

transform, batch normalization [10] and Leaky ReLD. All
these linear transforms have same 100 hidden nodes. While
linear transform and Leaky ReLU capture the mapping,
batch normalization prevents overfit and accelerates learning.
The ending linear transform converts activation of the final
layer to scalar output.

To showcase effectiveness of our neural networks model,
Support Vector Regression (SVR) [11], [12], which is also
a well known machine learning model for regression task,
is compared in III.

2) Bayesian Optimization: Bayesian Optimization is a
technique to perform optimization without knowledge of
the target function except for input and output. BO is often
applied when the function is expensive to evaluate because
it attempts to find optimal in the minimal number of steps
and requires much fewer steps than grid search. Usually the
function is black-box, meaning that the analytic expression
and derivatives are unknown. Hyperparameters tunning of
machine learning model is in this scope [13]. BO also
worked well in optimizing target function directly [5]. In our
approach, BO is leveraged to optimize performance model
by searching request shift, which is then converted back to
route and applied to environment. Notice that there

The main idea of BO is building a surrogate model of
black-box target function and predicting optimal point with
acquisition function based on the model. Gaussian process
(GP) is often considered for the surrogate model as well
as Expected Improvement (EI) [14] for acquisition function.
Both of them are utilized in our approach. The process of BO
contains three steps. The first is to optimize the acquisition
function over GP to find the next best sampling point. The
second is to retrieve the value of target function with the
sampling point. The final step is updating the GP with the
new sample for a better approximation of the target function.
This process is repeated for a specified steps. Details of
Gaussian Process and Expected Improvement are stated as
following:

Gaussian Process. Gaussian Process is a collection of
random functions which is subject to multivariate Gaussian
distribution. In BO, GP is used as prior distribution of target
function and can be formulated as following:

f(Xl n) ~ N(p,(Xln)' K(Xln), Xl n))) (1)

where f(Xl:n) and Xl:n are sample points. This distribution
is defined by the mean function p, and the positive definite
covariance function k.

Given n samples, the posterior distribution of f(xn+d
providing X n+l can be computed with Bayes' theorem as:

f(xn+dlf(Xl n) ~ N(P,n(xn+d, o-;(xn+d) (2)

Expected Improvement. Expected Improvement finds
next sample with greatest expectation. It is defined as:

EI(x) = E(maxf(x) - f(Xbest), 0) (3)

338

where sand Xbest are next sample point and the sample
point with best value so far respectively.

III. EVALUATION

A. Experimental Settings

Environment setup. We set up three Kubernetes clusters
in the same local network. Two of them have three nodes
and the rest one has four nodes. All ten nodes are KVM
virtual machines with the same specification, which is 2
core CPU, 4GB of memory, and Ubuntu 18.04 OS. Each
of these Kubernetes clusters represent a cloud. Multi-cloud
microservice environment is built by Istio multi-cluster
setup that enables cross-cluster requests. Cloud latency is
simulated by tcconfig4 , a tc command wrapper.

Benchmarks. Bookinf05 and Online Boutique6 are bench
marks leveraged in our experiments. Bookinfo is an example
microservices of Istio. It has four microservices, which are
all stateless and only one type of external request. Load
generation for this benchmark only issues the unique exter
nal request. Online Boutique is another demo microservices
provided by GoogleCloudPlatform which has twelve com
ponents. Among these components, there are ten stateless
microservices, one load generator microservice, and one
storage service. We only run experiments on those stateless
microservice and the storage service is not load balanced.
There are six different requests, so the load generator will
issue all requests simultaneously at the specified RPS.

Offline performance model training. Unlike BO that
can predict online, performance model in our approach
requires training offline first. Both SVR and neural networks
are trained with a pre-collected offline dataset. The dataset
consists of standard processing time and other metrics
according to the inputs and output mentioned in Section
II-Cl. For standard processing time, it is collected under
the environment where only one cloud is available and all
replicas are set to one. The range of RPS for it is [10, 20, 30,
40, 50]. For other metrics, they are collected under all sorts
of conditions of the environment. We set up environment
with random service replica, clouds latency, and RPS and
then test the performance of all services with various request
shift. 2500 sample points of other metrics are collected for
each benchmark. The dataset is split into train and test part
with train ratio of 70%. Evaluation of performance model
on dataset is detailed in Section III-B.

For SVR, the penalty term C is tuned to 960.77. For neural
networks, it is trained with learning rate 0.5 and weight
decay 10. for 150 epochs. Adam optimizer and mean square
error loss are used. These parameters are tuned on Bookinfo
and used on Online Boutique directly.

4tcconfig [https://github.com/thombashi/tcconfigl
5Bookinfo [https://istio.io/latest/docs/examples/bookinfo/l
6Online Boutique [https://github.com/GoogleCloudPlatforrn/

microservices-demo/l

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 01,2022 at 02:48:36 UTC from IEEE Xplore. Restrictions apply.

10:00 14:00 18:00 22:00 02:00
lime (hours)

100

80

60
~
~

:l:
40

- Requests for cloud 0
- Requests for cloud 1
- Requests for cloud 2

Table I
PERFORMANCE ON BOOKINFO AND ONLINE BOUTIQUE OFFLINE

DATASET.

Bookinfo Online Boutique
R2 MSE MAE R2 MSE MAE

SVR 0.84 156.56 6.20 0.68 215.38 9.00
NN 0.85 144.04 6.42 0.67 220.73 8.85

Table II
PERFORMANCE ON BOOKINFO AND ONLINE BOUTIQUE UNDER ONLINE

TEST SETTINGS.

Figure 6. User requests per second at each cloud.

Online test settings. Online test is the standard testing
setup of our experiments. For all following evaluations that
are under online test settings, the test setup is identical.
Online test settings include clouds latency, service replica
and request. The former two are set to change randomly as
time goes by. Notice that though the changes are random,
the sequence is identical in every evaluation. Requests to
clouds are simulated according to RPS curves from facebook
[4]. Curves are shown in Fig. 6 All settings are limited to
preconfigured range. For latency, the random range is lOms
to 40ms. For replica, two services are selected to change
randomly while the rest services remain one replica at each
cloud due to limited memory of virtual machines. As for
services selected, the replica of them at each cloud will
be scaled randomly. The scaled ranges are [1,3] and [1,2]
for Bookinfo and Online Boutique respectively also due to
memory limitation. The request ranges are [0,40] and [0,10]
for both benchmarks. Notice that the latter one is RPS for
a set of requests, hence smaller. The number of requests
to clouds is obtained by multiplying the percentage of RPS
curves sample point to the max request of range.

B. Peiformance Model Evaluation

The performance model is evaluated in two aspects. One
is the test part of offline dataset. The other is online test
settings. For the test part of offline dataset, the performance
of SVR and neural networks is listed in Table I for both
benchmarks. For online test settings, it is listed in Table
II. Evaluation metrics include R2, MSE and MAE. R2 is
coefficient of determination, a metric that represents the
proportion of variance of y explained by the model. The
best possible value of it is 1.0 which means all variance of
y is explained. MSE, and MAE are mean square error and
mean absolute error. Both of them calculated the average
error of prediction. While the former one calculates the error
by the square difference between prediction and true value,
the latter one does by absolute difference.

From the tables, we can notice that all evaluations have

339

Bookinfo Online Boutique
R2 MSE MAE R2 MSE MAE

SVR 0.82 136.34 7.51 0.58 291.32 9.99
NN 0.86 102.68 6.29 0.52 328.93 9.69

R2 over 0.5, indicating that both SVR and neural networks
can model performance effectively under heterogeneous
conditions of the environment. In terms of benchmark, the
performance on Bookinfo is better than Online Boutique
under both offline and online. The gap is resulted form
higher complexity of microservice system of Online ~ou-
tique and direct usage of hyperparameters from Bookinfo.
Another thing worth noting is R 2 of online test settings
decreases slightly from the one of offline dataset. This is
because environment conditions behind metrics are not the
same, but the tiny gap between R 2 indicates that model
has good generalization ability. The metrics of SVR and
neural networks are close in all perspectives. However, it
can be recognized that neural networks is better than SVR
on Bookinfo but in a reversed way on Online Boutique. This
is also the result of direct usage of parameters. While SVR
is more robust with parameters, neural networks is more
sensitive. Given the difference between two benchmarks, the
slight performance reduction is acceptable.

MSE and MAE reveal more insights. While MAE varies
little among all evaluations, MSE nearly doubles from Book
info compared to Online Boutique. This indicates that there
are some predtions differs from true values greatly. Notice
that the size of training set are the same for both benchmarks.
This exhibits performance pattern of a complex microservice
system is harder to cover given the same number of training
samples.

C. Bayesian Optimization Evaluation

The convergence of BO is evaluated. In detail, one online
test moment is sampled randomly under online test settings
for each benchmark. This moment contains replica, latency,
and request settings at that time and only one service is
picked for evaluation. Then, BO is run on SVR and neural
networks under these two moments with maximum step set
to 20. Fig. 7 illustrates the convergence of BO. In the figure,
the minimum value among all currently found observations

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 01,2022 at 02:48:36 UTC from IEEE Xplore. Restrictions apply.

-5
0123456789W111213U1516171819

Steps of BO
BOEven SVR NN

Load balancing schemes
Local

1504-_.-----------__H

200r==============9
_ Bookinfo

175 - Online Bo=uti2:qu~e ~------- __H

125i- 1-- I----tiiiI----to.t-----==-t-1

I
r- Bookinfo+SVR

"-,

Bookinfo+Neural networks
I~ Online Boutique+SVR.

1_
- onlin~outique+~ral netwo~

I ~~I "-....
1\

25

30

10

20

15

Figure 7. Minimum among current observations of BO at each step. Figure 8. Average response time of user requests.

Even SVR NN
Load balancing schemes

Local

600 _ Bookinfo
_ Online Boutique§.

:S 500
c

~
~ 400
~
~

.~ 300

]j

~ 200

~
~ 100

"

Figure 9. Load balancing execution time.

IV. RELATED WORK

Extensive research on multi-cloud, microservice, perfor
mance modeling, and load balancing exists currently. Most
of them focus on the intersection of these areas.

Modeling performance of microservice system for further
capacity planning is popular. [6] approximates the capacity
of a microservice under by fitting a regression model on
data collected from load tests. The underlying infrastructure
of microservice is considered in [15] and a model of both
micro and macro details is proposed. [16] formulate a
microservice-based application workflow scheduling prob
lem and design a multi-layer performance model for minimal
end-to-end delay. Modeling burstable instances of clouds for
cost saving is presents in [17].

Performance optimization under multi-cloud is studied
frequently. Taiji [4] focuses on edge to datacenter traffic

of BO requires retrieving target value from system, which
takes 10 seconds in our setup. Therefore it is unsuitable for
searching load balance under a highly dynamic environment.
The time for SVR and neural networks are comparatively
much smaller and both under 100 seconds. Notice that the
time for Online Boutique is almost double of Bookinfo, due
to double size of microservices of former one.

D. Overall Peiformance Evaluation

Overall performance is evaluated regarding response time
of user requests. Every part of our system is involved in
this evaluation. As the environment is running according to
online test settings, the monitor oversees it and controller
balances the load of it. In this evaluation, other load bal
ancing schemes are added for comparison. Local scheme is
to route all requests to local microservice and do no load
balance. Even scheme distributes the requests among all
clouds evenly. BO is running BO on system directly without
performance modeling, in which case, parameters are still
request shift but the target function is system itself. SVR
and NN (neural networks) are load balance strategy of our
approach. For all BO, the step is set to 10.

The average response time of user requests under different
load balancing scheme is shown in Fig. 8. SVR and neural
networks has similar time and it is lower than Local and
Even scheme by around lOms, which exhibits the effec
tiveness of our approach. BO, however, is worst among all
schemes because the execution step of it is to low to find
the global minimum. For both benchmarks, the conclusion
is similar on the whole. On the whole, the response time
reduction is around 10% compared to other schemes, which
is a considerable reduction given the time is at millisecond
scale.

The execution time of different schemes is illustrated in
Fig. 9. It is noticeable that BO has a much larger execution
time than any other schemes. This is because each step

at each step are marked. It can be noticed that all cases reach
global minimum within 10 steps, suggesting the convergence
is relatively fast. With Bookinfo, BO finds the minimum
at the same pace on both models. The gap is small given
that it is close MAE of models. As for Online Boutique,
BO on neural networks gives a negative minimum which is
impossible in reality considering the value is response time.
It shows that neural networks does not cover the performance
pattern correctly.

340

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 01,2022 at 02:48:36 UTC from IEEE Xplore. Restrictions apply.

routing and proposes an approach to optimize the route for
balancing the utilization of data centers. [18] builds a global
queue for job scheduling under multiple geo-distributed
datacenters. In [19], jobs are balanced by predicting the
bottlenecks based on network latency, CPU, and memory
of all available nodes. A microservice brokering approach
regarding cost and performance by selecting and leasing vir
tual machines (VMs) [20] is proposed. The future directions
of multi-cloud computing are discussed in [21].

There is much research related to load balancing. Fas
tRoute [22] improved the performance of online services by
a operational anycast-based system. A system that can de
liver online services over integrated infrastructure efficiently
[23] is proposed. [24] gives analysis of a decentralized load
balancing algorithm, showing that it outperforms existing
centralized approach. Ananta [25] is a load balancer runs
on commodity hardware and meets the performance require
ments of multi-tenant cloud computing environments.

V. CONCLUSION

In this paper, a learning-based load balancing approach is
introduced and evaluated. Our approach leverages Bayesian
Optimization for searching optimal route decision on perfor
mance model. A system for load balancing overall microser
vice system is designed and implemented. Experiments show
that our approach out offers a reduction on average response
time for about 10%.

ACKNOWLEDGMENTS

The work was supported by the Key-Area Re
search and Development Program of Guangdong Province
(2020B010165002), the Basic and Applied Basic Research
of Guangzhou (202002030328), the Natural Science Foun
dation of Guangdong Province (2019A1515012229), and
the Natural Science Foundation of China (61802448). The
corresponding author is Pengfei Chen.

REFERENCES

[11 Q. Zhang, S. Li, Z. Li, Y. Xing, Z. Yang, and Y. Dai, "Charm: A cost
efficient multi-cloud data hosting scheme with high availability," ieee
international conference on cloud computing technology and science,
vol. 3, no. 3, pp. 372-386, 2015.

[21 G. Liu and H. Shen, "Minimum-cost cloud storage service across
multiple cloud providers," IEEE ACM Transactions on Networking,
vol. 25, no. 4, pp. 2498-2513, 2017.

[31 M. Villamizar, O. Garces, H. Castro, M. Verano, L. Salamanca,
R. Casallas, and S. Gil, "Evaluating the monolithic and the microser
vice architecture pattern to deploy web applications in the cloud,"
in 2015 10th Computing Colombian Conference (lOCCC), 2015, pp.
583-590.

[41 D. Chou, T. Xu, K. Veeraraghavan, A. Newell, S. Margulis, L. Xiao,
P. M. Ruiz, J. Meza, K. Ha, S. Padmanabha, K. Cole, and D. Perel
man, "Taiji: managing global user traffic for large-scale internet
services at the edge," in Proceedings of the 27th ACM Symposium
on Operating Systems Principles, 2019, pp. 430-446.

[51 P. 1. Frazier, "A tutorial on bayesian optimization," ArXiv, vol.
abs/1807.02811, 2018.

341

[61 A. Jindal, V. Podolskiy, and M. Gerndt, "Performance modeling
for cloud microservice applications," in Proceedings of the 2019
ACMISPEC International Conference on Performance Engineering,
2019, pp. 25-32.

[71 K. Salah, K. Elbadawi, and R. Boutaba, "Performance modeling and
analysis of network firewalls," IEEE Transactions on Network and
Service Management, vol. 9, no. 1, pp. 12-21, 2012.

[81 D. Specht, "A general regression neural network," IEEE Transactions
on Neural Networks, vol. 2, no. 6, pp. 568-576, 1991.

[91 A. Krizhevsky, 1. Sutskever, and G. E. Hinton, "Imagenet classifica
tion with deep convolutional neural networks," Communications of
The ACM, vol. 60, no. 6, pp. 84-90, 2017.

[101 S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep
network training by reducing internal covariate shift," in Proceedings
of The 32nd International Conference on Machine Learning, 2015,
pp. 448-456.

[111 c. J. C. Burges, "A tutorial on support vector machines for pattern
recognition," Data Mining and Knowledge Discovery, vol. 2, no. 2,
pp. 121-167, 1998.

[121 A. J. Smola and B. SchOlkopf, "A tutorial on support vector regres
sion," Statistics and Computing, vol. 14, no. 3, pp. 199-222, 2004.

[131 J. Snoek, H. Larochelle, and R. P. Adams, "Practical bayesian
optimization of machine learning algorithms," in Advances in Neural
Information Processing Systems 25, 2012, pp. 2951-2959.

[141 D. J. C. Mackay, "Introduction to gaussian processes," NATO ad
vanced study institute on generalization in neural networks and
machine learning, pp. 133-165, 1998.

[151 H. Khazaei, C. Barna, and M. Litoiu, "Performance modeling of
microservice platforms considering the dynamics of the underlying
cloud infrastructure." arXiv preprint arXiv:1902.03387, 2019.

[161 L. Bao, C. Q. Wu, X. Bu, N. Ren, and M. Shen, "Performance mod
eling and workflow scheduling of microservice-based applications
in clouds," IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 9, pp. 2114-2129, 2019.

[171 Y. Jiang, M. Shahrad, D. Wentzlaff, D. H. Tsang, and C. Joe-Wong,
"Burstable instances for clouds: Performance modeling, equilibrium
analysis, and revenue maximization," in IEEE INFOCOM 2019
IEEE Conference on Computer Communications, 2019, pp. 1576
1584.

[181 c.-c. Hung, L. Golubchik, and M. Yu, "Scheduling jobs across geo
distributed datacenters," in Proceedings of the SixthACM Symposium
on Cloud Computing, 2015, pp. 111-124.

[191 H. Wang and B. Li, "Lube: mitigating bottlenecks in wide area data
analytics," in Proceedings of the 9th USENlX Conference on Hot
Topics in Cloud Computing, 2017, pp. 1-1.

[201 T. Shi, H. Ma, and G. Chen, "A genetic-based approach to location
aware cloud service brokering in multi-cloud environment," in 2019
IEEE International Conference on Services Computing (SCC), 2019,
pp. 146-153.

[211 R. Buyya and J. Son, "Software-defined multi-cloud computing: A
vision, architectural elements, and future directions," in International
Conference on Computational Science and Its Applications, 2018, pp.
3-18.

[221 A. Flavel, P. Mani, D. A. Maltz, N. Holt, J. Liu, Y. Chen, and O. Sur
machev, "Fastroute: a scalable load-aware anycast routing architecture
for modern coos," in NSDI'15 Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation, 2015,
pp. 381-394.

[231 H. H. Liu, R. Viswanathan, M. Calder, A. Akella, R. Mahajan,
J. Padhye, and M. Zhang, "Efficiently delivering online services over
integrated infrastructure," in NSDI'16 Proceedings ofthe 13th Usenix
Conference on Networked Systems Design and Implementation, 2016,
pp.77-90.

[241 M. Rusek and J. Landmesser, "Time complexity of an distributed
algorithm for load balancing of microservice-oriented applications in
the cloud," ITM Web of Conferences, vol. 21, p. 18, 2018.

[251 P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,
R. Kern, H. Kumar, M. Zikos, H. Wu, C. Kim, and N. Karri, "Ananta:
cloud scale load balancing," in Proceedings of the ACM SIGCOMM
2013 conference on SIGCOMM, vol. 43, no. 4, 2013, pp. 207-218.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 01,2022 at 02:48:36 UTC from IEEE Xplore. Restrictions apply.

