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Abstract—Faults are the primary culprits of breaking the high
availability of cloud systems, even leading to costly outages.
As the scale and complexity of clouds increase, it becomes
extraordinarily difficult to understand, detect and diagnose faults.
During outages, engineers record the detailed information of the
whole life cycle of faults (i.e., fault occurrence, fault detection,
fault identification, and fault mitigation) in the form of post-
mortems. In this paper, we conduct a quantitative and qualitative
study on 354 public post-mortems collected in three popular
large-scale clouds, 97.7% of which spans from 2015 to 2021. By
reviewing and analyzing post-mortems, we go through the life
cycle of faults in clouds and obtain 10 major findings. Based on
these findings, we further reach a series of actionable guidelines
for better fault handling.

Index Terms—availability, cloud computing, faults, post
mortems

I. INTRODUCTION

Today, more and more enterprises move their applications
from on-premise data centers to cloud systems so as to acceler-
ate innovation, reduce costs, and increase agility. Meanwhile,
a variety of techniques, such as scalable infrastructure [1], [2],
distributed storage [3], [4], load balancing [5], [6], and cluster
resource management [7]–[9], have emerged to optimize the
cloud systems, enabling cloud systems to hold millions of
services and customers. Cloud systems are thus expected with
a high availability. Faults, the culprits of failures, break down
the high availability of cloud systems and lead to service
performance degradation, customer drain, and even a huge
economic loss.

As the scale and complexity of cloud systems grow, fault
handling in large-scale clouds is much more challenging than
before. Faults may occur in any components in cloud systems,
propagate to other components, and eventually impact user
requests. For example, a fault [10] caused by an incorrect con-
figuration change in a critical middleware during an upgrade
may propagate to user-level services, and then manifest as
elevated error rates of user requests. The complex topology and
propagation path further prevent fault detection and diagnosis,
exacerbating the impacts of faults.

Understanding faults in-depth is therefore of the primary im-
portance for the study of fault handling. From womb to tomb,
faults generally experience a life cycle involving four stages:
(i) fault occurrence is the birth of a fault under a specific
location and environment, (ii) fault detection is the procedure
when manifestations of a fault are detected as anomalies
and raise engineers’ attention, (iii) fault identification is the
procedure when engineers correlate clues and figure out the
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Fig. 1. A simple post-mortem example from Microsoft Azure. The top half
is the raw post-mortem, the bottom half is the parsed content.

reasons, (iv) fault mitigation is the procedure when engineers
adopt methods and tools to alleviate and eliminate faults.

Aiming at protecting cloud systems and handling faults as
soon as possible, SREs engaged in many cloud systems are
24/7 on-call to respond to failures just-in-time and resolve
them promptly. They are required to record a whole process
of fault handling in the form of post-mortems. Therefore, post-
mortems are valuable data sources to review the life cycle of
faults. Some cloud vendors make part of their post-mortems
public online. Fig. 1 is an example of the post-mortems from
Microsoft Azure on 04 Jul 2020 [11]. The failure is caused
by an error configuration inadvertently changed by humans.
Engineers mitigated this failure by changing the incorrect
configuration. The raw unstructured post-mortem contains
critical information such as failure date, impacted service,
time to resolve (TTR), fault manifestation, root cause, and
mitigation action. The above raw post-mortem can transform
into the structured one shown in the table of Fig. 1.

Some prior works present an empirical studies of faults in
cloud systems [12]–[16]. They provided lessons learned from
headline news, public post-mortems, and enclosed internal
data. However, they only focused on partial life cycle of faults.
In this paper, our goal is to go through a whole life cycle
of faults. We conduct an empirical study of 354 public post-
mortems that occurred within 9 years from 2011 to 2021 in
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three large-scale cloud providers (Google Clouds, Amazon
Web Services, and Microsoft Azure). We ultimately guide our
research with the following research questions (RQs):

• RQ1: What are the root causes of faults and their
distribution in clouds?

• RQ2: How do the faults happen in clouds?
• RQ3: How are the faults detected in clouds?
• RQ4: How are the faults propagated and identified in

clouds?
• RQ5: How are the faults mitigated in clouds?
Our study confirms some existing findings on fault stud-

ies, and further provides in-depth insights and guidelines on
fault handling. In summary, this paper makes the following
contributions:

• We collect 354 public post-mortems from three popular
clouds spanning from 2011 to 2021. We transform un-
structured post-mortems into structured ones and open-
source them1.

• We perform a qualitative and quantitative analysis on
them from the perspective of the life cycle of a fault
and obtain 10 findings, especially in the scope of fault
occurrence, detection, identification, and mitigation.

• We reach some guidelines on fault handling based on the
above findings, especially in chaos engineering, observ-
ability, and intelligent operations.

II. RELATED WORK

A. Failure Studies

Failure studies have been widely conducted to understand
the characteristics of failures in the wild. Table I presents a
comparison between this study and other important related
works from multiple perspectives.

First, failure studies have been conducted for different plat-
forms, such as high-performance clusters [17]–[19], internet
services [13], [20], game development [12], clouds [14]–
[16], deep learning framework [21], [22], and so on. Among
them, some studies [22]–[27] aimed to identify the root cause
taxonomies of software faults and discussed one specific type
such as concurrency bugs [24], [28], configuration error [29],
performance bugs [30], and upgrade bugs [27]. Some stud-
ies [31]–[33] conducted an empirical study to understand the
characteristics of hardware faults. Only a few studies [13], [21]
considered both of them. This paper present a comprehensive
study on both hardware faults and software faults in clouds.

Second, failure studies analyzed parts of the life cycle of
faults. Sillito et al. [15] have qualitatively analyzed thirty
incidents including fifteen public post-mortems and fifteen
interviews of experienced operating engineers. They discussed
about how failures happened and incident responses including
fault detection and fault mitigation. Liu et al. [14] carefully
studied hundreds of high-severity incidents in production and
provided insights such as identified root causes and related
mitigation from the industry. Gunawi et al. [13] collected
headline news and public post-mortems of 597 unplanned
outages in 32 popular Internet services within a 7-year span.

1https://github.com/IntelligentDDS/Post-mortems-Analysis

TABLE I
COMPARISON WITH RELATED WORKS

Related work FO FD FI FM OS Targets

Schroeder [32] X × × × × h
Wang [33] X × X X × h
Gunawi [23] X × × × X s
Banerjee [20] X × × × × s
Washburn [12] X × × × X s
Gunawi [13] X × × X X h&s
Sillito [15] X X × X X s
Liu [14] X × × X × s
Chen [16] X X × X × s
Zhang [27] X × × × X s
Chamberlin [34] X × × × X s

Ours X X X X X h&s

The seven columns are (1) related work, the last name of the first author, (2)
FO: fault occurrence, (3) FD: fault detection, (4) FI: fault identification, (5) FM:
fault mitigation, (6) OS: whether the studied datasets is open-sourced, (7) Targets:
studied objective, h means hardware faults and s means software faults.

They answered why outages occur in cloud computing en-
vironments and provided correlation analysis between root
causes and fix actions, lacking deep reviews on fault detection
and identification. Chen et al. [16] conducted a comprehensive
empirical study of incident management practices at Microsoft
including incident root causes, fault detection and mitigation.
However, the enclosed data sources block further researches.

Compared with other related works, this paper collects pub-
lic post-mortems and conducts a comprehensive study of faults
on the whole life cycle of faults including fault occurrence,
fault detection, fault identification and fault mitigation. The
most similar related work is [13]. Our work collected public
post-mortems, and 97.7% of that spans from 2015 to 2021,
while [13] analyzed post-mortems mostly before 2015. Our
work provides a full analysis of the life cycle of faults with
a more detailed fault mitigation analysis and actionable fault
handling guidelines especially. The data sources of this study
and analyzed results are public online and can be reused for
further research.

B. Incident Management

Incident management plays a significant role in an online
cloud service. Lou et al. [35], [36] carried out an experience
report on applying software analytics to incident management
of large-scale online systems in the real world. Since it is
important to be able to automatically assign an incident report
to a suitable team, Chen et al. [37] presented an empirical
study of incident triage. Chen et al. [38] and Gao et al.
[39] are devoted to addressing improve the effectiveness of
incident triage. Concerning incident mitigation, Jiang et al.
[40] proposed an automated troubleshooting guide (TSG)
recommendation approach, by leveraging the textual similarity
between incident description and its corresponding TSG using
deep learning techniques. Chen et al. [16] also presented an
AIOps framework towards intelligent incident management.

III. METHODOLOGY

To understand the whole life cycle of a fault, an effective
way is reviewing public post-mortems of clouds. Unstructured
post-mortems are collected from public websites and then
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manually transformed into structured ones. This section will
describe the methodology of this process.

A. Data Collection

We consider three popular and representative cloud systems
as target systems, which rank top three in Gartner’s study
[41]: Amazon Web Services (AWS), Microsoft Azure, Google
Clouds. The details of collected datasets are shown in Table II.
Cloud vendors publicly provide post-mortems on the status
dashboard website, but only a small portion among them is
worth analysis. So we collect 354 valuable post-mortems from
them as raw datasets within a 10-year spanning from 2011
to 2021, including 14 AWS incidents, 242 Azure incidents,
and 98 Google Clouds incidents. Noting that all of these data
are collected and processed only for research purpose. The
credentials of them are reserved by cloud vendors.

TABLE II
THE DETAILED INFORMATION OF COLLECTED DATASETS

Datasets #incidents source link labels

AWS 14 [42] aws-#
Azure 242 [11] azure-yymmdd-#

Google Clouds 98 [43] google-@services-#

B. Manual Labelling

Our goal is to conduct quantitative and qualitative analysis
on collected data, so we first transform unstructured post-
mortems into structured ones. Such transformation is also
called a coding procedure. Following an open coding proce-
dure [44], the coding process is to extract quantitative variables
(e.g., impacted service, fault propagation path, root cause,
time to resolve, time to detect, time to mitigate, etc.) from
observations (post-mortems here).

Six experienced engineers were engaged in labeling the
collected data. We take three rounds spanning five months
to code the raw datasets. The first round takes around two
months to sample tiny representative datasets to cover root
causes as much as possible. After multiple trials of discussion
and modification on the coding principle, we outline the
coding methodology and ensure that all authors are consistent
with it. The second round takes almost two months to code
all post-mortems. Each author independently codes the post-
mortems assigned to him/her and records the corner cases.
The final round is cross-validation spanning one month. Three
authors verified the post-mortems coded by others to guarantee
correctness and consistency. The authors handled the corner
cases through further discussions.

IV. THE LIFE CYCLE OF FAULTS

From womb to tomb, faults in cloud systems follow a
general life cycle: fault occurrence, fault detection, fault iden-
tification, and fault mitigation. We first introduce an overview
of the above four stages and then go through the whole life
cycle of a fault.

A. An Overview of Time Spans Across Different Stages
Time spans across different stages are golden metrics to

evaluate the importance of faults and the effectiveness of
methods to handle faults in cloud systems. Fig. 2 presents
the whole life cycle of a fault in cloud systems. Four stages
of Time To X (TTX) are further explained as below:

• Time to Detect (TTD) is the time cloud systems take to
detect a fault.

• Time to Identify (TTI) is the time cloud systems take to
identify the root causes after detecting a fault.

• Time to Mitigate (TTM) is the time cloud systems take to
mitigate faults. Sometimes, mitigating actions are applied
without an accurate localization of root causes.

• Time to Resolve (TTR) is the time cloud systems take to
resolve a fault. It includes the time spent on detecting a
fault, identifying the root cause, and mitigating the issue.

• Time To Failures (TTF) is the time span between two
failures, namely the uptime in cloud systems.

TABLE III
MEAN TIME SPANS ACROSS DIFFERENT STAGES IN THE LIFE CYCLE

- MTTD MTTI MTTM MTTR

Time 16.9 m 77.8 m 304.2 m 572.8 m

System availability can be considered as the proportion of
uptime to runtime, hence the defined equation in Eq. 1:

Availability =
TTF

TTF + TTD + TTI + TTM
. (1)

The increase of TTF or the decrease of any one of {TTD,
TTI, TTM} can level up the system availability. We conduct a
statistical study of Mean Time To X (MTTX) on our datasets,
and the mean results are shown in Table III. We do not show
MTTF since the collected datasets across cloud systems are
not continuous.

Fig. 3 shows the cumulative frequency functions (CDF)
of TTX. Detecting faults in one minute, localizing faults in
five minutes, and mitigating them in ten minutes are the ideal
objectives in DevOps [45]. Detecting faults in time is the key
to fault handling. But only 15.7% of faults are detected in one
minute. Localization time is also far from the objective, where
only 14.0% reaches the goals. Mitigating faults in ten minutes
only accounts for 1.9%, which means there is large progress
to do to achieve the ideal objectives.

B. RQ1: What are the root causes of faults and their distri-
bution?

Expertise is gained by investigating why a system
doesn’t work.

—— Brian Redman [46]
In our study, we consider the root cause as the direct

reason leading to faults. Prior works like [13], [14], [23]
have analyzed the software-related and hardware-related faults
using an unstacked root cause taxonomy, while this study
provides a layered taxonomy from a different perspective. The
first layer is about the root cause scope. Since our study targets
cloud systems, we consider root causes in software as internal
causes while root causes out of software as external causes
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Fig. 2. The life cycle of a fault

TABLE IV
A DETAILED DESCRIPTION AND STATISTICS OF ALL ROOT CAUSES

Layer-1 Layer-2 Count % Description Cases

Internal Causes

Misconfiguration 112 31.6 Refers to those software bugs caused by incorrect configurations. azure-20200704-1
Code change 47 13.3 Refers to those faults caused by short-term code change. google-bq-19002
Payload flood 28 8.0 Refers to those software bugs generating overwhelming requests. azure-20170325-1

Resource contention 11 3.1 Means that the shared resources are locked or congested. aws-2
Exception handling 7 2.0 Means that the code to handle exception fails. azure-20200928-1

Incompatibility 6 1.7 Means that upgraded codes are incompatible with other components. google-gce-15065
Others 69 19.5 Root causes cannot be assigned to any other root causes. azure-20161207-1

External Causes

Hardware failures 60 17.0 Refers to hardware failures such as CPU, disk, network and power. azure-20170321-1
Insufficient resource 33 9.3 Insufficient resources (e.g., CPU, disk) are provisioned. google-gae-17005

Excessive flow 22 6.2 Excessive amount of requests are sent by users. google-gcps-19001
Third-party failures 10 2.8 Refers to the third-party failures such as dependent services. azure-20191212-1
Component removal 7 2.0 Refers to those faults caused by inadvertently component removal. aws-6

Others 5 1.4 Other external causes with vague description. auzre-20200701-1
Unknown / 43 12.1 Engineers can not have a definitive root cause. azure-20170915-1
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Fig. 3. The CDF of four stages in the life cycle of faults

in the first layer. Other faults with vague RCAs are labeled as
unknown root causes. We present detailed descriptions and the
statistics of taxonomies of all root causes in Table IV. Next,
we illustrate the layered taxonomies of root causes layer by
layer. Noting that the percentage in this section is calculated
following the equation Percentage(%) = #type

#faults . A fault
may be caused by multiple root causes, consequently the sum
of percentages of all root causes is more than 100%.

1) Internal Causes (IC): Internal causes, which mainly
refer to software bugs, are responsible for about 79.1% of the

faults. Inspired by [13], [23], we categorize software bugs into
seven taxonomies including misconfiguration, code change,
payload flood, resource contention, exception handling, in-
compatibility and others. A detailed description of software
bugs is presented in Table IV. The most common root cause
is misconfiguration (31.6%) as expected since configurations
are important components in cloud systems while the least
common root cause is incompatibility (1.7%). Compared with
previous taxonomies of software bugs, the label code change
is additionally added to our classification. As the complexity
and flexibility of software systems increase, cloud systems
are always in the active development and maintenance states,
which means change is very common. Industrial engineers
have disclosed that their systems have tens of thousands of
changes a day. With it, code change accounts for 13.3%
among software-related faults. Other root cause like payload
flood, resource contention, and exception handling, accounts
for 8.0%, 3.1%, 2.0%, respectively, which can not be ignored.

2) External Causes (EC): Those faults caused by factors
outside cloud software systems are attributed to external
causes. In our study, external causes cover 41.0% of the
faults, originating from (i) hardware failures, (ii) insufficient
resources, (iii) excessive flow, (iv) third-party failure, (v)
component removal and (vi) others. We can observe that the
type hardware failures (17.0%) is the most common external
cause in practice. Facing the dynamically changing workload,
the type insufficient resources (9.3%) also leads to rejection to
requests, which largely affect customers. Excessive flow (6.2%)
is possibly generated by abnormal user behaviors or a fixed
pattern like morning peak. Other root causes like third-party
failures, component removal only occupy 2.8% and 2.0%,
respectively.
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Finding 1: Regarding the root cause distribution,
79.1% and 41.0% of faults are caused by internal
and external causes, respectively. The most common
causes in internal causes and external causes are
misconfiguration and hardware failure, accounting for
31.6% and 17.0% of faults, respectively.

3) Unknown Causes (Un): In some cases, engineers cannot
determine the definitive root causes [azure-20170915-1]. Such
cases are considered as unknown root causes.

4) Multiple Root Causes: In a dynamic and complex sys-
tem, one explicit fault may be due to the combination of
multiple root causes. We present the distribution of root causes
number in Table V. We can observe that 23.2% of studied
cases result from more than one root causes, which is a non-
negligible portion in practice. The number of root causes in
a fault is at most four in our study. We identify those cases
caused by multiple root causes and summarize three typical
forms: (i) Only one root cause may not cause failures, but
under a rare condition, the combination of multiple root causes
together results in failures. For example, some software bugs
only manifest under specific configuration settings [azure-
20180820-1]. (ii) One root cause derives from another root
cause like a chain reaction. For example, a sudden increase
in requests led to quota exhaustion. The high load of requests
triggered an issue in the scheduling system [google-bq-19003].
(iii) Incorrect fault handling generates new faults. For example,
an incorrect configuration change was inadvertently applied
when handling a fault [google-bq-18036].

TABLE V
THE DISTRIBUTION OF ROOT CAUSES NUMBER

# Root Causes 1 2 3 4

# Count 272 66 15 1
% 76.8 18.6 4.2 0.3

Finding 2: 23.2% of studied faults are caused by more
than one root causes, which is a non-negligible portion
in practice.

C. RQ2: How Do the Faults Happen?
If a human operator needs to touch your system

during normal operations, you have a bug.
—— Carla Geisser, Google SRE [46]

From the perspective of the life cycle of a fault, we first need
to answer the question: How do the faults happen? Besides
the distribution of root causes, we focus more on the other
important information: What are the ongoing procedures when
the faults occur? Are the faults related to human error? Why
do these faults escape fault-tolerant mechanisms?

1) Ongoing Procedures: To understand the ongoing pro-
cedures when the faults occur, we aggregate similar ongoing
procedures and finally list three clustered ongoing procedures
below. Fig. 4 shows the ongoing procedures distribution by
the identified layer-1 root causes.

 IC

Fig. 4. The distribution of ongoing procedures

Upgrade and Maintenance, which are common ongoing
procedures in those cloud systems under active development
and operations, are responsible for 58.8% of all faults. Some
cases [aws-1, gcs-18005] may go through multiple ongoing
procedures. It is reasonable that changes under update and
maintenance procedures bring perturbations to the running
cloud systems.

Upgrade (42.9%). Indeed, an upgrade in cloud systems
goes through extensive standard testing, but most faults during
an upgrade do not manifest themselves in the testing and pre-
production environment [azure-20180726-1, azure-20201019-
1]. The production environment is different from the pre-
production environment in complex interaction between com-
ponents, unexpected traffic patterns, inconsistent configura-
tions invocation, and so on. Such a gap between the production
environment and testing environment may lead to failure
during system upgrades. Furthermore, some cases [azure-
20200928-1] show that faults in Safe Deployment Practice
(SDP) make a bad deployment broadcast to many regions,
exacerbating the failures. During an upgrade procedure, inter-
nal causes especially misconfiguration are the most common
root causes and covers almost 46.0% faults. Also, 84.8% of
faults caused by misconfiguration occurred during upgrades
and maintenance. It indicates that a misconfiguration often
occurs accompanied by an upgrade.

Maintenance (20.0%). Faults may occur both during
routine maintenance and fault mitigation. First, faults oc-
cur during routine maintenance, like hardware maintenance
(e.g., fire suppression system [azure-20170929-1], fiber [azure-
20181024-1]) and software maintenance (e.g., capacity adjust-
ment [azure-20170518-1]). Second, an error during mitiga-
tion exacerbates the faults. [google-gcdf-16001] is a typical
example. During the mitigation of a lower impact perfor-
mance issue, engineers introduced an erroneous configuration
to pipeline orchestration, which caused validation within the
orchestration component to reject all requests.

Normal Operation (NoOps), meaning that no intervention
is introduced to cloud systems when system encounters faults,
takes 42.7% of all faults.

Finding 3: 58.8% of faults occur during changes
such as upgrades and maintenance. Faults during
an upgrade may be caused by (i) the gap between
production and pre-production environment in config-
uration, workload pattern, unusual invocation, and (ii)
defects in the deployment framework. Faults during
maintenance may be caused by routine maintenance
and fault mitigation.

We then analyze the relation between ongoing procedures
and root causes. From Fig. 4, we can observe that around
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84.7% (238) of all faults during system upgrades and main-
tenance are due to internal causes. Faults due to external
causes account for 56.3% (95) of all faults during NoOps,
and the portion is larger than the one during upgrade and
maintenance. It indicates that once a qualified version of
the system is deployed successfully and executed for a few
days, the system is likely to run continuously and normally
without changes of the external environment. External causes
such as hardware failures (e.g., fiber cut, power outage),
excessive flow, and insufficient resources cause faults during
NoOps. It indicates that changes of external environments
(e.g., workflows, dependent party, hardware) greatly affect the
internal stability of cloud systems. Besides, the combination
of two conditions fires some faults during normal operations.

Finding 4: 84.7% of faults during system upgrades
and maintenance are due to internal causes. 56.3%
of faults during normal execution are due to external
causes, which is larger than the one during changes.

2) Human Errors: Manual intervention is inevitable in
the Development and Operations (DevOps) of cloud systems.
According to our statistics, human errors result in 7.6% of
all faults. Compared to the statistics results of 19-36% in
2003 [47], human errors are largely reduced, further confirm-
ing the results in [13]. Due to the difference in datasets, it is
acceptable to obtain a biased result with 4% of all faults caused
by human error. It indicates that the introduction of intelligent
operations helps to reduce human errors. Human errors are
mainly manifested in two formats: (i) Inadvertent error. For
example, engineers in [azure-20180220-1] inadvertently recy-
cled the power on the scale unit in production. (ii) Inefficient
management. Cloud vendors have shared their experience
publicly [48]. Engineers in team X had sent an email with
rollout messages to notify other teams, but engineers in the
other team did not notice it and made conflict operations,
leading to a service outage.

Finding 5: Faults due to human errors take up 7.6%
of all faults. The introduction of intelligent operations
helps to reduce human errors.

3) Ineffective fault tolerance: Fault-tolerant mechanisms
provide the ability to ensure that the system continues oper-
ating without human-involved interruption when one or more
of its components fail, guaranteeing the availability of cloud
systems. But what kinds of faults do escape fault-tolerant
mechanisms? We zoom in these cases and provide three
representative scenarios: (i) Failover to backups may encounter
faults. In the case [azure-20161211-1], software issues on
network routers caused routing calculations to take longer
than expected during a fiber issue. The path computation
slowdown caused traffic to be dropped instead of moving
to the redundant fiber path. In the case [aws-10], software
issues in failover mechanisms prevent the automatic failover.
(ii) Potential faults may be hidden in backups. In the case
[azure-20181126-1], when traffic is rerouted to the backup,

an issue that occurred in the backup path resulted in traffic
congestion [azure-20181126-1]. Also with low probability,
multiple backups may concurrently encounter faults [azure-
20200120-1]. The availability of backups may be ignored in
practice since they are seldom used. (iii) Small performance
issues are covered until there are no enough available replicas.
In the case [azure-20211216-1], due to an internal cause,
the problematic rollout was not stopped until all redundant
endpoints were impacted.

Finding 6: The failure of fault tolerance may be
caused by unsuccessful failover, faulty backups, and
potential performance issues.

D. RQ3: How are the Faults Detected?

Ways in which things go right are special cases of
the ways in which things go wrong.

—— John Allspaw, Google SRE [46]
Fault detection is the primary step of fault handling that pos-

sibly affects following handling operations. Detection methods
in practice can be divided into two parts: automatic detecting
and manual detecting. Rule-based monitoring methods are
simple yet effective automatic detecting methods, so they are
widely used in practice. For example, raising an alarm when
system resource usage exceeds a preset threshold or detecting
anomalous patterns like [49]. With the prevalence of machine
learning, data-driven fault detection methods such as [50], [51]
attract much attention but they remain largely in the realm of
research. In this section, we attempt to answer how are the
faults detected and dig up the corresponding information about
fault detection in practice.
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Fig. 5. The CDF of automatic detection time

In our datasets, only 38.7% post-mortems explicitly record
how engineers detect faults. According to our investigation,
around 93.4% of cases with detection records utilized auto-
matic monitoring tools such as health monitoring and internal
telemetry tools to detect anomalies. We can indicate that
automatic monitoring methods such as rule-based and data-
driven methods play an important role in practice. We present
the CDF of automatic detection time in Fig. 5. Around 70%
of faults can be automatically detected in 10 minutes and
95% of faults can be detected in 47 minutes. While the other
cases using manual detection generally execute an upgrade or
maintenance. It is acceptable since engineers are engaged in
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monitoring system states carefully during changes. There are
also some cases detected by analyzing user reports in practice.

Finding 7: Almost 93.4% recorded cases utilized au-
tomatic detection methods, 70% of which are detected
in 10 minutes.

E. RQ4: How are the Faults Propagated and Identified?
If at first you don’t succeed, back off exponentially.

—— Dan Sandler, Google SRE [46]
Fault identification is to first localize faulty components

or metrics, and then identify the root cause of this fault.
Due to the diversity of causes, it is quite challenging to
identify a specific root cause of fault automatically. So existing
research methods [38], [52] in fault identification tend to
localize faulty components or metrics automatically and report
to engineers. Then engineers are engaged in identifying root
causes manually.

Cloud systems consist of hundreds of nodes and inter
connections, leading to the highly complex topology. Worse-
more, cloud systems tend to generate faults logically and geo-
graphically distributed. The impacts of a fault are propagated
along with the connections, leading to a more difficult fault
localization.

Understanding trivial and non-trivial propagation patterns
benefits the research of fault localization. We attempt to
refine propagation patterns from post-mortems via manual
reading and comprehension. After several rounds of discussion
and verification, we conclude a high-level abstraction and
deliver a better demonstration of insights into the propagation
path. The vertical direction can be divided into hardware,
supporting infrastructure, operating systems, virtual machines,
and applications (services). Supporting infrastructure contains
servers used as different roles like cache servers, job servers,
and so on. The horizontal direction is labeled by different
roles in cloud systems such as frontend, backend, storage,
network, and middleware. All network-related devices like
routers, switches, load balancers, and network-related compo-
nents like DNS, VPN, and network control plane are grouped
into Network. Other components like dependent services in
cloud systems but not exposed to users are categorized into
middleware.

TABLE VI
THE DISTRIBUTION OF PROPAGATION LENGTH

Length 1 2 3 4 5 Average

Count 42 186 96 29 1 2.3
% 11.9 52.6 27.1 8.2 0.3 -

We analyze the distribution of propagation length and show
the results in Table VI. We can observe the interesting results
that around 88% of all faults in our study are propagated to
other components in cloud systems. It indicates that com-
ponents with fault manifestation maybe not the root cause
components. The propagation length is at most five in our
study (cases listed below). Most faults go through two (52.6%)
or three (27.1%) components before terminating. On average,

faults passed through 2.3 components in our study. It is
interesting but also easy to understand that the fault manifested
components are usually not the ones with errors.

TABLE VII
THE STATISTICS OF FLOW IN PROPAGATION PATH

From
To app fe be mw vm os nw str si hw

app 30 - - - - - 1 3 - -
frontend 2 - - - - - 1 - - -
backend 38 1 14 9 - - 1 3 3 1
middleware 45 1 - 1 2 - 1 6 1 -
vm 6 - - - - - 1 1 - -
os 4 - 1 - - - - - - -
network 65 - 3 3 6 1 20 17 2 -
storage 73 - 2 8 - - 3 12 1 -
su-infra 9 - - 3 - - 1 3 - -
hardware 10 - - - - - 13 19 2 1
third-party 4 - - - - - 1 1 - -

The value in table is the count of flow of “from” to “to”, and “-” means that
there are no flow between them. Abstraction in columns is the abbreviation of the
row name. For example, “fe” refers to “frontend”. “su-infra” refers to “supporting
infrastructure”. “third-party” is not included in the columns since no faults are
propagted to third-party.

Regarding the distribution of flow patterns in propagation
paths, we count the edges between two abstracted components
and present the results in Table VII. By nature, faults are prop-
agated from the bottom, like from hardware to the network,
from middleware to application. So we can observe that most
of the destination in propagation paths is the application layer.
Besides, loops (i.e., the diagonal elements in Table VII) exist
in propagation path. There are 30 cases propagated inside
“app” and 20 cases propagated inside “network”. However,
there are also some backward propagation flows like from
“app” to “network”. In the case [google-BQ-18037], a new
release of the BigQuery API introduced a software defect
that caused the API component to return larger-than-normal
responses to the BigQuery router server. The congestion
further affected other services.

In addition, we show top 2 frequent fault propagation paths
in Fig. 6(a) and Fig. 6(b). Case 1 (11.0%) are propagated from
“network” to “app”. Network in cloud systems is responsible
for the connection between user-oriented services and the
underlying systems. Once an error occurs in the network, it is
highly possible to propagate the faults to the application layer.
Case 2 (9.0%) only contains one node “app”, which means
that services in the application layer encounter errors with no
propagation. We find that such cases are probably caused by
software bugs in the application layer or unknown root causes.
Unknown root causes left the fault manifestations to be found
only on the application layer.

Network App

(a) Case 1

App

(b) Case 2

Hardware

Network 
devices

Storage 
server

App 
instances

App

(c) Case 3

Fig. 6. Three special cases in fault propagation paths

We deliver a special case [#aws-1] with the propagation
length 5 in Fig. 6(c). In this case, severe weather resulted in a
power outage (“hardware”). When restoring power, DNS failed
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(“network devices”). Such failures led to data loss in storage
servers (“storage server”), and impacted “app instances” and
finally the supporting “app”.

Finding 8: On average, faults passed through 2.3
components in our study. The most common path in
fault propagation is from network to application.

F. RQ5: How are the Faults Mitigated?
Besides black art, there is only automation and

mechanization.
—— Federico Garcı́a Lorca, Spanish poet and

playwright [46]
Mitigation actions are adopted to handle faults. After fig-

uring out the stories behind the faults and relevant detection
and localization methods, we desire to answer how are the
faults mitigated and also to uncover frequently used mitigation
actions in practice.

TABLE VIII
THE STATISTICS OF MITIGATION ACTIONS

Action Items
Metric Count % TTM (minutes)

Mean Std Med

Self-healing 27− 7.6− 463 865 70−

Rollback 82 23.2 156− 194− 91
Re-action 41 11.6 275 609 86.5
Replacement 113∗ 32* 193 215 107
Isolation 87 24.6 241 359 125
Flow control 72 20.3 274 506 116
Scaling 47 13.3 378 584 163.5∗
Fixing 90 25.4 601∗ 1209∗ 220
Others 81 22.9 1124 1761 94

The maximum and minimum along with one column except types Others are
tagged by “*” and “−”.

1) Mitigation Actions.: We totally identify nine types of
mitigation actions: (i) self-healing, (ii) rollback, (iii) re-action,
(iv) replacement, (v) isolation, (vi) flow control, (vii) scaling,
(viii) fixing, and (ix) others. The statistics of mitigation actions
and their related TTM in our study are listed in Table VIII.

Self-healing. Three kinds of faults can be self-healed re-
quiring no human-involved intervention, accounting for the
minimum portion 7.6% of all faults. First, overloaded services
return to healthy once the load is ingested. For example, the
rapid pattern change resulted in a fast reconfiguration to adapt
to these changes, generating a long modification queue. As the
backlog of network configuration changes was automatically
processed, this issue was resolved without human intervention.
[google-gce-15057]. The other circumstance is inadvertent
restarting or reinstalling. Cloud systems return to healthy
once the operation had completed [google-gcnet-18019, azure-
20180220-1]. The third kind is adopting automatic recovery
mechanisms. Sometimes, the issue was self-healed by auto-
matic recovery mechanisms without a definitive root cause
[azure-20170517-1].

Rollback. If a fault occurs during some procedures such as
rollouts, new feature deployments, code changes, and config-
uration changes, the naive but effective way to mitigate faults
is to rollback [google-gce-16015]. According to our statistics,
rollback spends the least time mitigating faults.

Re-action. The next mitigation action is the redo process
such as restarting and redeploying components, but with a
high risk to wreck the availability of cloud systems [google-
gcps-17001, google-bq-19003]. In distributed systems, the
leader election module is to designate a single process as the
organizer of some tasks distributed among several computers.
Therefore, forcing leader election is also common in dis-
tributed cloud systems to mitigate the faults of leader conflicts
[google-gcnet-19020].

Replacement. Replacing the faulty component is a prompt
action to mitigate faults, which is the most common miti-
gation action. One of these is to replace software compo-
nents. With a high coverage of misconfiguration, replacing
the configuration with the correct one is a fast way to
handle them [azure-20200604-1, azure-20200221-1]. Clearing
the full load component is also a desirable approach. For
example, backlogs were generated as the overloaded traffic
grows. Clearing backlog was feasible to re-enable services
[google-gcic-20003]. The other one is replacing the hardware
components or failover. A failure of a network component
temporarily reduced network capacity, which was resolved by
the replacement of the faulty hardware [google-gae-15023].

Isolation is an extraordinarily effective means when ser-
vices get failed. First, it is feasible to make faulty components
offline. One is to remove faulty hardware components [azure-
20190110-1], and the other is to make services offline such
as removing mechanisms [google-gcic-20005] and disabling
services [google-csql-17017]. For example, the Denial of Ser-
vice (DoS) protection mechanism was triggered by a high rate
and volume of retries policy in [google-gcic-20005], causing
traffic congestion. Removing the DoS protection mechanism
could somehow mitigate the impact symptom. The second
is to cancel tasks such as pausing faulty rollouts [google-
gcnet-19007] or maintenance [azure-20181129-1], stopping
buggy migration [google-gae-15025], and stopping erroneous
workflow [azure-20200224-1].

Flow control is required when encountering overloaded cir-
cumstances. General mitigation actions to mitigate overloaded
services are to limit rate, reduce traffic, or redirect traffic.
We take [google-gcps-19001] as an example. Here the faults
were caused by the overload protection mechanisms which
rejected some incoming requests and delayed the processing
of others. Therefore, engineers introduced a rate limit on
the requests to mitigate the issue. Reducing traffic [google-
gae-19007] and redirecting traffic [google-gce-17005] follow
similar operations as the rate limit.

Scaling. Scaling up is to relieve the services situation of lack
of capacity. Mitigation actions like scaling out and increasing
capacity are usually leveraged to mitigate faults. In [google-bq-
18037], increasing the network capacity of the service router
server allowed API traffic to resume normally. Others like
acquiring additional storage capacity [google-csql-17012] and
granting additional quota [google-gcdc-19001] could also ease
the burden of services.

Fixing is a regular step to eliminate faults. Patching the cor-
responding bugs is a common mitigation action in some cases
[azure-20161130-1, google-gce-18012]. Other cases adopt roll
out builds to eliminate the incompatibility of the current build
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and previous build [google-gcd-19006, azure-20190501-1].
Others. Those mitigation actions are not clear and cannot

be assigned to above mitigation actions.

Finding 9: The most and the least common mitigation
actions are Replacement and Self-healing. Rollback
spends the least time to mitigate faults while Fixing
takes the most time on average.

2) Relation between Root Causes and Mitigation Actions:
Fault mitigation needs the right mitigation actions. Usually,
engineers adopt mitigation actions according to the specific
root causes following the guidance in SRE runbooks. To gain
a better understanding of mitigation actions in practice and
provide guidelines to engineers, we investigate whether there
are detailed and interpretable relations between root causes
and mitigation actions. As multiple root causes and mitigation
actions may exist in collected datasets, we first unfold them
using the Cartesian product.
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Fig. 7. The relation between mitigation actions and internal causes

The relation between mitigation actions and internal causes
is shown as a heatmap in Fig. 7. The row refers to the type of
internal causes and the column refers to the type of mitigation
actions. For example, 51 in the first row means that 51 faults
caused by misconfiguration are mitigated by Rollback. We
can observe that in most root causes, some mitigation actions
are quite conspicuous such as Rollback and Replacement for
misconfiguration, Rollback and Fixing for code change. But
for other faults due to root causes like resource contention
and exception handling, different kinds of mitigation actions
are evenly applied in fault mitigation.
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Fig. 8. The relation between mitigation actions and external causes

We also analyze the relation between mitigation actions
and external causes in Fig. 8. We can observe that the type
Replacement occupies 29 cases to mitigate hardware failures.
It is interpretable since replacing the faulty hardware with the
healthy one can mitigate faults. Also, not only one mitigation
action is taken to mitigate faults. For example, to mitigate
those faults caused by insufficient resources, engineers first
isolate the faulty component, then scale out the capacity to
hold more requests. Analogy to internal causes, there are no
salient mitigation actions shown in some external causes (e.g.,
component removal, third-party failures).

Finding 10: Some root causes such as misconfig-
uration, code change, hardware failures, insufficient
resource show a strong correlation with mitigation
actions. But some root causes such as resource con-
tention, exception handling, component removal, third-
party failures are not.

V. GUIDELINES ON FAULT HANDLING

The above sections introduce the observations from the per-
spective of the life cycle of faults. We passively analyze results
and indicate their possible reasons. Next, we provide insights
proactively by concluding guidelines from an empirical study
on hundreds of post-mortems.

A. Guidelines on Chaos Engineering in Clouds

To verify the system’s capability under stress, chaos en-
gineering is proposed as a discipline of experimenting on
systems in production. Mocking possible faults proactively
enables cloud engineers to build timely identification mech-
anisms and feasible mitigation actions.

❐ change configuration 

❐ inject code snippets

❐ mock excessive requests
❐ inject request-level faults

ü delay or drop API requests; 
ü consume system resources; 
ü kill, hang processes
ü make nodes crash
ü simulate network stress

Current Ability

Expected Ability

……

Fig. 9. Gap between current and expected ability of chaos engineering tools

The distribution of root causes in Sec. IV-B provides guide-
lines for simulation of fault types in production. The existing
chaos engineering tools [53]–[55] provide ways to delay or
drop API requests; consume system resources; kill, hang
processes or make nodes crash; simulate network stress, and so
on. However, the ability of the existing chaos engineering tools
is far from satisfactory in face of the complex environment in
modern cloud systems. Fig. 9 visualizes the gap between the
ability of current chaos engineering and the expected ability
in the real world. Based on the Finding 1, chaos engineering
tools are expected to implement the following scenarios:

• Injecting configuration change at runtime. It is expected
to change configurations in files or codes at runtime. The
majority of configuration changes need to apply or restart.
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• Injecting code snippets at the specific location at runtime.
Although chaosblade [54] provides the way to inject
code snippets in Java by modifying their bytecodes, the
progress to inject faults in other programming languages
like GoLang, and C++ is still at a preliminary stage.
This ability can simulate faults caused by code change,
payload flood, exception handling, incompatibility.

• Mocking excessive requests to systems. It is expected to
replay overwhelming real-world user requests to systems
based on historical user behaviors.

• Injecting request-level faults. It is expected to control the
impacted scope of a fault with fine-granularity, reducing
the impacts to real users. Besides, request-level faults
injection helps engineers analyze manifestations of faults.

The exploration of RQ2 uncovers some unexpected scenes
where faults happen. Based on Findings 3-6, chaos engineering
tools are expected to implement under more scenarios:

• Testing and deployment framework. To disrupt the con-
troller of testing and deployment framework and verify
the robustness, and effectiveness of these mechanisms.

• Failover mechanisms. To break down the critical router
such as modifying the target prefixes, and mock the
scenario that traffics are not rerouted successfully.

• Backup components. To destroy backup components both
in software and hardware and check whether they can
execute in a proper state.

• Operation framework including monitoring and mitigat-
ing. To wreck system and verify whether monitoring and
mitigating tools still work under destructed systems.

B. Guidelines on Observability in Clouds

Observability refers to the ability to understand and explain
the state of a complex system based on the outputs of the
system [56]. Cloud systems are distributed by nature and
thus introduce complex and dynamically changing service
dependencies. So it is imperative to make cloud systems
observable for effective debugging and diagnosis. Typically in
cloud systems, observability contains three fundamental com-
ponents: metrics, logs, and traces. Towards better observability,
we provide three guidelines based on the observations from
manual comprehension:

• It is suggested to ensure the integrity of observable data.
The loss of monitoring data may lead to miss alerts,
which suppresses further fault handling.

• It is suggested to provide layered observability of inter-
components and intra-components. Based on Finding 8,
faults may propagate across multiple components. Trac-
ing [57]–[59] is particularly effective to handle such cases
and attaches a “trace id” to a request so as to identify
the whole execution path of the request among inter-
components and intra-components.

• It is suggested to control the granularity of observable
data collection on demand. The current granularity of
observable data focuses on the service level and the
instance level. By nature, fine-granularity monitoring data
such as in request level is more beneficial to infer the
system states. Taking the overhead and observability into

consideration, controlling the granularity of observable
data on demand is a promising direction in clouds.

C. Guidelines on Intelligent Operations in Clouds
To ensure the reliability of complex cloud systems, software

for intelligent operations are widely used in anomaly detection
[60]–[62], anomaly diagnosis [63], [64], resource management
[7], [65], and automatic repair [66]. Based on the above
Findings, we offer some guidelines on intelligent operations
after going through the life cycle of faults:

• Based on Finding 3, when encountering faults during
changes, engineers are guided to identify root causes
by distinguishing differences in configuration, execution
flow, and data flow between offline and online. The
difference between them is possibly the root cause.

• Based on Finding 4, engineers are encouraged to focus
on internal causes during upgrades and maintenance.
Similarly, they are encouraged to focus on monitoring the
changes in external environments during normal opera-
tions. The changes in external environments may provide
some clues to fault identification.

• Based on Finding 8, it is suggested to consider the
context of two or three components around the alerting
component to identify the root cause.

• Based on Finding 10, some root causes show a strong
relation with mitigation action items. For such kinds
of root causes, engineers are recommended to design
automatic mitigation action recommenders, which can
largely reduce TTM.

More often than not, defects in the existing intelligent
operation tools deserve certain attention. There are two pos-
sible promotion guided by our study: (i) It is suggested to
build an uniform intelligent operations pipeline with low over-
head. From our study, issues and inconsistent pipeline [azure-
20180319-1, azure-20181119-1] in the monitoring system may
delay the understanding, detecting and identifying of faults.
(ii) It is suggested to develop robust cloud systems to false
alerts. Monitoring system is imperfect and cannot achieve
100% accuracy. Following the principle of catching anomalies
as much as possible, monitoring systems are designed to
attain a high recall than precision. However, a false alert
may trigger the system into self-protected mode and disrupt
normal executions, leading to no alarms raising or unexpected
faults. A robust system is expected to behave normally though
receiving incorrect instructions.

VI. THREATS TO VALIDITY

The external threat to validity lies in our collected post-
mortems. We systematically collect 354 public and valuable
post-mortems from large-scale clouds. But most of them
provide desensitization information. So the analyzed results in
our study largely depend on the willingness of cloud vendors
to disclose fault information.

The internal threat to validity is about the manual labeling
process. Due to the complex nature of cloud faults, subjectivity
may exist in the procedure of structuring post-mortems by
each engineer. To alleviate the threat, our study went through
multiple rounds involving independent structuring procedures,
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intersected structuring procedures, and further discussion on
difficult faults.

VII. CONCLUSION

As the scale and complexity of cloud systems increasingly
grow, a comprehensive study of faults in large-scale clouds
is needed. We collect and perform quantitative and qualita-
tive analysis of 354 public post-mortems from three popular
clouds. When going through the life cycle of faults, we provide
a series of interesting findings and reach some guidelines for
fault handling. We believe our results in this study can inspire
engineers and researchers both in industry and academia.
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