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Abstract—Currently, the architecture of software systems is
shifting from “monolith” to “microservice” which is an important
enabling technology of cloud native systems. Since the advantages
of microservice in agility, efficiency, and scaling, it has become
the most popular architecture in the industry. However, as
the increase of microservice complexity and scale, it becomes
challenging to monitor such a large number of microservices.
Traditional monitoring techniques such as end-to-end tracing
cannot well fit microservice environment, because they need
code instrumentation with great effort. Moreover, they cannot
explore the fine-grained internal states of microservice instances.
To tackle this problem, we propose Kmon, which is an In-
kernel transparent monitoring system for microservice systems
with extended Berkeley Packet Filter (eBPF). Kmon can provide
multiple kinds of run-time information of micrservices such as
latency, topology, performance metrics with a low overhead.

Index Terms—Microservice, Cloud computing, Monitoring,
eBPF, Kubernetes

I. INTRODUCTION

Attracted by the characteristics of high flexibility and fast de-
livery, microservice is widely used in many modern companies
now, such as Google and Microsoft. To monitor and manage
microservice systems, system operators need to collect per-
formance indicators that reflect system states and persistently
store those indicators in a database.

Some conventional monitoring tools (e.g., cAdvisor1) can
help system operators to collect and aggregate indicators.
However, most of them only focus on basic metrics of resource
usage(e.g., CPU utilization). Another type of monitoring tools
like Istio2 can monitor more indicators like requests latency
at L7 network layer, but they need to change the underlying
infrastructure. To gain diversified metrics for existing systems
without modification, we propose Kmon, an in-kernel transpar-
ent monitoring system for microservice systems.

Kmon can capture conventional metrics more accurately.
Furthermore, it can collect fine-grained in-kernel performance
indicators(e.g., the number of system calls). In-kernel indica-
tors are useful because they can reflect hidden problems in
deep (e.g., livelock shown in §II or limplock [14]). It is almost
impossible to find out these deeper problems with current
monitoring tools since they cannot obtain in-kernel events.
Therefore, it is important to collect in-kernel indicators for
microservice observability.

Although previous tools like strace3 can capture in-kernel
indicators, they sacrifice the performance of the system and

1cAdvisor: github.com/google/cadvisor
2Istio: istio.io/
3strace: strace.io/

need to aggregate manually for distributed systems. Other
methods (e.g., OpenTelemetry4) need to change the source code
of the user’s program, which introduces additional complexity.
Kmon chooses to use eBPF, a component of the Linux kernel
to collect metrics of programs without instrumentation. It
reduces the difficulty of using eBPF and enables eBPF to
sense changes in application layer, especially for the changes
of microservice. Users can simply use it by write configuration
and deploy Kmon to each host. Then Kmon can automatically
collect metrics and store them into databases. The configuration
specifies metrics users want to gain and server instances in
microservice that need to be monitored, which does not require
modifying source or provide internal logic information of
programs.
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Fig. 1. The Basic Architecture of eBPF.

As part of the Linux kernel, eBPF provides a possibility
to extend the Linux kernel. System operators can use it to
capture in-kernel indicators at a low cost. However, write eBPF
program directly is hard. Fig. 1 shows the basic architecture
and procedure of eBPF. First, a developer should write eBPF
code in C, then use llvm to compile it into an object file, which
will be loaded into kernelspace; Second, the developer should
write a program to load eBPF, this program usually running
on userspace. Before the object file is loaded, the kernel runs
a verifier to ensure it cannot damage the kernel. Then JIT
transfers the object file from byte code to machine instructions.
Finally, eBPF program and user program communicate with
each other by eBPF maps, the user program can extract kernel
runtime information from maps, or ask eBPF program to
change the behavior of the kernel or itself by sending signals
to maps.

4OpenTelemetry: opentelemetry.io/



Writing eBPF code is hard because it needs to understand
the source code of the Linux kernel and observe the rules of
the verifier. The development environment is also complex.
In recent years, some eBPF tools (e.g., BCC5) have emerged
to reduce the difficulty of developing eBPF programs. But it
has two challenges to monitoring microservice with eBPF as
follows.

• The eBPF program collects many non-numerical indica-
tors (e.g., stack address shown in §III-C) that cannot be
utilized directly. Thus, we must translate those unreadable
non-numerical data to human-readable indicators.

• The eBPF program captures the in-kernel indicators that
are corresponding with the microservice containers’ PID.
Therefore, eBPF cannot sense the changes of microser-
vices semantically. We must give eBPF the ability to adapt
to microservice and other high-level changes(e.g., user
configuration changes).

For these challenges, Chang et al. [2] used eBPF to col-
lect indicators for microservice profiling, but they have not
considered the changes of microservices. Shiraishi et al. [3]
implemented dynamic sensors to microservices through eBPF,
but they need to create or delete eBPF programs when adjusting
monitor items, which causes extra overload. Viperprobe [1] is
a microservices collection framework, which focuses only on
numerical metrics and ignores the non-numerical indicators.
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Fig. 2. The Architecture of a Kmon.

Kmon use visualize tools like flamegraph and heatmap to
increase readability for visualization high-density and non-
numerical indicators. Kmon consists of Provider, Collector,
Exporter, and eBPF. Provider collects the high-level informa-
tion and sends them to Collector for further indicators trans-
formation. Collector controls the behavior of eBPF programs
through the eBPF map, transforms and aggregates indicators
from eBPF programs. Exporter forms the indicators and stores
them into databases. Experiments show that Kmon can collect
fine-grained indicators at a low cost.

The contributions of this paper can be summarized as
follows:

• It not only enables eBPF to sense the changes of mi-
croservice, but also enables it to sense other high-level
information like changes of user-defined configuration.

• It is an attempt at storing, handling and visualizing
non-numeric in-kernel metrics for the distribution system
diagnosis.

• It unifies multiple in-kernel metrics in one system with
the same data format, reduces the workload of metrics
collecting and translating.

5BCC: github.com/iovisor/bcc

II. MOTIVATION

Firstly, capturing all types of indicators with a unified data
structure can reduce the cost of indicator aggregation. There
are various types of monitoring tools now. There is no doubt
they work well in some specific fields. However, it is difficult
to obtain a holistic view of a system with only one monitor
tool. Moreover, the output format of each tool is quite different.
Therefore, it is hard to combine all indicators in one view.

Secondly, a monitoring system that collects fine-grained
indicators can help people find out more problems. Here is
an example of livelock: if a process gets stuck in a livelock,
it still consumes CPU resources while does nothing useful for
its tasks. It cannot reflect a livelock problem only with CPU
usage. Livelock occurs between processes that will increase the
number of context switches. If we can obtain the number of
context switching or the execution stack of each context switch,
we are more likely to recognize such a problem.

Thirdly, a system that does not need instrumentation can
reduce the cost of development and deployment. Some metrics
in microservice, such as the latency of TCP messages, are hard
to collect. They can be captured via code instrument, or by
deploying software that results in an additional performance
loss of users’ programs like Istio. Kmon is designed without
any code instrument. Thus it has little impact on the new
applications and runtime applications.

III. APPROACH

A. System Architecture Overview

Kmon monitors microservices at three levels, which share
the same architecture when implemented. That is because
all indicators can be similarly collected by eBPF. Before
describing methods of monitoring at each level, the shared
architecture is introduced first. Fig. 2 illustrates the architecture
of Kmon.

• Provider: It collects high-level information which are sent
to Collectors for updating monitoring strategy.

• Collector(s): They load eBPF program and communicate
with them by eBPF maps. Each Collectors are responsible
for a type of indicator.

• eBPF Maps: eBPF maps are the key/value-based storage
structure in the kernel. In Kmon, they are used to send
control messages from Collector to eBPF programs (called
control maps), and collect metrics from eBPF program to
Collector (called data maps).

• eBPF Program(s): They run and hook some specific
events and functions in kernel to collects and store data
into data maps.

• Exporter: It receives the metrics from Collectors. Then it
aggregates those metrics and sends them to the database.

B. Provider

Provider (Fig. 3) is responsible for collecting high-level
information. The initial eBPF is used at the kernel level, so it
is hard to capture high-level information, such as microservice
information and user-defined configuration. However, as Kmon
is designed for microservice, it is necessary to provide this
information for eBPF. Without PID provided to identify the
program in a container, eBPF does not know which program
it needs to monitor; With notice of configuration changing by
a user, Kmon node can change its monitoring strategy without
restarting the node or the eBPF program.
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Fig. 3. The high-level information probed by Provider for data parsing

Provider also needs to provide necessary information for
Collector to parse data. For example, eBPF can collect kernel
stack in hook trigger, and stores addresses in form of unsigned
long integer, which is unreadable for humans, and hard to
analyze for algorithms without a kernel symbol table. So if
an indicator contains kernel stacks, Provider should collect
the kernel symbol table for Collector to convert addresses to
symbol names.

C. Collector
The Collector (Fig. 4) interacts with eBPF programs. It loads

the eBPF program into kernel and communicates with eBPF
programs via eBPF maps. Communications contain two parts:
to control behaviors of eBPF programs and to receive data
collected by eBPF programs.
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Fig. 4. The basic workflow of CollectorFor the former, Collectors analyze high-level changes from
the Provide. For example, if services are deleted or created,
Collectors should immediately notify eBPF programs of chang-
ing their monitoring PID list. If a user changes configurations
that are relative to some Collectors, these Collectors need to
reflect these changes to control maps. For the latter, Collectors
receive data from data maps. This raw data (bitmap, bytes
data, address, etc.) are usually human unreadable, so Collectors
should convert them to an appropriate form. These indicators
are sent to Exporter and stored in databases.

D. eBPF Maps and eBPF Program
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Fig. 5. The control maps and data maps in Kmon

To make Kmon a flexible system, eBPF programs(Fig. 5)
need to adjust their behaviors when microservice or configu-
ration changes.

One way for eBPF programs to adjust their behavior is to
recompile and reload them, which are used in BCC. It needs to

install the heavy compiling environment (e.g., LLVM, Clang,
etc.) in production environment. As microservice changes fre-
quently, recompiling of eBPF program for each change causes
much overload.

Kmon adjusts in another way, namely storing the control
message into eBPF maps. eBPF programs check maps for
choosing executive branch. The usage of these eBPF maps is
different from eBPF maps that store collected data. Therefore,
we name the former control maps and data maps respectively.
In this way, eBPF can be precompiled before deployed in the
system, avoiding the heavy compiling environment and the
recompilation overload in run-time.

E. Exporter
Exporter (Fig. 6) sends indicators collected by Collector to

databases. Exporter supports different databases by transfer
data forms to meet the requirements of databases.
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Fig. 6. The primary workflow of Exporter

IV. IMPLEMENTATION OF IN-KERNEL MONITORING

Kmon can collect various types of indicators via its archi-
tecture. There are too many types to decide which should be
focused on when monitoring, so a hierarchy of these indicators
for locating the problem is helpful.

Kmon classifies indicators into three categories(Fig. 7). The
first is TCP request level. TCP requests is common in microser-
vice and many abnormal detecting algorithms for microservice
depend on it. In this level, Kmon captures indicators of each
TCP connection such as quaternion and latency.
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Fig. 7. Three levels of performance indicators.

The second level is the topology level. Dynamic service
graph are formed by TCP request data. Nodes in the graph
represent service instances, and the link between nodes reflects
flows of recent network requests. It aggregates information of
each host from the whole microservice system. Data at this
level is intuitive for humans and algorithms to identify the
relation between services. According to the latency information
and topology, it is convenient for system operators to estimate
if there is an abnormal node in the graph.

The third level contains other fine-grained indicators for fur-
ther investigation. It includes metrics relative to CPU, memory,
block I/O, etc. The source code of eBPF programs for Kmon
refer to BCC examples, with some changes to match Kmon
architecture.



A. TCP Request monitoring
Here is an example of collecting indicators of TCP request.

Tbl. I shows what should be provided by Provider and Tbl. II
shows what kernel function should eBPF program to moni-
tor. The request latency is calculated by subtracting the first
received message timestamp from the last sending message
timestamp(Fig. 8), so eBPF should hook relative function call
to capture the time.

TABLE I
HIGH-LEVEL INFORMATION

PID Identify receiver of requests.
Service name Convert PID to service name for readability.
IP listen list Identify server side for persistent connection.

TABLE II
HOOKED KERNEL FUNCTIONS

tcp sendmsg Capture the time when TCP message sent
tcp cleanup rbuf and received, for latency timing.

security socket accept Capture the time when TCP connection
tcp close accept and close, for identify server

side for short connections.
Kmon only collects requests sent to servers, but it is difficult

to distinguish the direction after a socket being accepted. Kmon
uses the hook about “accept” and “close” operation to decide
short connection direction, which assumes that the server-side
executes the “accept” system call.

However, it is not suitable for a persistent connection. If a
connection was made before Kmon has been deployed, Kmon
cannot sense it. Hence Provider should collect the listen port
infomation. Kmon assumes that if the local host is on the
server-side, its IP and port should be in the local host’s IP
listening list.

tcp_cleanup_rubf
tcp_cleanup_rubf

tcp_cleanup_rubf
...

tcp_sendmsg
tcp_sendmsg

tcp_sendmsg
...

Latency

...

...

Fig. 8. TCP latency calculation.

B. Service Topology Monitoring
Service topology can be constructed by the data from TCP

requests. It searches all requests that occur in a period, draws
node and edge according to its source, and destination. It is a
dynamic topology as different topologies are constructed in
different periods, which is suitable for microservice for its
frequent changes. The data from TCP requests to construct
topology is sufficient, so no more Collectors are needed.

C. Fine-grained Performance Indicators
Other indicators share the same architecture of Kmon, but

with different eBPF programs and Collectors. Tbl. III and
Tbl. IV show the information about some implemented indi-
cators that the Provider and the eBPF program collect.

Network: we choose tcp drop as an example. It can capture
each packet dropped by kernel, with a stack for each dropping.
It can debug high-rate of drops. There are many indicators
about network like tcp connect and tcp accept. We introduce
tcp drop because others are similar and we have only imple-
mented tcp drop now.

CPU: Off-CPU time6 can capture what and when a process
is blocked. It is useful to analyze details of the process’s
or kernel’s behaviors7. Because capturing this indicator has
high cost as tracing scheduler is called frequently8, Kmon just
stores data for those who let processes go to “sleep” state
instead of each scheduling (While it is still high-cost.). This
indicator needs to store stacks of each schedule, which need
high memory. Inspired by Flame Graph, Kmon translate and
stores stack in trees. Each function call is a node of the tree
with its total durations. Collector constructs trees for each
interval (for example, 5s) to trace changes of a process.

Block I/O: Many metrics can be captured from three hooks
in Fig. III, such as I/O type and throughput. These metrics
are mainly gain from pointer of ”request” struct, which is the
parameter of hooked function. It can also capture I/O latency by
subtracting timestamps of “blk account io start” from times-
tamps of “blk account io done” It is useful to optimize I/O
performance, for example, placing service instances that always
write at the same time to different machines.

TABLE III
HIGH-LEVEL INFORMATION

Configuration For changing Kmon’s behaviour.
PID Identify and filter program of monitoring.

Service name Convert PID to service name for readability.
Kernel symbol table Convert stack address to symbol name.

Disk name Convert major and minor number of disk to name.

TABLE IV
HOOKED KERNEL FUNCTION

Type Hook descirbtion
Network tcp drop Capture TCP packets or

segments that were dropped
by the kernel.

Block I/O blk account io start Capture indicator about block I/O,
blk mq start request such as read-write type, throughput,
blk account io done latancy, I/O.

CPU activate task Capture the on and off CPU
deactivate task counts, time and its stack for

specific program.

We also implement a generic system call hook to count the
number of specific kernel functions called(e.g. tcp connect,
tcp drop, write, and read) specified by user. Some kernel
functions like system calls can reflect the type of program,
for example, the number of execution “read” or “write” may
be high for an I/O frequent service.

V. EXPERIMENT SETTING

Our experiment uses four Linux virtual machines with Linux
kernel v5.4 to make up a Kubernetes cluster. we use “Hipster
shop”9, a cloud-native microservices application demo from
google as a benchmark. It compromises 10-tier microservice
on which users can browse items, add them to the cart, and
purchase them. We change its load generator to k6, which can
get more metrics after load having been generated. The load
of k6 is set to be 100 users in all experiments.

Kmon node is deployed to each host via Kubernetes with
a new ClusterRole. ClusterRole is necessary to get permission
for Kmon node in a container to execute eBPF and collect
information of Kubernetes (e.g., namespace, pod name, service
name, nodes, etc.). The resource usage of service and Kmon
node is recorded by a metric server.

6www.brendangregg.com/blog/2016-01-20/ebpf-offcpu-flame-graph.html
7www.brendangregg.com/blog/2017-08-08/linux-load-averages.html
8github.com/iovisor/bcc/blob/master/tools/offcputime example.txt
9Hipstershop: github.com/GoogleCloudPlatform/microservices-demo



VI. EXPERIMENT AND RESULT

A. Performance metrics
To estimate the resource usage of an indicator of a Kmon

node, the first experiment runs Kmon node program manually
without the help of Kubernetes(K8s), and with the Exporter
disabled. It avoids the network overload of storage, so we can
focus on the indicator monitoring part.

The host which runs the Kmon node contains 3 of 10
services (“paymentservice”, “emailservice”, and “frontend”).
In the first experiment, Tools “top“ in Linux is used to measure
the resource usage of Kmon nodes.
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Fig. 10. Memory usage for micrioserive and Kmon node in a single host.

Fig. 9 and Fig. 10 show the CPU and memory usage of
the Kmon node. The CPU usage (exclude eBPF program) is
negligible while memory usage is relatively high. It is possible
to have more optimization for memory usage. We will do this
in the future.

After measuring the resource usage of one Kmon node, it
is necessary to estimate Kmon’s performance in the whole
microservice. In this part, Kmon is deployed in each host,
with 4 kinds of indicators collected, which is Network (TCP
request latency, drop message), Block I/O state (throughput,
count, type, stack), Function counter (system call “write” and
“read”), and Off-CPU time (stack, duration). Tbl. V shows
some of the results of exported TCP request data, which
contains timestamp, latency source, and destination.

The average resource usage for Kmon node in 30 minutes
is 9.55% in CPU usage) and 616.11MiB in Memory usage.
Tbl. VI shows the influence in response time.
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Fig. 11. Topology constructed by indicators collected in 1 minutes.

Fig. 11 shows the topology visualization of requests by
network data collected from this part of the experiment. For a

more fine-grained indicator in a pod, like “recommendation
service”, Fig. 13 shows the state at the beginning of K6
starts to generate load. The program in the pod sleeps longer
and more frequently. Combine with Fig. 12, which shows the
duration when the program is off-CPU in each type of stack.
Sleep (do nano sleep), synchronize (futex wait queue me)
and epoll (poll schedule ...) may cause its increasing.

VII. RELATED WORK

A. Intrusive Monitor Framework
The intrusive monitor frameworks need to change source

code or binary file of the user’s programs, which introduces
addtional overhead. Pythia [5] focuses on where, what, and
when to instrumentation in a distributed application in an au-
tomatic way. Seer [6] and MicroRank [9] instrument trace API
to microservice applications for request information to match
patterns of services. The work [10] increases observability by
inserting API hooks into source code for distributed system
diagnosis. Compared with the previous works, users can get the
detailed monitor information with the help of Komn without
any instrumentation.

B. Non-intrusive Monitor Framework
Contemporary in-kernel monitoring tools such as ftrace10

and sysdig [4] can gain fine-grained indicators on a single
host, but they are hard to collect and aggregate indicators
from all nodes in microservice environment. Microscope [11]
captures the network connection information of microsercice
systems to monitor the changes of service dependency graphs.
Microscaler [12], [13] uses the Service Mesh to monitor
metrics of microservice systems. However, Microscope and
Microscaler cannot get the system-lever metrics.

Chang et.al., [2] use the Bayesian model to analyze data
collecting by eBPF collected by valtrace. The study in [7]
uses the random forest model to analyses network-related
metrics from eBPF in virtual machines. Both studies are
focus on algorithms rather than fitting dynamic environment.
Compared with the previous works, Kmon is more suitable
for a dynamical microservice environment and can gain fine-
grained indicators efficiently.

VIII. CONCLUSION

To create a transparent monitoring system with fine-grained
indicators, we introduce Kmon, an eBPF based system. It
transparently captures various types of indicators and organizes
them in three levels, which is convenient for system operators
and algorithms. Experiments show it has low CPU usage and
little influence on service response time.

In the future, we aim to find a better way to capture TCP
connection information on fewer assumptions. The current
assumption of TCP requests is not suitable for some specific
type of service like Message Queue. The memory usage of
Kmon also needs to be reduced. Two directions are considered.
One is to use library libbpf instead of libbcc, which uses less
memory in run-time with portability, The other is to find a
better representation of indicators to compress their size.

DATA AVAILABILITY

The source code of Kmon system can be found in zenodo:
https://zenodo.org/record/4596298.

10ftrace: www.kernel.org/doc/Documentation/trace/ftrace.txt



TABLE V
RECORD OF TCP MESSAGE SENDING

time service latency (ns) myIP:port peerIP:port
Jan 15, 2021 @ 21:56:13.206 emailservice 375170 172.20.1.132:8080 172.20.2.134:51614
Jan 15, 2021 @ 21:56:13.200 shippingservice 676425 172.20.1.129:50051 172.20.2.134:50330
Jan 15, 2021 @ 21:56:13.199 cartservice 594035 172.20.1.132:7070 172.20.2.134:53604
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TABLE VI
RESPONSE INFLUENCE FOR MICROSERVICE IN 30 MINUTES

With Kmon Node Without Kmon Node
Response-time(Avg) 361.97ms 348.97ms
Response-time(P95) 790.09ms 784.09ms
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