
LogReducer: Identify and Reduce Log Hotspots in
Kernel on the Fly

Guangba Yu
Sun Yat-sen University

Tencent Inc.
yugb5@mail2.sysu.edu.cn

Pengfei Chen*

Sun Yat-sen University
chenpf7@mail.sysu.edu.cn

Pairui Li
Tencent Inc.

perryprli@tencent.com

Tianjun Weng
Tencent Inc.

tianjunweng@tencent.com

Haibing Zheng
Tencent Inc.

mattzheng@tencent.com

Yuetang Deng
Tencent Inc.

yuetangdeng@tencent.com

Zibin Zheng
Sun Yat-sen University

zhzibin@mail.sysu.edu.cn

Abstract—Modern systems generate a massive amount of logs
to detect and diagnose system faults, which incurs expensive
storage costs and runtime overhead. After investigating real-
world production logs, we observe that most of the logging
overhead is due to a small number of log templates, referred to as
log hotspots. Therefore, we conduct a systematical study about
log hotspots in an industrial system WeChat, which motivates
us to identify log hotspots and reduce them on the fly. In this
paper, we propose LogReducer, a non-intrusive and language-
independent log reduction framework based on eBPF (Extended
Berkeley Packet Filter), consisting of both online and offline
processes. After two months of serving the offline process of
LogReducer in WeChat, the log storage overhead has dropped
from 19.7 PB per day to 12.0 PB (i.e., about a 39.08% decrease).
Practical implementation and experimental evaluations in the test
environment demonstrate that the online process of LogReducer
can control the logging overhead of hotspots while preserving
logging effectiveness. Moreover, the log hotspot handling time
can be reduced from an average of 9 days in production to 10
minutes in the test with the help of LogReducer.

Index Terms—Log Hotspot, eBPF, Log Reduction, Log Parsing

I. INTRODUCTION

Over the years, software systems have become increas-

ingly large and complex, which has primarily exacerbated the

difficulty of maintaining them [1]–[5]. Logs, which record

runtime information of systems, are the favorite data source

used by Site Reliability Engineers (SREs) to check system

status, detect anomalies and diagnose root causes [6]–[9]. A

large system can produce a massive amount of logs to cope

with a wide range of faults. As shown in Figure 1, a large real-

world instant messaging application WeChat produces about

16-20 pebibyte (PB) (75-100 trillion lines) of logs per day.

Although logs are helpful, it is crucial to avoid excessive

logging, as logging incurs both storage cost (§ III-B) and

runtime overhead (§ III-C). To reduce logging overhead, we

conduct a study on the characteristics of logs in a real-

world system. What surprised us was that most of the logging
overhead is due to a very small number of log templates, where

log template is the constant part of a log statement in the code.

For example, for service 1 of WeChat in Figure 6, the top1 log

5 10 15 20 25 30
16

17

18

19

20

Log Store
Log Line

Day

Lo
g
St
or
e
(P
B)

75
80
85
90
95
100

Lo
g
Li
ne

(T
ri
lli
on
)

Fig. 1. In April 2022, WeChat produced about 16-20 pebibyte (PB) (around
75-100 trillion lines) of logs per day.

Fig. 2. Process of log hotspot identification and reduction.

template consumed 95.7% of the storage, while the remaining

297 templates consumed 4.3% of the storage of service 1. We

refer to these templates that take up most of the storage as log
hotspots.

Therefore, reducing log hotspots can efficiently reduce most

of the logging overhead. However, as shown in Figure 2,

due to the complex testing and release mechanisms (e.g.,

gray release 1), developers take on average 9 days to fix log

hotspots (§ III-F). Existing efforts mainly focus on where to

log during the development phase [10]–[13], which cannot

reduce hotspots at runtime in a timely manner. Some log

compression approaches can reduce the storage overhead [14]–

[16], but they cannot prevent the overhead of writing logs to

disk and sending logs to the database. In other words, there is a

gap between the log hotspots detection of SREs and the fixing

of hotspots of developers, which leads to expensive costs for

application performance and log storage.

To fill this significant gap, we first systematically study

log hotspots in a real-world system WeChat, focusing on

the impact of log hotspots, why they occur and how to

1Gray release is the process of gradually switching from the existing system
to the novel system with a new version.

1767

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00151

fix them. After studying the log hotspots for 19 services

and interviewing 19 experienced developers at WeChat, we

obtained some insightful findings on detecting and fixing log

hotspots. This empirical study also motivated us to reduce log

hotspots on the fly.

To achieve that goal, we propose a non-intrusive, language-

independent, and efficient log reduction framework based on

eBPF (Extended Berkeley Packet Filter) [17], namely LogRe-
ducer, which automatically identifies log hotspots and reduces

them at runtime. LogReducer is composed by three modules

including Log Parser, Hotspot Classifier and Log Filter. First,

Log Parser periodically queries raw logs from the database

and parses them as log templates. Hotspot Classifier takes

log templates and storage information as input to determine

which log templates are hotspots. If log hotspots exist for a

service, Hotspot Classifier notifies developers with reduction

tasks offline. To reduce the impact of log hotspots during the

fixing phase, LogReducer launches a Log Filter on each node

that holds an instance of that service in the online process.

Afterward, Log Filter loads the information of hotspots into the

Linux kernel and efficiently filters and eliminates log hotspots

in the Linux kernel space based on eBPF on the fly.

Contribution. To sum up, this work makes the following

major contributions:

• We conduct a systematical study about log hotspots in a

real-world system to reveal the impact of log hotspots,

why log hotspots occur, and how to fix them.

• We propose a non-intrusive, language-independent, and

efficient log reduction framework to identify log hotspots

automatically and reduce them on the fly.

• The offline process of LogReducer is already adopted in

an industrial system WeChat and is used by SREs daily.

After two months, the storage overhead of logs dropped

in WeChat from 19.7 PB per day to 12.0 PB.

• We conduct extensive experiments to validate the effi-

ciency of the online process of LogReducer in reducing

log hotspots at the program running. The fixing time

of hotspots can be reduced from an average of 9 days

in production to 10 minutes in test with the help of

LogReducer.

II. BACKGROUD

WeChat System. WeChat is a large real-world instant mes-

saging system serving billions of users globally. The backend

of WeChat is constructed based on a microservice architecture,

which accommodates more than 20,000 services running on

over 600,000 machines. WeChat essentially needs to handle

hundreds of millions of requests per second. To maintain

this large and complex system, software developers insert

logging statements into the source code to record necessary

runtime information, such as the state of the system and error

messages.

Log template and lifecycle. Although logs have brought

benefits, generating, collecting, and storing such massive logs

impose an expensive burden on WeChat. As depicted in Fig-

ure 1, WeChat can produce 20 PB logs per day. To reduce the

Fig. 3. An example of log format, logging statement, log message, and
log template after log parsing in WeChat. Due to confidentiality, we do not
disclose the service, file, and function names.

Fig. 4. The life cycle of a log from generation to persistence.

logging overhead, we first need to understand the template and

lifecycle of logs. As shown in Figure 3, logs are composed of

log headers (e.g., level and time) and log information, which in

turn consists of two elements: 1) static descriptive words hard-

coded in source code (e.g., REQ); 2) dynamic variables vary

with executions (e.g., RequestID). The log level is represented

as <level> at the beginning of logs. < 1 >,< 2 > and

< 3 > in log signatures represent Important, Error and Debug
respectively. Log headers are usually generated automatically

by log formats, while developers specify log information in

logging statements. A log template is the constant part of logs

generated by the same log statement [18].

Figure 4 provides an overview of the logs’ life cycle

in relation to different stages in production. 1© Write log:
services write logs into log files continuously whenever the

execution flow reaches logging statements; 2© Scrape log: a

log agent (e.g., Promtail [19]) of each node scrapes updated

logs from logs files; 3© Send log: a log agent pushes logs

to collectors (e.g., Loki [20]) via the network. 4© Store
log: a log collector persists logs into the log database (e.g.,

ClickHouse [21]) and rotates them periodically. From the life

cycle, we can conclude that logs not only affect the cost of

storage but also consume resources (e.g., CPU) when writing

logs and network bandwidth when sending logs.

Log hotspots. We formally define log hotspots as fol-

lows. Given a service A, it has n log templates, denoted

log1, log2, ..., logn, which correspond to logging statements.

Suppose that logs of A occupy S GB space in the last time

window, where log1, log2, ..., logn occupy S1, S2,, Sn GB

space (S = S1 + S2 + ...+ Sn) respectively. A log template

logi is recognized as a log hotspot if and only if

Si

S
> ξ, (1)

where ξ (ξ = 0.05 by default) is the threshold set by SREs.

Considering log hotspots are non-transient and last for a long

time without human intervention, we choose a moderate time

window (10 minutes by default) to avoid transient noises and

respond to hotspots timely. Note that the threshold can be

tuned in other systems based on the tolerance to log hotspots,

which is not the focus of this work.

1768

Other
Services
(47.2%)

Top20
Services
(52.8%)

4

5 Services

2
3

5

1 0 hotspot
1 hotspot
2 hotspots
3 hotspots
4 hotspots
5 hotspots

Fig. 5. The top 20 services with the highest storage in WeChat account for
52.8% of the total storage. 19 of the 20 services contain at least one log
hotspots.

III. EMPIRICAL STUDY ON LOG HOTSPOTS IN INDUSTRY

A. Data Collection and Research Questions

In this section, we aim to investigate the characteristics of

log hotspots. We analyzed the logs of the top 20 services

with the highest log storage in WeChat on May 7th, 2022,

based on our log parser in Section IV-C. In total, we found

57 log hotspots from 19 services. For each service, we can

identify the service owner who is responsible for that service

through the code repository. We sent the log hotspots to the

corresponding developers, who determined that all of them

could be eliminated.

We then experienced the entire processes of reducing 57 log

hotspots and interviewed 19 corresponding service owners to

understand why log hotspots were generated and how to deal

with them. Since all the interviewees are experienced code

maintainers and familiar with hotspot log statements, we take

the ideas of the interviewees as the primary guide of root

causes and solutions. During each interview, the interviewer

presented the root cause and the solution for each log hotspot.

We then summarised the presentation as a category. For

example, if the root cause presentation was “The log statement

is a test log that we forgot to remove”, we summarised it

as “Forgotten Test Log” type. If interviewees agree with our

summaries, they will confirm our results. Otherwise, they can

modify our results until matching their views.

Based on the 57 log hotspots from WeChat, our study aims

to address the following research questions (RQs):

• RQ1: How do log hotspots impact storage?
• RQ2: How do log hotspots impact runtime?
• RQ3: What are the root causes of log hotspots?
• RQ4: What are the fixing solutions of log hotspots?
• RQ5: How long do developers take to fix log hotspots?

B. RQ1: Storage Overhead of Log Hotspots

The left part of Figure 5 shows the top 20 services with the

highest log storage, accounting for 52.8% of the total storage,

while the other 20,000+ services account for the remaining

47.0%. This result shows that optimizing the logs of the top

20 services is the most cost-effective. Therefore, we dug into

the logs of these 20 services to mine knowledge related to

log hotspots. From the right part of Figure 5, 19 services (19

out of 20) contain at least one log hotspot, revealing that log

hotspots are common in industrial systems. Specifically, there

are 5, 3, 2, 5, and 4 services containing 1, 2, 3, 4, and 5 log

hotspots, respectively.

Figure 6 shows the storage percentage of log hotspots for the

19 services that contain log hotspots. For confidentiality, we

use the number ID to indicate the names of the services. The

gray color denotes the sum of the storage percentage of all log

templates that are not hotspots, while the other color indicates

the storage percentage of a log hotspot. From Figure 6, we

observe that log hotspots occupied an average of 57.86%

of the corresponding service’s storage. In particular, the log

hotspot of service 1 occupied 95.7% of the storage, while the

other 297 log templates only took up 4.3% of the storage of

service 1. The results in Figure 6 demonstrate that most of

the logging overhead is due to a small number (less than 6) of

log hotspots. These results suggest that streamlining a small

number of log hotspots can reduce the storage overhead by

a significant amount. Compared with traversing and checking

all logging statements, developers only need to handle a small

number of logging statements if hotspots are identified, which

is cost-effective in reducing storage overhead.

Finding 1. Log hotspots are prevalent in different

services. A small number of log hotspots occupy an

average of 57.86% of the corresponding storage.

Implication 1. Reducing log hotspots is cost-effective

in reducing storage overhead.

C. RQ2: Runtime Overhead of Log Hotspots

Runtime overhead is considered a major cost of log-

ging [22], [23], as generating log strings involves string

concatenations and possible method invocations, writing logs

into log files involves expensive IO operations, and sending

logs into the log collector backend involves significant network

overhead. Some log hotspots overwhelmingly generate similar

log messages repeatedly, which incurs an unignorable and

unnecessary runtime overhead.

To investigate the runtime overhead of log hotspots on

real systems, we worked with developers to experience the

complete reduction process from detecting log hotspots on

Service 16 to the finishing of the gray release. On May 9,

2022, we detected that Service 16 contains 5 log hotspots and

reported them to its developer. The developer fixed the log

hotspots on 10 May and released the new version entirely

on May 12. Specifically, this new version only modifies the

logging statements compared to the old version. After fixing

the log hotspots, the log volume of Service 16 has dropped

from 162 TB (on May 9) to 3.66 TB (on May 13) under a

similar workload, a reduction of 97.7%.

Figure 7 shows the resource usage and performance of

Service 16 before and after the logging hotspot fix (i.e., May

9 and May 13). From 7, we observe that Service 16 with

log hotspots consumed up to 5.18% more CPU (58 cores in

total) and 0.6% more memory (73 GB in total) per minute

than Service 16 without log hotspots. Additionally, Service 16

1769

4.3 7.9
19.7

45.75
63.3

19.35
43

53.9 48.2 54.68
66.77

14.92

43.09

70.18 74.38

39.5 39.04 41.24 51.44

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20

40

60

80

100
St
or
ag
e
Pe
rc
en
ta
ge
(%

) Others
Hotspot5
Hotspot4
Hotspot3
Hotspot2
Hotspot1

Service Number

Fig. 6. For services containing at least one log hotspot in Figure 5, log hotspots occupy an average of 57.86% of the corresponding service storage.

0 200 400 600 800 1000 1200 1400
15

16

17

18

0 200 400 600 800 1000 1200 1400

20

40

60

0 200 400 600 800 1000 1200 1400

14

15

0 200 400 600 800 1000 1200 1400
16

18

20

22

W
or
kl
oa
d
A
ft
er

Lo
ga
ri
th
m
ic

With Log Hotspot
Fixed Log Hotspot

C
PU

U
sa
ge

R
at
e
(%

)
M
em

or
y
U
sa
ge

R
at
e
(%

)
La

te
nc
y
(m

s)

Time (Second)
Fig. 7. Under a similar workload, Service 16 with log hotspots consumed up
to 5.18% more CPU and suffered up to 3% additional response latency than
Service 16 after fixing log hotspots.

with log hotspots suffered up to 3% more response latency (1.8

ms) than Service 16 without log hotspots. Moreover, fixing log

hotspots reduced the number of logs sent from Service 16 to

the log collector from 162 TB to 3.66 TB per day, a significant

saving in network bandwidth.

Finding 2. Log hotspots incur unignorable resource

consumption (e.g., CPU, memory, IO, and network

bandwidth) and performance degradation.

Implication 2. Reducing log hotspots not only op-

timizes the resource consumption of applications but

also improves their performance.

D. RQ3: Root Causes of Log Hotspots

It is worth noting that in the case of Figure 7 the 5 log

hotspots for Service 16 took up 61.5% of the log volume,

while the total log volume was reduced by 97.7%. This is

because when developers fixed the log hotspots, they found

some unnecessary logs printed for the same reasons as the log

hotspots. As a result, they reduced these unnecessary logs as

well. For example, the root cause of the top 1 log hotspot

of Service 16 is a forgotten test log. When the developer

checked the logging statement of the log hotspot, he also found

other forgotten test logging statements and removed them. This

motivates us to understand the nature of log hotspots in order

to help developers avoid printing unnecessary logs.

As described in Section III-A, for each log hotspot in Fig-

ure 6, we interviewed its service owners to label the root cause

and corresponding solution. Based on the labeling process, we

identify the following 8 root causes of log hotspots.

1© Incorrect Log Level. This kind of log hotspots is caused

due to incorrect log levels, such as debug logging statements

are set to error level. The incorrect log level in the logging

framework would produce massive amounts of low-level logs

because p level logging statement is enabled in the q level

logging framework if p >= q.

2© Forgotten Test Log. This kind of log hotspots is caused

by developers forgetting to delete logging statements used in

the testing phase when releasing services.

3© Dependent Module Fault. This kind of log hotspots

occurs because a service’s dependent down-streams modules

are experiencing intermittent faults. Thus the service would

continue to print similar error logs or throw exceptions due to

failed invocations.

4© Dependent Package Log. This kind of log hotspots

occurs because developers focus on the logging statements

in their code while ignoring the logs printed by the logging

statements in their dependent packages.

5© Incorrect Log Dye. Log dye is a general method of

reducing log volume by adding staining marks to specific

requests and only sampling the logs of those requests. This

kind of log hotspots is caused by the incorrect configuration

of log dye that results in sampling all logs.

6© Reasonable Hotspot. This root cause refers to that

developers determined that the log hotspots are necessary for

diagnosing faults, and the massive amount of logs is caused

by the massive workload volume.

7© Self-Module Fault. This kind of log hotspots is caused

by the problematic implementation logic of the service.

8© Others. Each log hotspot in this root cause is unusual

and cannot be assigned to any other root cause.

Table I shows the statistics of log hotspots corresponding

1770

TABLE I

STATISTICS OF ROOT CAUSE FOR LOG HOTSPOTS.

Root Cause
Metric Distribution Fixing Time(day)

Count % Mean Std Med

Incorrect Log Level 23 40.35 10.91 11.28 5

Forgotten Test Log 13 22.8 4.76 1.87 4

Dependent Module Fault 6 10.5 2.83 0.408 3

Dependent Package Log 5 8.77 3 0 3

Incorrect Log Dye 4 7.01 41 0 41
Reasonable Hotspot 3 5.26 5 2.0 5

Self-Module Fault 2 3.5 2 1.41 2

Others 1 1.75 3 0 3

Total 57 100 9.31 11.83 3

to the identified root causes. Among all these root causes,

Incorrect Log Level and Forgotten Test Log are the two

most common root causes, accounting for 63.15% of log

hotspots in total. The reason mainly lies in that developers

focus more on program logic than on logging statements,

resulting in poor log quality. This indicates that the automated

approach that leverages the features of logging statements

to make suggestions on choosing log locations and levels

may be helpful during the development phase [10]–[12],

[24], [25]. Moreover, we observe that faults may accompany

log hotspots (e.g., Dependent Module Fault and Self-Module

Fault). Therefore, timely detection of log hotspots can improve

system availability.

Finding 3. Among all root causes, the two most

common root causes are Incorrect Log Level and

Forgotten Test Log, accounting for 63.15% in total.

Implication 3. Root causes across services have com-

mon points. Understanding these root causes can help

to reduce the occurrence of log hotspots. Intelligent

log location and level suggestions will be appreciated.

E. RQ4: Fixing Solutions of Log Hotspots

After figuring out the root causes of log hotspots, we experi-

enced the processes of fixing log hotspots with developers and

interviewed them to label the solutions. Based on the labeling

process, we identify the following 7 fixing solutions.

1© Correct Log Level. This solution refers to that devel-

opers choose a higher log level (e.g., from debug to error) for

the log format.

2© Delete Log Statement. This solution refers to that

developers determine the logging statements are unnecessary

and delete the statements of log hotspots.

3© Mitigate Module Fault. This solution refers to develop-

ers identifying faults in dependent modules or their modules

when checking for log hotspots and then mitigating module

faults to reduce log hotspots.

4© Turn on Log Dye. This solution indicates that devel-

opers determine the logging statements are necessary, but not

TABLE II

STATISTICS OF ROOT CAUSE FOR LOG HOTSPOTS.

Root Cause
Metric Distribution Fixing Time(day)

Count % Mean Std Med

Correct Log Level 18 31.57 11.77 12.68 3

Delete Log Statement 17 29.82 5.76 2.07 7

Fix Module Fault 9 15.78 2.66 0.7 3

Turn on Log Dye 6 10.52 3 0 3

Correct Log Dye 4 7.01 41 0 41
Merge Log Statement 2 3.5 4 1.41 4

Reduce Log Length 1 1.75 7 0 7

Total 57 100 9.31 11.83 3

all requests need to be recorded. Therefore, they try to turn

on the log dye and record only those requests with staining

marks.

5© Correct Log Dye. This solution refers to the fact

that developers observe that the log dye is not working

because it was incorrectly configured. Thus, they correct the

configuration of log dye and release the service.

6© Merge Log Statements. This solution refers to that

developers determine the logging statements are necessary, but

they find that some log statements can be merged and printed

together to reduce log content.

7© Reduce Log Length. This solution refers to the cases

where developers observe that the number of logs is not very

large, but the length of logs is very long (more than 1000

chars). Therefore, developers try to reduce the length of the

logs to reduce log content.

Table II shows the statistics of fixing solutions correspond-

ing to log hotspots. Among all these solutions, Correct Log

Level and Delete Log Statements are the two most common

solutions, accounting for 61.69% of log hotspots in total. To

reveal why these two are the most frequent fixing solutions,

we depict the relation between fixing solutions and root causes

in Figure 8. From Figure 8, we observe that the reason lies

primarily in the poor log quality discussed in Section III-D.

Specifically, 18 of 23 log hotspots caused by Incorrect Log

Level and 12 of 13 log hotspots caused by Forgotten Test

Log are fixed by Correct Log Level and Delete Log State-

ment. Moreover, for the reasonable log hotspots, developers

attempted to reduce the amount of logs by Turn on Log Dye,

Merge Log Statement, and Reduce Log Length. These fixing

solutions can also be applied during development to prevent

log hotspots.

Finding 4. Among solutions, the two most common

fixing solutions are Correct Log Level and Delete Log

Statement, accounting for 61.69% in total.

Implication 4. Developers can benefit from historical

solutions that not only speed up the fixing but also

prevent log hotspots during the development phase.

1771

0 0 0 1 0 0 0

0 0 2 0 0 0 0

0 0 0 0 0 2 1

0 0 0 0 4 0 0

4 0 1 0 0 0 0

1 0 5 0 0 0 0

1 11 1 0 0 0 0

12 6 0 5 0 0 0

Co
rre
ct
Lo
g L
ev
el

De
let
e L
og
Sta
tem
en
t

Fix
Mo
du
le
Fa
ult

Tu
rn
on
Lo
g D
ye

Co
rre
ct
Lo
g D
ye

Me
rge
Lo
g S
tat
em
en
t

Re
du
ce
Lo
g L
en
gth

Others

Self-Module Fault

Reasonable Hotspot

Incorrect Log Dye

Dependent Package Log

Dependent Module Fault

Forgotten Test Log

Incorrect Log Level

0

2

4

7

9

11

13

Fix Solution

R
oo
tC

au
se

Fig. 8. The relation between fixing solutions and root causes.

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at
iv
e
Fr
ac
tio
n

Fix Time(day)
3 31
3%

90%

Fig. 9. Distribution of fixing time of log hotspots.

F. RQ5: Fixing time of Log Hotspots

Figure 2 shows that fixing log hotspots needs to experience

three phases (i.e., development, test, and release) after devel-

opers were notified by log hotspots. We use fixing time to

denote the time it takes for developers to fix a log hotspot. It

includes the time taken to modify programs, test the updated

programs, and release new versions. Figure 9 shows the CDF

(Cumulative Distribution Function) of the fixing time of log

hotspots. We observe that most of the log hotspots are not

fixed by developers in time. For 97% of log hotspots, it

takes developers at least 3 days and on average 9 days to

fix them. About 10% of the log hotspots even took more than

30 days to fix. Two main reasons cause the long fixing time:

1) the complex test and release process of modern software;

2) the cost of storing logs is not a concern for developers

but SREs, resulting in no incentive for developers to reduce

logs. Such a long fixing time leads to a significant gap between

detecting log hotspots by SREs and fixing them by developers,

which leads to expensive costs in system performance and log

storage.

In addition, after monitoring the services continually in

Figure 6, we find that after a service’s current log hotspots are

fixed, new log hotspots may continue to emerge as successive

updates on the service. Figure 10 shows the distribution of the

number of times new hotspots that appear in two months after

their historic hotspots have been fixed. As shown in Figure 10,

18 of 19 services have been alerted by our LogReducer (details

in Section IV), because new log hotspots appear. Furthermore,

two services have even encountered 6 log hotspot alerts in

two months due to frequent releases. Therefore, reducing log

hotspots is not a one-time task but a repetitive one. There is

22
3

5
4

1
2

0 1 2 3 4 5 6
0

2

4

6

Se
rv
ic
es
C
ou
nt

Number of New Log Hotspots Appearing

Fig. 10. Distribution of times of new log hotspots appearing in two months

after old log hotspots in Figure 6 have been fixed.

a need to reduce hotspots automatically.

Finding 5. For 97% of log hotspots, developers need

at least 3 days and on average 9 days to fix them. After

the historical hotspots are fixed, 18 of the 19 services

encounter new log hotspots.

Implication 5. It is important and necessary to auto-

matically fill the gap between the detection and fixing

of log hotspots in production environments on the fly.

IV. LogReducer FRAMEWORK

As shown in the above studies, a small number of log

hotspots account for most of the logging overhead. Never-

theless, we notice that most of the log hotspots could not be

fixed by developers in time. SREs are desperate for a tool to

automatically identify log hotspots and reduce them.

A. Design Challenges

Designing a practical log reduction approach against log

hotspots poses several challenges:

1) Massive log volume. WeChat produces around 75-100

trillion lines of logs per day (Figure 1). The approach

must be fast enough to handle such a large volume of

logs without affecting the performance of applications.

2) Free of developer effort. The log reduction approach

should be transparent to developers and should not place

an additional burden on developers.

3) Multiple program languages. WeChat consists of

20,000+ services developed by different teams using

different programming languages. The log reduction

approach should be compatible with multiple languages.

4) Online production environment. WeChat serves bil-

lions of users in the production environment. To avoid

impacting the quality of services, the log reduction ap-

proach should be enabled on the fly rather than restarting

services.

Existent possible reduction methods are still criticized for

their unsatisfactory granularity and efficiency. 1) Adjusting

log configuration typically filters a kind of log rather than

a specific template. For example, if adjusting the log level

from debug to error, all debug logs would not be printed. Ad-

ditionally, adjusting software configurations usually requires

1772

Fig. 11. An overview of the proposed LogReducer framework.

restarting systems to activate new configurations, which is

unacceptable in production. 2) If filtering log hotspots in log

agents, it results in massive disk IO operations to write logs to

disks, which is inefficient and resource intensive when facing

massive logs. 3) If filtering log hotspots in log collectors, in

addition to huge IO operations, significant network bandwidth

is consumed to send log hotspots to log collectors, which af-

fects the response latency of services. To address all the above

shortcomings of existent methods, we propose LogReducer, a

non-intrusive, language-independent, and efficient framework

designed to filter log hotspots in the Linux kernel space.

B. Framework Overview

Figure 11 shows the framework of LogReducer 2. 1© Log

Parser module periodically queries logs of a service from the

log database and parses the raw logs to log templates (§ IV-C);

2© Hotspot Classifier module determines whether the service

contains log hotspots based on the storage information of log

templates (§ IV-D); 3© Hotspot Classifier module triggers the

log reduction process for both offline and online process if log

hotspots exist. In the offline process, LogReducer notifies the

developers of the service to fix the root causes of hotspots;

4© In the online process, our Python Log Filter module loads

the eBPF code and log template information into kernel space

(§ IV-E1); 5© eBPF Log filter module intercepts sys write()
syscall when a service instance attempts to write logs into

a file. If the contents of intercepted logs match the log

templates of log hotspots, LogReducer drops them in kernel

space (§ IV-E2).

C. Log Parser

For each service, the Log Parser module periodically queries

all logs in the last time window from the log database as input.

Considering log hotspots are non-transient and last for a long

time without human intervention, SREs choose a moderate 10

minutes time window to avoid transient noises and respond to

2https://github.com/IntelligentDDS/LogReducer

hotspots timely. As shown in Figure 3, Log Parser is applied to

convert unstructured raw logs into structured log templates that

would facilitate further analysis. Parsing a raw log message

consists of automatically extracting necessary log headers

and distinguishing common parts from the dynamic variables.

Writing a regular expression for every logging statement is

labour-intensive and time-consuming in practice. Thus, some

automatic log parsers have been proposed in recent years [26]–

[30].

However, existing log parsers are still complained for the

unsatisfactory parsing accuracy and performance. Specifically,

AEL [27] took about 450 seconds when parsing one million

log messages. Owing to code reuse, a service may have some

of the same logging statements in different code locations. Ex-

isting log parsers that extract common parts as templates tend

to mistakenly treat the same logging statements at different

code locations as the same template.

For convenience, we name the strings that can uniquely

identify a logging statement as the log signature. To deal

with the problems mentioned above, we propose a log parser

that combines log signature matching and frequency analysis

to parse large log files efficiently. In this study, we use the

location of the logging statement (e.g., controller.go:107 in

Kubernetes Controller [31]) as the log signature because it is

precisely bound to the logging statement. In fact, adding code

location into logs is common in open-source systems such as

Kubernetes [32] and Promethues [33], as well as in industrial

systems such as WeChat and Tencent Cloud [34].

Figure 12 depicts an example of Log Parser. 1© Given a raw

log message, Log Parser conducts word splitting with spaces,

tabs, or other special characters. Log Parser then uses regular

expressions to extract the log level, service name, and code

locations from log headers and filter out numeric characters.

After that, the log messages are clustered into coarse-grained

groups based on their code location. Log Parser also records

the total storage usage of the logs in each cluster in this

phase; 2© For each cluster, Log Parser builds a frequency table

that has the number of times a particular word occurs in the

first log in that cluster. In the table of Figure 12, we show

a frequency table after we parse through the 3 logs in the

[s1.cpp:6] cluster; 3© For each cluster, Log Parser looks for

words with as many occurrences as or more than the number of

logs in that cluster. We extract log templates based on a key

property, i.e., if the word appears in every log in a cluster,

then it is a constant word. Finally, Log Parser consolidates the

extracted information of log headers and all constant words to

the log template.

D. Hotspot Classifier

Hotspot Classifier module takes the log templates and

corresponding storage information as input. It identifies log

hotspots from all log templates based on Equ. 1. In this study,

WeChat SREs empirically set ξ = 0.05. For the identified

hotspot, Hotspot Classifier triggers a reduction process in the

offline and online processes, respectively.

1773

Fig. 12. An example process of Log Parser. For confidentiality, we replace

the service, files, and uins in logs as dummy ones.

In the offline process, if log hotspots exist in a service,

Hotspot Classifier alerts the developers of the service inform-

ing them of the locations and templates of the log hotspots.

Lessons learned from the empirical study (§ III) can help de-

velopers speed up locating the root causes of log hotspots and

fixing them. After developers have fixed the log hotspots, the

updated service will be redeployed to the online environment.

These hotspots will not appear in the new release.

In the online process, we need to fix log hotspots on the

fly, as systems in production cannot be stopped. When Hotspot

Classifier identifies a log hotspot for a service, it will start a

Log Filter on each node that holds an instance of that service.

Filtering all log hotspots without developers’ intervention is

decided by SREs because it is costly to diagnose an issue if a

tremendous amount of redundant logs is present [22]. These

filters can also be stopped if developers do not wish to filter

that log hotspot. After developers have fixed the log hotspot,

LogReducer will remove these Log Filters.

E. Log Filter

As discussed in Section IV-A, our Log Filter module is ex-

pected to be efficient, non-intrusive and language-independent.

Thus, in this study, we use eBPF (Extended Berkeley Packet

Filter) [17] to intercept and filter the write operations of log

hotspots in the kernel space.

eBPF is an in-kernel virtual machine that allows running

user space-provided code in the kernel in a sanitized way [35],

[36]. An eBPF program can be loaded from the user space

to the kernel space and triggered by a specific kernel event,

e.g., file writing. Compared with BPF, eBPF introduces a new

bytecode and just-in-time compilation, which allows eBPF

programs to achieve native code performance [37]. eBPF

programs can maintain and access persistent memory thanks

to kernel data structures called BPF maps [38]. BPF maps

are used to communicate between different eBPF programs or

between eBPF programs and user applications. Our Log Filter

is implemented with BPF Compiler Collection (BCC) [39],

a development toolchain for eBPF programs that combines

Python user space code with eBPF code written in C.

Given a target log hotspot of a service, Log Reducer
launches a Log Filter on each host that holds the service

based on the configuration management database (CMDB).

In this study, we name the Python user space code and eBPF

code in Log Filter as Python Log Filter and eBPF Log Filter,

respectively.

1) Python Log Filter: Our Python Log Filter takes infor-

mation about the target service and the log hotspot as input.

The Python Log Filter on each host then locates all the process

IDs (PIDs) associated with the target service on that host. Each

service runs as a process with a command line (i.e., service

name). We associate processes with services by searching the

processes of the command line with the Linux tool Process

Status (ps). For example, “ps -ef | grep service name”. For

each PID, Python Log Filter obtains the file descriptor (FD)

of its log file and the location of the log signature (e.g., the

location of log signature [s1.cpp : 6] in Figure 12 is 5) by

monitoring its open file process. Finally, Python Log Filter

updates the PID, FD, and log signature into eBPF maps and

loads eBPF Log Filter into kernel space via bpf() syscall.

2) eBPF Log Filter: Our eBPF Log Filter is executed in

kernel space and triggered by a user space program calls to

write() syscall, which writes information to disk. When a log

is written into a log file, the eBPF Log Filter first determines

whether the PID of the program writing to the file is in the

PID map and whether the FD corresponding to the file is in the

FD map. If both are found, the eBPF Log Filter reads what is

written from kernel space starting from the location of the log

signature. After that, eBPF Log Filter performs a prefix match

between the log signature and the written content. If the match

is successful, the eBPF code will skip the remaining execution

of write(), override and return the execution result directly to

drop the log and avoid writing to disk. Otherwise, logs will

be written to disk as before.

In this study, we perform a prefix match based on log signa-

ture location rather than a fuzzy match on the total content, as

eBPF programs are limited to the maximum of 4096 assembly

instructions before Linux kernel version 5.2. Moreover, the

BPF assembly instructions generated after the compilation

may be significantly higher than the number of lines of source

code [40]. Thanks to the native code performance and no

context switches involved, the eBPF Log Filter can handle

the massive amount of logs in the kernel in real time without

affecting the application code running (challenge 1 solved).

Furthermore, eBPF is a kernel technology that allows our log

filter to run without changing the source code of applications

or adding additional modules (challenge 2-4 solved).

For compatibility with log hotspots that do not have log

signatures, we also provide a user space Log Filter. The user

space Log Filter exploits eBPF to intercept log messages in the

kernel and send them to user space. Then Log Filter performs

a fuzzy match between the log messages and the log templates

in the user space. We discuss the performance differences

between kernel space and user space Log Filter in Section V-C.

V. EXPERIMENTAL EVALUATIONS

In this section, we evaluate LogReducer to answer two

questions:

1774

• How effective and efficient is LogReducer in parsing

logs?

• How effective and efficient is LogReducer in filtering log

hotspots?

A. Experimental Settings

Log Datasets. To evaluate the effectiveness and efficiency

of the Log Parser, we conduct extensive experiments on 3

log datasets collected from service A, B, and C in WeChat.

A, B, and C are randomly selected from the 19 investigated

services. We query their logs in the last 10 minutes. The A,

B, and C dataset contain 3,615,678, 9,017,654 and 6,712,058

lines of logs, respectively. Each log message is labeled with

a log template based on its logging statement as ground

truth. We compare our Log Parser with 4 state-of-the-art

methods (including LogCluster [26], AEL [27], Drain [28],

and LFA [29]) on all 3 log datasets. We use Message-Level

Accuracy (MLA) [41], where a log message is considered

correctly parsed if and only if every token of the message is

correctly identified as the template or parameter, to measure

the effectiveness of methods.

Log Benchmarks. To quantitatively characterize the over-

head of the Log Filter, we implement 4 log benchmarks based

on 4 widely-used logging frameworks with Golang, Python,

Java, and C++ in WeChat. We evaluate the overhead of log

filters at different log counts by controlling the number of logs

printed per second (from 500/second to 10,0000/second, i.e.,

from 720 thousand to 8.6 billion lines per instance per day).

When evaluating the overhead of the log filter with different

lengths of logs, we adjusted the length (from 50 chars to 1,000

chars) of 10,000 logs printed per second in the benchmark.

This is because most of the logs in WeChat are less than 1000

chars long.

Implementation and Settings. We conduct experiments on

a server with the 16-core AMD EPYC 7K62 Processor (2.6

GHz) and 32GB memory, running with Tencent Linux 3.2 with

Linux kernel v5.4. The code of Log Reducer is implemented

based on Python 3.6 and BCC 0.24.

B. Log Parser Evaluation

The results of Message-Level Accuracy for log parsers are

shown in Table III. From the table, we observe that the log

parser of Log Reducer outperforms the other methods on all

datasets. Compared with the powerful log parser Drain, our

log parser outperforms it by 57.03% on MLA on average.

The reason why our log parser performs better because we

group logs based on log signatures, which can identify logging

statements precisely.

Besides parsing accuracy, performance is another critical

metric for log parsers. Thus, we compare the running time of

our log parser with other log parsers under different volumes

of log data. From the results in Figure 13, it can be seen that

the running time of log parsers increases slowly with the log

scale expansion. Even at the scale of one million log messages,

our log parser took about 96 seconds, only about half of the

TABLE III

COMPARISON WITH THE STATE-OF-THE-ART LOG PARSERS ON MLA.

Datasets LogCluster [26] AEL [27] Drain [28] LFA [29] LogReducer

Service A 0.369 0.212 0.508 0.164 1.000
Service B 0.266 0.431 0.476 0.187 0.986
Service C 0.507 0.343 0.283 0.408 0.992

103 104 105 106
10��
100
101
102
103

Pa
rs
in
g
Ti
m
e
(s
)

Log Volume

LogReducer AEL
LogCluster Drain
LFA

Fig. 13. Log parsing time of different log parsers under different log volumes.

time used by Drain (236 s) and around a quarter of the time

used by AEL (453 s).

C. Log Filter Evaluation

Filtering log hotspots in kernel space. We now char-

acterize the overhead of filtering log hotspots in the kernel.

Figure 14 shows the filtering latency of per log message and

CPU usage of our Log Filter when facing the different amount

of logs generated by one service instance per second. The

overhead in the kernel is measured by bpftool-prog [42], which

is a tool for the inspection and simple manipulation of eBPF

programs. In our experiments, the benchmark produce at most

100,000 logs per second. But for Python, we only measure its

overhead up to 20,000 logs because the logging framework

of Python cannot write more than 20,000 logs into log files

per second due to its poor performance. Python has poor

performance in writing logs because each individual Python’s

write() calls waits for the full write to complete, whereas other

languages returns before the full write to complete.

From Figure 14, we observe that our Log Filter has

lightweight overheads on different benchmarks. When filtering

log hotspots in kernel space, it only increases latency by up

to 2,000 nanoseconds (ns) (i.e., 2 ∗ 10−6 second) for each log

and consumes 0.008% additional CPU utilization of 1 CPU

core even when handling 100,000 logs per second. It is noted

that Service 16 in Figure 7 suffered up to 3% more latency in

the presence of a logging hotspot, while Log Filter increases

only 0.001% more latency. In addition, we find that the latency

overhead of per log introduced by Log Filter decreases when

handling more log messages from 500 to 20,000. The reason

is that the internal overhead of executing eBPF instructions is

shared amongst log messages. Therefore, when the log volume

is not heavy, the average filtering latency decreases. However,

when it reaches the limit, the average filtering latency becomes

stable, just as shown in Figure 14. (a).

Figure 15 shows the overhead of Log Filter when filtering

log hotspots in kernel space under 10,000 logs with 20 chars

to 1000 chars lengths. As shown in Figure 15, When the

log length is less than 500, the time and CPU usage for

filtering logs in kernel space is almost unaffected by the log

1775

0 2×104 4×104 6×104 8×104 1×105

500

1000

1500

2000
Fi
lte
ri
ng

La
te
nc
y
(n
s)

Log Volume/Second

Golang Python Java C++

(a) Filtering Latency.

0 2×104 4×104 6×104 8×104 1×105
0.000

0.002

0.004

0.006

0.008

C
PU

U
sa
ge

R
at
e
(%

)

Log Volume/Second

Golang Python
Java C++

(b) CPU Usage Rate(1 Core).

Fig. 14. The overhead for Log Filter in LogReducer when filtering log

hotspots in kernel under different log volumes of 20 chars per log length.

0 200 400 600 800 1000

500

1000

1500

2000

Fi
lte
ri
ng

La
te
nc
y
(n
s)

Log Length (char)

Golang Python Java C++

(a) Filtering Latency.

0 200 400 600 800 1000
0.0004

0.0008

0.0012

0.0016

0.0020

C
PU

U
sa
ge

R
at
e
(%

)

Log Length(char)

Golang Python Java C++

(b) CPU Usage Rate(1 Core).

Fig. 15. The overhead for Log Filter in LogReducer when filtering log

hotspots in kernel under 10,000 logs with different char lengths.

length. For each log, our Log Filter only increases up to 1,760

nanoseconds latency in python and 1,200 nanosecond latency

in other languages, even when the log has 1,000 chars.

Filtering log hotspots in user space. To handle the

complex and constrained conditions in the industry (e.g.,

the missing log signature or the disable of eBPF override

configuration), we also provide a Log Filter that can use

eBPF to intercept log writing in kernel space and preform

complex matching to filter target log hotspots in the user space.

Figure 16 shows the filtering latency and CPU usage when

filtering log hotspots in user space. As shown in Figure 16,

filtering logs in user space takes over 1, 000× longer than fil-

tering in kernel space. This is because when filtering hotspots

in user space, all raw logs must be copied from kernel space

to user space, which is extremely taxing on the time and CPU.

0 2×104 4×104 6×104 8×104 1×105
20

30

40

50

60

Fi
lte
ri
ng

La
te
nc
y
(u
s)

Log Volume/Second

Golang Python Java C++

(a) Filtering Latency.

0 2×104 4×104 6×104 8×104 1×105
0

20

40

60

80

100

C
PU

U
sa
ge

R
at
e
(%

)

Log Volume/Second

Golang Python
Java C++

(b) CPU Usage Rate(1 Core).

Fig. 16. The overhead of Log Filter when filtering hotspots in user space.

Mar 16 Mar 31 Apr 15 Apr 30 May 15 May 30 Jun 14 Jun 29 Jul 14

12

16

20

Lo
g
St
or
ag
e
(P
iB
)

Applied
LogReducer

Fig. 17. Changes in the log storage of WeChat from Mar 16 to Jul 14 in

2022.

VI. USAGE IN PRACTICE

So far, our proposed offline process of Log Reducer has

already been successfully applied to WeChat and is used

by SREs daily both in the production and test environment.

Constrained by the lower version of the Linux kernel in

WeChat, the online process of LogReducer is only used in the

test environment of WeChat. As shown in Figure 17, SREs

applied our offline process of LogReducer to the production

environment of WeChat on April 14, 2022. After two months,

the overhead of log storage in WeChat dropped from 19.7

PB per day to 12.0 PB (i.e., about a 39.08% decrease).

Furthermore, after applying the online process of LogReducer
in the test environment, the time affected by log hotspots can

be reduced from an average of 9 days in production to 10

minutes (i.e., the period run time of Log Reducer) in test. In

the future, we will continue to promote the adoption of online

process LogReducer in the production environment of WeChat.

VII. DISCUSSION

Log Hotspots. We conduct a comprehensive study about

log hotspots based on the raw logs collected from 20 different

services in WeChat. Different excellent groups develop the

services and are responsible for different businesses (e.g.,

login, chats, and short videos). Thus, a big confidence can

be obtained regarding the high quality of our study data. As

WeChat is deployed globally and serves billions of users,

the generalizability of our study in log hotspots can be

demonstrated to some extent.

1776

Log Signature. LogReducer relies on the log signatures,

which uniquely identify a logging statement. In this study, we

use the location of the logging statement as the log signature

because it is precisely bound to the logging statement and is

common in modern systems [32]–[34]. In addition, we find it

easy to add the location of the logging statement into the log

message based on existing logging frameworks. For example,

we only need to turn on a configuration about the location

when initializing the logging framework in Golang Zap [43].

We can also extract log signatures based on LogSig [44] if the

locations of the logging statements are missing.

eBPF Support. Our eBPF Log Filter is developed

based on the newer Linux kernels (at least v4.18).

In addition, the Linux kernel should be compiled with

CONFIG BPF KPROBE OV ERRIDE = y configu-

ration option [45], which is enabled by default at ArchLinux

5.0.7 [46], to allow eBPF to override the execution of a probed

function. If the configuration is not enabled, we can use eBPF

to intercept log writing in the Linux kernel space and filter

log hotspots in the user space.

VIII. RELATED WORK

Where to Log. Prior studies propose approaches to suggest

where developers should add logging statements during the

development phase [10]–[13], [22], [47], [48]. Errlog [10],

Log20 [13], and LogEnhancer [47] insert additional logging

statements into the source code to maximize the debugging

capability of logging. In contrast, Log2 [22] and Log4Perf [48]

proactively insert logging statements into the source code for

performance monitoring and diagnosis.

Fu et al. [11] study the logging practices in two industrial

software projects. They investigate what categories of code

snippets (e.g., exception catch blocks) are logged. LogAd-

visor [12] and SmartLog [49] extract contextual features

of a code snippet and learn statistical models to suggest

whether a logging statement should be added to such a code

snippet. However, a significant issue of the above approaches

is that they mainly focus on the location of logs during the

development phase and cannot reduce log hotspots at program

runtime.

Log Compression. After collecting logs during runtime,

archiving massive volumes of logs over long periods can

introduce expensive overhead. A series of studies have focused

on log compression to reduce storage overhead. MLC [50] and

Hassan et al. [51] split raw log messages into distinct blocks

and compress each block in parallel. Nanolog [14], CLP [16]

and Cowic [52] construct a dictionary for the fields in logs and

replace the strings by referring to the dictionary. LogZip [15]

and RoughLogs [53] achieve log compression by building

complex statistical models to identify possible redundancy in

logs. Nevertheless, an important drawback of log compression

approaches is that they cannot prevent the overhead of writing

to the disk and sending logs to the log database.

Log Parsing. To implement log parsing, a straightforward

approach is to manually design regular expressions based

on raw logs, but it suffers from the low scalability [54].

To overcome the above shortcoming, some data-driven log

parsers [18], [26], [27], [29], [30], [55], [56] have been

proposed. LogCluster [26], LFA [29] and Logram [55] build

frequent itemsets based on tokens and grouped log messages

into several clusters to extract log templates. Swisslog [18],

LenMa [30], and LogMine [56] cluster similar logs and

identify the common tokens shared within each cluster as its

template. Drain [28] represents log messages as fixed-depth

trees and extracts common log templates based on the trees.

eBPF. Although eBPF is a relatively new Linux kernel

feature, eBPF has been widely adopted in many domains.

Kmon [36] and Liu et al. [57] introduce a non-intrusive

application observability analysis system based on eBPF. BAS-

TION [38] is a new high-performance security enforcement

network stack that extends the container hosting platform

with an intelligent container-aware communication sandbox.

Cilium [58] uses eBPF as a foundation to offer eBPF-backed

networking, observability, and security platform on Kuber-

netes. Syrup [37] and Katran [59] build high-performance load

balancing planes based on eBPF. BMC [35] exploits eBPF to

create an in-kernel cache for Memcached that serves requests

before the execution of the standard network stack.

IX. CONCLUSION

We conduct a comprehensive study about log hotspots in

WeChat, which motivates us to localize log hotspots automat-

ically and reduce them on the fly. We propose LogReducer, a

non-intrusive and language-independent log reduction frame-

work based on eBPF. After two months of serving the offline

process of LogReducer in WeChat, the log storage overhead

has dropped from 19.7 PB per day to 12.0 PB. Practical imple-

mentation and experimental evaluations in the test environment

demonstrate that the online process of LogReducer can control

the logging overhead of hotspots while preserving logging

effectiveness. Moreover, the log hotspot handling time can be

reduced from an average of 9 days in production to 10 minutes

in test with the help of LogReducer.

X. DATA AVAILABILITY

The log benchmarks in the experiments and eBPF-based

Log Filter are available at [60].

ACKNOWLEDGMENT

We greatly appreciate the insightful feedback from the

anonymous reviewers. We thank all participants in the in-

terviews for their analysis and responses to log hotspots.

The research is supported by the National Key Research

and Development Program of China (2019YFB1804002), the

National Natural Science Foundation of China (No.62272495),

the Basic and Applied Basic Research of Guangzhou (No.

202002030328), the Guangdong Basic and Applied Basic Re-

search Foundation (No. 2018B030312002), and sponsored by

Tencent Rhino-Bird Research Elite Program and CCF-Lenovo

Blue Ocean Research Fund and the Fundamental Research

Funds for the Central Universities,Sun Yat-sen University(No.

22qntd1004). The corresponding author is Pengfei Chen.

1777

REFERENCES

[1] G. Yu, P. Chen, and Z. Zheng, “Microscaler: Automatic scaling for

microservices with an online learning approach,” in ICWS 2019. IEEE,

2019, pp. 68–75.

[2] Z. Huang, P. Chen, G. Yu, H. Chen, and Z. Zheng, “Sieve: Attention-

based sampling of end-to-end trace data in distributed microservice

systems,” in ICWS 2021. IEEE, 2021, pp. 436–446.

[3] G. Yu, P. Chen, and Z. Zheng, “Microscaler: Cost-effective scaling for

microservice applications in the cloud with an online learning approach,”

IEEE TCC, 2020.

[4] G. Yu, P. Chen, H. Chen, Z. Guan, Z. Huang, L. Jing, T. Weng, X. Sun,

and X. Li, “Microrank: End-to-end latency issue localization with

extended spectrum analysis in microservice environments,” in WWW
2021. ACM, 2021, p. 3087–3098.

[5] G. Yu, Z. Huang, and P. Chen, “Tracerank: Abnormal service localization

with dis-aggregated end-to-end tracing data in cloud native systems,”

Journal of Software: Evolution and Process, p. e2413, 2021.

[6] X. Li, P. Chen, L. Jing, Z. He, and G. Yu, “Swisslog: Robust anomaly

detection and localization for interleaved unstructured logs,” IEEE
TPDS, pp. 1–1, 2022.

[7] S. He, Q. Lin, J. Lou, H. Zhang, M. R. Lyu, and D. Zhang, “Identifying

impactful service system problems via log analysis,” in ESEC/FSE 2018.

ACM, 2018, pp. 60–70.

[8] A. Amar and P. C. Rigby, “Mining historical test logs to predict bugs

and localize faults in the test logs,” in ICSE 2019. IEEE / ACM, 2019,

pp. 140–151.

[9] C. M. Rosenberg and L. Moonen, “Spectrum-based log diagnosis,” in

ESEM 2020. ACM, 2020, pp. 18:1–18:12.

[10] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang, Y. Zhou, and

S. Savage, “Be conservative: Enhancing failure diagnosis with proactive

logging,” in OSDI 2012. USENIX Association, 2012, pp. 293–306.

[11] Q. Fu, J. Zhu, W. Hu, J. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie,

“Where do developers log? an empirical study on logging practices in

industry,” in ICSE 2014. ACM, 2014, pp. 24–33.

[12] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning

to log: Helping developers make informed logging decisions,” in ICSE
2015. IEEE, 2015, pp. 415–425.

[13] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and Y. Zhou,

“Log20: Fully automated optimal placement of log printing statements

under specified overhead threshold,” in SOSP, 2017. ACM, 2017, pp.

565–581.

[14] S. Yang, S. J. Park, and J. K. Ousterhout, “Nanolog: A nanosecond scale

logging system,” in USENIX ATC 2018. USENIX Association, 2018,

pp. 335–350.

[15] J. Liu, J. Zhu, S. He, P. He, Z. Zheng, and M. R. Lyu, “Logzip:

Extracting hidden structures via iterative clustering for log compression,”

in ASE 2019. IEEE, 2019, pp. 863–873.

[16] K. Rodrigues, Y. Luo, and D. Yuan, “CLP: efficient and scalable search

on compressed text logs,” in OSDI 2021. USENIX Association, 2021,

pp. 183–198.

[17] eBPF, “ebpf,” https://ebpf.io/, 2022, accessed June 6, 2022.

[18] X. Li, P. Chen, L. Jing, Z. He, and G. Yu, “Swisslog: Robust and unified

deep learning based log anomaly detection for diverse faults,” in ISSRE
2020, 2020, pp. 92–103.

[19] Grafana, “Promtail,” https://grafana.com/docs/loki/latest/clients/

promtail/, 2022, accessed June 6, 2022.

[20] ——, “Loki,” https://github.com/grafana/loki, 2022, accessed June 6,

2022.

[21] ClickHouse, “Clickhouse,” https://github.com/ClickHouse/ClickHouse,

2022, accessed June 6, 2022.

[22] R. Ding, H. Zhou, J. Lou, H. Zhang, Q. Lin, Q. Fu, D. Zhang, and T. Xie,

“Log2: A cost-aware logging mechanism for performance diagnosis,” in

USENIX ATC 2015. USENIX Association, 2015, pp. 139–150.

[23] H. Li, W. Shang, B. Adams, M. Sayagh, and A. E. Hassan, “A qualitative

study of the benefits and costs of logging from developers’ perspectives,”

TSE, vol. 47, no. 12, pp. 2858–2873, 2021.

[24] H. Li, W. Shang, and A. E. Hassan, “Which log level should developers

choose for a new logging statement?” Empirical Software Engineering,

vol. 22, no. 4, pp. 1684–1716, 2017.

[25] Z. Li, H. Li, T. P. Chen, and W. Shang, “Deeplv: Suggesting log levels

using ordinal based neural networks,” in ICSE 2021. IEEE, 2021, pp.

1461–1472.

[26] R. Vaarandi and M. Pihelgas, “Logcluster - A data clustering and pattern

mining algorithm for event logs,” in CNSM 2015. IEEE, 2015, pp. 1–7.

[27] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “An automated

approach for abstracting execution logs to execution events,” J. Softw.
Maintenance Res. Pract., vol. 20, no. 4, pp. 249–267, 2008.

[28] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing

approach with fixed depth tree,” in ICWS 2017. IEEE, 2017, pp. 33–40.

[29] M. Nagappan and M. A. Vouk, “Abstracting log lines to log event types

for mining software system logs,” in MSR 2010. IEEE, 2010, pp.

114–117.

[30] K. Shima, “Length matters: Clustering system log messages using

length of words,” CoRR, vol. abs/1611.03213, 2016. [Online]. Available:

http://arxiv.org/abs/1611.03213

[31] Kubernetes, “Example of code location of log in kubernetes

controller,” https://github.com/kubernetes/kubernetes/blob/

ea0764452222146c47ec826977f49d7001b0ea8c/staging/src/k8s.io/

kube-aggregator/pkg/controllers/openapi/controller.go#L107, 2021,

accessed June 6, 2022.

[32] ——, “Kubernetes,” https://kubernetes.io/, 2022, accessed June 6, 2022.

[33] Prometheus, “Prometheus,” https://prometheus.io/, 2022, accessed June

6, 2022.

[34] T. Cloud, “Tencent cloud,” https://intl.cloud.tencent.com/, 2022, ac-

cessed June 6, 2022.

[35] Y. Ghigoff, J. Sopena, K. Lazri, A. Blin, and G. Muller, “BMC:

accelerating memcached using safe in-kernel caching and pre-stack

processing,” in NSDI 2021. USENIX Association, 2021, pp. 487–501.

[36] T. Weng, W. Yang, G. Yu, P. Chen, J. Cui, and C. Zhang, “Kmon: An

in-kernel transparent monitoring system for microservice systems with

ebpf,” in CloudIntelligence 2021. IEEE, 2021, pp. 25–30.

[37] K. Kaffes, J. T. Humphries, D. Mazières, and C. Kozyrakis, “Syrup:

User-defined scheduling across the stack,” in SOSP 2021. ACM, 2021,

pp. 605–620.

[38] J. Nam, S. Lee, H. Seo, P. Porras, V. Yegneswaran, and S. Shin, “BAS-

TION: A security enforcement network stack for container networks,”

in USENIX ATC 2020. USENIX Association, 2020, pp. 81–95.

[39] iovisor, “Bcc - tools for bpf-based linux io analysis, networking,

monitoring, and more,” https://github.com/iovisor/bcc, 2022, accessed

June 6, 2022.

[40] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal,

“Creating complex network services with ebpf: Experience and lessons

learned,” in HPSR 2018. IEEE, 2018, pp. 1–8.

[41] Y. Liu, X. Zhang, S. He, H. Zhang, L. Li, Y. Kang, Y. Xu, M. Ma,

Q. Lin, Y. Dang, S. Rajmohan, and D. Zhang, “Uniparser: A unified log

parser for heterogeneous log data,” in WWW 2022. ACM, 2022, pp.

1893–1901.

[42] Ubuntu, “Bpftool-prog: a tool for inspection and simple manipulation

of ebpf progs,” https://manpages.ubuntu.com/manpages/focal/en/man8/

bpftool-prog.8.html, 2022, accessed June 6, 2022.

[43] Uber, “Zap - blazing fast, structured, leveled logging in go,” https://

github.com/uber-go/zap, 2022, accessed June 6, 2022.

1778

[44] L. Tang, T. Li, and C.-S. Perng, “Logsig: generating system events from

raw textual logs,” in CIKM 2011. ACM, 2011, pp. 785–794.

[45] Linux, “Config bpf kprobe override: Enable bpf programs to override

a kprobed function,” https://www.kernelconfig.io/config bpf kprobe

override, 2022, accessed June 6, 2022.

[46] A. Linux, “Arch linux enable config bpf kprobe override by default,”

https://bugs.archlinux.org/task/62384, 2022, accessed June 6, 2022.

[47] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving software

diagnosability via log enhancement,” in ASPLOS 2011. ACM, 2011,

pp. 3–14.

[48] K. Yao, G. B. de Pádua, W. Shang, S. Sporea, A. Toma, and S. Sajedi,

“Log4perf: Suggesting logging locations for web-based systems’ perfor-

mance monitoring,” in ICPE 2018. ACM, 2018, pp. 127–138.

[49] Z. Jia, S. Li, X. Liu, X. Liao, and Y. Liu, “SMARTLOG: place error

log statement by deep understanding of log intention,” in SANER 2018.

IEEE, 2018, pp. 61–71.

[50] B. Feng, C. Wu, and J. Li, “MLC: an efficient multi-level log com-

pression method for cloud backup systems,” in IEEE Trustcom/Big-
DataSE/ISPA 2016. IEEE, 2016, pp. 1358–1365.

[51] A. Hassan, D. Martin, P. Flora, P. Mansfield, and D. Dietz, “An industrial

case study of customizing operational profiles using log compression,”

in ICSE 2008, 2008, pp. 713–723.

[52] H. Lin, J. Zhou, B. Yao, M. Guo, and J. Li, “Cowic: A column-wise

independent compression for log stream analysis,” in CCGrid 2015.

IEEE, 2015, pp. 21–30.

[53] M. Meinig, P. Tröger, and C. Meinel, “Rough logs: A data reduction

approach for log files,” in ICEIS 2019. SciTePress, 2019, pp. 295–302.

[54] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools

and benchmarks for automated log parsing,” in ICSE (SEIP). IEEE /

ACM, 2019, pp. 121–130.

[55] H. Dai, H. Li, C. Chen, W. Shang, and T. Chen, “Logram: Efficient log

parsing using n-gram dictionaries,” TSE, vol. 48, no. 3, pp. 879–892,

2022.

[56] H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and A. Mueen,

“Logmine: Fast pattern recognition for log analytics,” in CIKM 2016.

ACM, 2016, pp. 1573–1582.

[57] C. Liu, Z. Cai, B. Wang, Z. Tang, and J. Liu, “A protocol-independent

container network observability analysis system based on ebpf,” in

ICPADS 2020. IEEE, 2020, pp. 697–702.

[58] Cilium, “ebpf-based networking, observability, security,” https://cilium.

io/, 2022, accessed June 6, 2022.

[59] FaceBook, “Katran:a high performance layer 4 load balance,” https://

github.com/facebookincubator/katran, 2022, accessed June 6, 2022.

[60] L. Reducer, “The log filter and benchmark of log reducer,” https://github.

com/IntelligentDDS/LogReducer, 2022, accessed June 6, 2022.

1779

