
MARS: Fault Localization in Programmable Networking Systems
with Low-cost In-Band Network Telemetry

Benran Wang
wangbr5@mail2.sysu.edu.cn

School of Computer Science and
Engineering, Sun Yat-sen University

Guangzhou, China

Hongyang Chen
chenhy95@mail2.sysu.edu.cn

School of Computer Science and
Engineering, Sun Yat-sen University

Guangzhou, China

Pengfei Chen∗
chenpf7@mail.sysu.edu.cn

School of Computer Science and
Engineering, Sun Yat-sen University

Guangzhou, China

Zilong He
hezlong@mail2.sysu.edu.cn

School of Computer Science and
Engineering, Sun Yat-sen University

Guangzhou, China

Guangba Yu
yugb5@mail2.sysu.edu.cn

School of Computer Science and
Engineering, Sun Yat-sen University

Guangzhou, China

ABSTRACT
Recently, the adoption of Software Defined Networking (SDN) as a
network infrastructure has gained significant popularity. Although
the openness and programmability of SDN ease the construction of
large complex networks, it is still challenging to diagnose faults in
a complex datacenter-scale network, which is crucial to guarantee
rigorous service level agreement (SLA) of upper-layer applications.
Previous network diagnosis tools incur significant overhead in fine-
grained telemetry, and usually lack the ability to automatically diag-
nose fine-grained faults. Although on-demand monitoring methods
is proposed to reduce telemetry overhead, they struggle to effec-
tively set static thresholds, which requires expert experience. In this
paper, we present MARS, a lightweight system for anomaly detec-
tion with dynamic threshold and automatic root cause localization
in programmable networking systems. MARS collects aggregated
packet-level telemetry on demand and generates a ranked list of
fine-grained fault culprits at multiple levels, including port-level,
switch-level, and flow-level. Experimental evaluations show the
cost-effectiveness of MARS, both in terms of network bandwidth
and switch memory usage. Moreover, MARS achieves a 0.97 F1
score in anomaly detection, and 0.95 Recall at Top-2 and an overall
0.3 Exam Score in root cause localization.

CCS CONCEPTS
• Networks→ Network performance analysis; Network per-
formance analysis; •Computer systems organization→Main-
tainability and maintenance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0843-5/23/08. . . $15.00
https://doi.org/10.1145/3605573.3605622

KEYWORDS
P4, In-band Network Telemetry, Fault Localization, Software De-
fined Network

ACM Reference Format:
Benran Wang, Hongyang Chen, Pengfei Chen, Zilong He, and Guangba Yu.
2023. MARS: Fault Localization in Programmable Networking Systems with
Low-cost In-Band Network Telemetry. In 52nd International Conference on
Parallel Processing (ICPP 2023), August 07–10, 2023, Salt Lake City, UT, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3605573.3605622

1 INTRODUCTION
With the demand for applicationswith low latency and high through-
put, a growing number of IT enterprises choose to deploy their
applications, particularly latency-critical applications, in datacen-
ters. Since applications always dynamically scale to deliver a high
quality of experience (i.e., QoE), it is of great importance to effi-
ciently manage the datacenter network to ensure that the network
can scale to meet the evolving demands of applications while re-
ducing the complexity in network management.

Recently, the adoption of SDN and programmable switch tech-
nology has facilitated the management of the underlying network
infrastructure in datacenters, leading to a significant increase in
the scale and complexity of the network. The booming scale of
networks renders network failures as norm cases rather than excep-
tions. It is critical to diagnose these failures in time, as even a minor
degradation in network performance can have a significant impact
on the quality of upper-layer applications [15, 34, 53]. Fig. 1 shows
a complex datacenter network where a network fault occurred in a
switch. The network fault causes multiple neighbour switches to
behave abnormally simultaneously. Therefore, diagnosing network
failures manually is time-consuming and error-prone. A system
designed for network monitoring and automatic failure diagnosis
is necessary.

This paper focuses on the problem of automatically localizing the
root cause of network faults in a complex network with a low mon-
itoring overhead. Although programmable switches have inspired
extensive researches [9, 14, 22, 30, 44, 54] on this problem, the ef-
fectiveness of these work remains inadequate due to the following
limitations.

347

https://doi.org/10.1145/3605573.3605622
https://doi.org/10.1145/3605573.3605622
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605573.3605622&domain=pdf&date_stamp=2023-09-13

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Benran Wang, Hongyang Chen, Pengfei Chen, Zilong He, Guangba Yu

Figure 1: A network fault happens in a large-scale network.

• The overhead of monitoring is high, downgrading the
performance of datacenter network. Existing monitoring
methods either use packet mirroring at switches to monitor
the network [21, 40, 46, 54], or actively injecting probe pack-
ets into the network [4, 7, 51] to estimate the network status.
While these methods provide valuable information about
the network, they also result in additional network traffic.
The additional overhead has a negative impact on network
performance.
• Existing anomaly detectionmethods are inefficient and
uns+calable. To conserve network bandwidth and reduce
network overhead, trigger-based methods [25, 26, 47, 53]
have been proposed. Existing anomaly detection methods
rely on the trigger-based methods to conduct anomaly detec-
tion. These methods send monitoring data collected in the
data plane to the control plane only when anomalies (e.g.,
high end-to-end latency and queuing delay) are detected
with static thresholds. However, since the number of net-
work flows is always huge, setting thresholds for each flow
is time-consuming and requires substantial expert knowl-
edge, hindering the adoption of trigger-based methods in
large-scale datacenter networks.
• Existing network failure diagnosis methods cannot
well cover multiple causes of network fault automati-
cally, since they struggle to extract clues from massive
network flows. Jia et.al. [22] rely on the set intersection of
time-out paths to locate the position of packet loss, which
is not robust and may fail if an anomaly lasts shorter than
the time window. IntSight [31] delegates diagnosis to the
data plane but has limitation in analyzing network faults
that may spread to adjacent switches. Though query-based
debugging [26] collects extensive data, it requires massive ex-
pert experience, which is time-consuming and error-prone.

To address these limitations, we propose MARS, a holistic system
comprisingMonitoring, Anomaly detection, Root cause analysis
in SDN. MARS is a system based on P4 [11] that integrates low-
cost telemetry and posterior fault localization with high accuracy.
It collects telemetry metadata (e.g., path sequence from path id,
so-called “path-aware”) carried by packets and temporarily stores
them in edge switches. The telemetry data for diagnosis is sent to
the control plane only when the data plane detects an anomaly. The
on-demand collection decreases additional network bandwidth con-
sumption (Limitation 1). The system processes streaming latency
data for each flow with a modified reservoir module and updates
thresholds dynamically for detecting network delay (Limitation 2).
The Frequent Sequence Mining (FSM) [23] utilizes path information

from the path-aware telemetry data to identify suspicious positions
within the network. With scores calculated by Spectrum-Based
Fault Localization (SBFL) [5] and telemetry data such as through-
put and queuing conditions, MARS can accurately determine the
port/switch/flow-level root cause with a 0.95 recall at Top-2 and an
overall 0.3 Exam Score (§5). This ranked list of culprits serves to
expedite problem resolution for operators (Limitation 3).

In summary, we make the following contributions.
• On-demand Monitoring. We propose a novel path-aware
method to monitor network traffic and report data on de-
mand. This method is independent of the length of the path
and does not raise extra costs as the network becomes larger.
• Self-adaptiveAnomalyDetection.Wepropose self-adaptive
in-network anomaly detection, where the data plane ac-
curately detects anomalies in a versatile network. This is
achieved by updating the threshold using a reservoir model
in the control plane.
• Automatic Root Cause Analysis.We combine Frequent
Sequence Mining and Spectrum-Based Fault Localization
to precisely locate the faulty switch. The root cause can be
automatically localized at different levels in a rank list.
• In the consideration of five different fault scenarios, we prove
the effectiveness and low overhead of MARS.

2 BACKGROUND
SDN & PDP: Software Defined Network (SDN) and PDP (Pro-

gramming Data Plane) are widely adopted in modern large-scale
web systems such as Google and Facebook recently due to their
openness and programmability. SDN separates the control plane
(decision-making) from the data plane (forwarding of packets) in
a network to enable centralization of network management and
programmability. PDP refers to the programmable aspect of the
data plane in SDN, allowing network administrators to program
switch with customized processing logic.

OpenFlow & P4: OpenFlow [32], as a communication protocol
used in SDN, abstracts traditional network lookup tables and for-
warding into general flow tables and match-action list. P4 (Program-
ming Protocol-independent Packet Processors) extends OpenFlow a
step further by achieving protocol independence. P4 is a high-level
programming language and provides an abstract representation of
packet processing pipelines, allowing network engineers to define
how packets should be processed within a network without having
to deal with low-level hardware details.

In-band Network Telemetry (INT): Proposed by the P4 or-
ganization, INT [38] is a technique for monitoring and collecting
network data within the data plane. By inserting or modifying fields
of the packet header, INT can gather telemetry data in real-time,
without the need for external probes or monitoring agents. INT en-
ables network administrators to gather fine-grained and up-to-date
information about network performance and behavior, and helps
to troubleshoot and diagnose network issues more efficiently.

3 MOTIVATION
Motivation #1: Offloading the Burden to Edge Switches. To

further reduce the overhead caused by monitoring, SpiderMon [47]
saves network bandwidth by collecting telemetry to the control

348

MARS: Fault Localization in Programmable Networking Systems with Low-cost In-Band Network Telemetry ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

0.01 0.1 1 10 100
Link Utilization

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

edge
core

Figure 2: The link
utilization of the
core layer versus
the edge layer.

2 4 6 8
hops

25

50

IN
T

H
dr

 S
iz

e
(b

it)

INT-MD
Encode

0 250 500
paths

0

5

10

M
em

or
y

(K
B

) IntSight
MARS

Figure 3: Encoding path with ID can
reduce INT header size. Among the
methods that encode path, MARS
spares more switch memory.

plane on demand. It requires all switches to store data and report
diagnosis data to the control plane. However, regardless of the type
of network, core switches are always busier than edge switches,
as the possibility of low link utilization in the core layer is lower
than in the edge layer [10], which is demonstrated by the Cumula-
tive Distribution Function (CDF) in Fig. 2. To relieve the strain on
core switches, MARS is expected to gather telemetry data on edge
switches and maintain the coverage of telemetry. As a result, we are
inspired to collect aggregated data at the packet level and record
only in edge switches. In this case, the fault localization is expected
to perform well without end-to-end data, which is realized with
FSM and SBFL.

Motivation #2: Reducing Header Size for Path Recording.
The packet transmission path plays a critical role in the root cause
diagnosis. To record the switch sequence, the INT-MD (eMbed Data)
mode, as described in [38], is used by methods such as [22, 38] to
inject telemetry data into the packet header at each hop. However,
this method leads to an increase in packet size as the length of the
transmission path grows, as demonstrated in the left graph of Fig. 3.
IntSight [31] encodes the path (sequences of switches) to an ID with
a fixed width, reducing the header size. However, IntSight needs to
assign many Match-Action Table (MAT) entries of the path id for
each path, which consumes switches’ memory a lot, as shown in
the right graph of Fig. 3. As a result, we are inspired to propose a
novel path-aware method, relieving the monitoring overhead in a
larger network without consuming too much memory of switches.

4 DESIGN AND IMPLEMENTATION
In this section, we present the design of MARS to monitor, identify,
and diagnose abnormal events. The overview is shown in Fig. 4. For
monitoring (§4.2), MARS periodically samples network packets
as telemetry packets and inserts critical information into telemetry
headers. Traffic telemetry data is stored in edge switches’ memory
and reported on demand. For anomaly detection (§4.3), reservoirs
are maintained to update a dynamic threshold for each flow. On
each switch, once the current packet’s latency is greater than the
corresponding flow’s latency threshold or a packet loss event occurs,
the switch will send a notification packet to the control plane.
Triggered by the notification, the control plane will collect the
telemetry data stored in edge switches for diagnosis. For root cause
analysis (§4.4), the culprits are located by FSM and scored by SBFL.
Other telemetry data (e.g., queue depth, packet size) help find out

causes for diverse faults at different corresponding levels, e.g., port-
level for packet loss, switch-level for Equal Cost Multi-Path routing
(ECMP) load imbalance, and flow-level for micro-burst flows.

4.1 Definition
Definition (Source/Transit/Sink Switch). As shown in Fig. 4,

for a packet traversing in the network, the switch that packets first
enter is referred to as the source switch. The switch that the packet
last exits from, before reaching its destination host, is called sink
switch. Other switches between source switch and sink switch are
named as transit switches. Note that one switch may play multiple
roles (source, transit, sink) for different flows.

Definition (FlowID). FlowID is defined as ⟨𝒔source, 𝒔sink⟩ with-
out host information, as MARS focuses on the problems that happen
in the network, i.e., the anomaly between/in switches. Furthermore,
FlowID spares more bits than 5-tuple.

Definition (PathID). PathID is updated per hop as the packet
traverses across switches. At each hop, the updated PathID is hashed
by {PathID, switchID, ingress port, egress port, control}. Here
the control field is set to zero by default unless the hashed value
has conflicts with another flow. As a result, MARS needs to install
MAT entries only when a hash conflict happens, which decreases the
memory usage of switches.

For instance, in Fig. 1, ⟨𝑠1, 𝑠4⟩ is a FlowID, with two paths, i.e.,
⟨𝑠1, 𝑠3, 𝑠4⟩ and ⟨𝑠1, 𝑠2, 𝑠4⟩. Due to the complexity and variability of
the network situation, like some load balance strategies, the exact
path of a packet is decided on the fly only in the network. Therefore,
the final PathID can only be known at the sink switch. The switch
memory used for PathID calculation is discussed in §5.5. The con-
trol plane calculates each PathID with the same hash algorithm in
advance, and saves the map from a PathID to the corresponding
switch sequence, i.e., path. Based on the consensus between the
control plane and the data plane about the PathID, the control plane
can decompress fixed size bits field to path information from the
data plane’s report in later fault localization analysis.

4.2 Telemetry Collection
As network behavior would not shift dramatically in a short time
under normal circumstances [44], MARS applies a sample strategy
to collect necessary information without causing large bandwidth
overhead. The source switch periodically sets a sample packet to
gather telemetry data, including statistics data such as packet counts
in the sample period.

4.2.1 Packet Category. MARS uses the reserved field in the IP
layer (e.g. “option” field in IPv4 Option) to distinguish different
types of a packet (naïve packet and telemetry packet).

Naïve Packet. Naïve packet is a packet without a telemetry
header inserted by the switch. For all naïve packets, only a field
of small size (e.g., 8 bits) will be inserted into the header to record
PathID, which will be carried and updated through the network.
For all packets, the total packet number and total packet size in
each epoch are counted at both source switches and sink switches.

Telemetry Packet. In each epoch, the source switch adds a
telemetry header into naïve packet for each flow, without mod-
ifying other header fields and payload. The epoch period can be set

349

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Benran Wang, Hongyang Chen, Pengfei Chen, Zilong He, Guangba Yu

Figure 4: Overview of MARS. The left part of figure depicts how MARS collects and stores telemetry data. The right part shows
the workflow of MARS to update dynamic threshold for anomaly detection in the data plane and to locate the root causes,
resulting in a ranked list with culprits and causes.

by the controller at runtime. The resulting packet with the teleme-
try header is referred to as a telemetry packet. Note that telemetry
packets of different flows are not marked simultaneously, which
can mitigate the transient burden of telemetry data on the network.
The telemetry packet carries 11 bytes of telemetry data, including
the timestamp that the packet enters the source switch (source
timestamp), packet count of the packet’s FlowID in the last epoch,
total queue depth, and telemetry epoch ID. Here the timestamp can
be compressed into a smaller size [47]. The total queue depth will
be updated at each hop by in-network computing, i.e., adding up
each switch’s queue depth.

4.2.2 Switch Actions. The job of switches involves not only
packet monitoring, but also anomaly detection. All switches update
PathID for both naïve packets and telemetry packets. Specifically
for telemetry packets, switches update the telemetry data, such as
the total queue depth in telemetry headers. Anomaly detection is
deployed at every switch, so that MARS can respond to anomalies
in a more timely manner. Switches send a notification packet to
the control plane when a telemetry packet’s latency is higher than
its corresponding dynamic threshold or a drop event is detected
(§4.3). Once a packet triggered anomaly detection, the switch would
update a flag in the header to suppress anomaly detection in sub-
sequent hops and to prevent redundant notification to the control
plane. On the other hand, switches are only allowed to inform the
control plane one time in a time window. This can save the switch
resource and network bandwidth.

To prepare and record telemetry data for diagnosis, edge switches
(source switches and sink switches) have more works to do.

Source Switch inserts and records telemetry data in following
two steps. (1) The source switch counts the number of incoming
packets of each flow per epoch and records them in the Ingress
Table (IT). (2) For all incoming packets, the source switch inserts a
field to record the PathID. Besides, the source switch modifies the
reserved field to distinguish naïve packet and telemetry packet. To
determine which packet category a packet belongs to, IT records
the timestamp and epoch ID of the latest telemetry packet per-flow,
enabling only one telemetry packet to be set per flow in each epoch.

Sink Switches stores the telemetry data in following steps. (1)
For all kinds of incoming packets, the sink switch records the packet
count and packet size corresponding to PathID and FlowID in the

Egress Table (ET). (2) For telemetry packets, the sink switch extracts
the telemetry data to the Ring Table (RT). In addition, RT records the
latency, packet counts, and packet size at path-level and flow-level
in this epoch. When RT is full, the oldest data will be covered by
the newest data, that is why the table is called as “ring”. As a result,
RT keeps the most recently telemetry. (3) All INT headers will be
removed at the end of the sink switch, ensuring the monitoring is
transparent to end hosts.

Note that node ID of source switch and sink switch already
covers half information of FlowID (⟨𝑠source, 𝑠sink⟩). Therefore, the
FlowID can be simplify as 𝑠sink in source switch and 𝑠source in sink
switch, saving the memory of switch.

4.3 Anomaly Detection
4.3.1 High Latency Detection. Setting latency thresholds for
flows requires expert knowledge, which is not suitable for complex
and rapidly changing SDN. As shown in Fig. 5, the network traffic
volume varies throughout the day. To successfully detect anomalies
(i.e., spike in orange shadow), a static threshold (i.e., orange dashed
horizontal line) may cause false positive (i.e., in green shadow).
Whereas the dynamic threshold can effectively detect the spike
without false alarms. To address this problem, MARS applies a
robust unsupervised classifier to distinguish abnormal packets by
their end-to-end latency.

Reservoir. To balance the accuracy and memory space, MARS
applies a flexible reservoir to maintain the latency of each flow
(details are shown in Alg. 1). MARS periodically gathers the value of
“latency” field in RT from the data plane with P4 Runtime API [3] to
get recent latency data, and feeds the data in the reservoir to update

timestamp

la
te

nc
y

latency
dynamic threshold
static threshold

Figure 5: Example of anomaly detection with dynamic and
static thresholds in the face of dynamic loads.

350

MARS: Fault Localization in Programmable Networking Systems with Low-cost In-Band Network Telemetry ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

the dynamic thresholds. Classically, each input data will overwrite
one randomly selected item in reservoir with the probability 𝑝
when the reservoir is full [20]. A small number of latency outliers
can impact the average, but the median value keeps more stable,
the threshold 𝜃 to detect outliers is calculated by the function of
median𝑚 and standard deviation 𝜎 , such as 𝜃 =𝑚 + 3𝜎 . However,
if many outliers (high latency) are appended into the reservoir with
the static probability, the standard deviation will vary a lot even
though the median can stay firm. As a result, the threshold may
increase due to outliers. To prevent this situation, MARS introduces
a penalty factor 𝛼 . When latency data are fed into the reservoir,
the data will be judged whether it is an outlier. The number of
consecutively detecting as outliers is set to 𝑐𝑜 . The penalty factor is
defined as a non-linear function, like 𝛼 = exp(−𝑐𝑜). Therefore, as
more continuous outliers are detected, the possibility that incoming
data gets into the reservoir decreases severely. When encountering
a new unknown flow, switches temporarily use a default threshold
to detect anomalies. The default threshold is set at a relatively high
level (e.g., 10 seconds) to minimize false positives, and will later be
replaced by a dynamic threshold from the reservoir.

Algorithm 1 Reservoir Anomaly Detection
Input: Reservoir volume 𝑣 ∈ N, static probability 𝑝𝑠 , constant 𝐶
Output: Outlier flag 𝑓 𝑙𝑎𝑔
1: Reservoir 𝑅 ← {}; outlier count 𝑐𝑜 ← 0;
2: function input(𝑙 : latency data)
3: if 𝑙 > 𝑚(𝑅) +𝐶 · 𝜎(R) then ⊲ whether it is an outlier
4: 𝑐𝑜 ← 0
5: 𝑓 𝑙𝑎𝑔← TRUE
6: else
7: 𝑐𝑜 ← 𝑐𝑜 + 1
8: 𝑓 𝑙𝑎𝑔← FALSE
9: end if
10: 𝛼 ← exp(−𝑐𝑜) ⊲ penalty factor
11: if |𝑅 | < 𝑣 then ⊲ update Reservoir
12: 𝑅 ← 𝑅 ∪ {𝑙}
13: else with probability 𝛼 · 𝑝𝑠
14: overwrite a randomly selected item from 𝑅 with 𝑙
15: end if
16: end function

4.3.2 Drop Event Detection. If a packet loss event happens
within a telemetry epoch, the packet count in the source switch
(𝑐𝑠) and in the sink switch (𝑐𝑑) will differ, namely 𝑐𝑠 − 𝑐𝑑 > 0. The
difference between the two counts indicates the number of dropped
packets. If the difference is greater than a threshold, the switch
would inform the control plane. On the other hand, if the drop
event lasts several epochs, the telemetry packet of these epochs
would be dropped as well. Like the sequence number of TCP, the
source switch compares whether the epoch id carried by teleme-
try is neighbored with the last epoch id of the received telemetry
packet of this flow. If the epoch ids are not adjacent, a drop event
is detected and the control plane would be noticed by the switch.
The difference between two epoch ids indicates how long the drop
event lasted, which is revealed from the field “epoch gap” in RT.

4.4 Root Cause Analysis
The control plane, triggered by a notification from the data plane,
collects recent telemetry data as diagnosis data from the memory
(Ring Table) of sink switches. To avoid massive notifications, each
switch is limited to sending only one notification in a time window.
Similarly, the control plane is also limited to responding to notifi-
cations from different switches in a time window. MARS uses this
self-contained telemetry data to identify the root cause. The reser-
voir categorizes packets into two groups, namely the abnormal set
and the normal set. The path of a packet is a sequence of switches it
travels through, and if a switch or link frequently appears in the ab-
normal set but rarely appears in the normal set, it is considered to be
a likely cause of failure. This empirical observation is utilized in the
fault localization approach of MARS. For instance, sub-sequences
of a packet path ⟨𝑠1, 𝑠2, 𝑠3, 𝑠4⟩, such as ⟨𝑠2⟩ or ⟨𝑠3, 𝑠4⟩, is regarded
as single switches or links respectively. Sub-sequences consisting
of more than two elements are not considered meaningful.

The root cause analysis is composed of four parts. (1) MARS
estimates actual traffic from sample data (§4.4.1) and classifies them
into an abnormal set and a normal set. (2) From the abnormal set,
MARS mines frequent sequence patterns with FSM as suspect lo-
cations where the anomaly happened, called culprits (§4.4.2). (3)
According to both the abnormal set and normal set, MARS inte-
grates the risk ratio into SBFL to calculate a score for each culprit,
which is high if the culprit (pattern) frequently appears in the ab-
normal set but rarely appears in the normal set (§4.4.3). (4)With
diagnosis data, MARS assigns a cause for each culprit according to
signature matching and calculates a score of causes based on the
culprits’ score. At last, MARS merges repeated causes and sends an
ordered list of culprits with causes to network operators (§4.4.4).

4.4.1 Actual Traffic Estimation. The number of packets in dif-
ferent sample epochs may vary. MARS uses the gap-based sampling
strategy [28] to restore the arrive time distribution of real flow.
With packet counts 𝑝.𝑐𝑜𝑢𝑛𝑡 of each PathID in each epoch, MARS
estimates the packets’ arrive time 𝑝.𝑡 (details are shown in Alg. 2).

Algorithm 2 Actual Traffic Estimation
Input: Sample packets 𝑆 , Time gap between sample pkts 𝑇
Output: Estimated packets 𝐸
1: for PathID in 𝑆 do
2: for 𝑝 ∈ 𝑆PathID do ⊲ per pkt from samples of PathID
3: for 𝑖 ∈ range(𝑝.𝑐𝑜𝑢𝑛𝑡) do
4: 𝑝 ← copy(𝑝) ⊲ copy sample as an estimation
5: 𝑝.𝑡 ← 𝑝.𝑡 + 𝑖×𝑇

𝑝.𝑐𝑜𝑢𝑛𝑡 ⊲ estimate pkt’s timestamp
6: 𝐸 ← 𝐸 ∪ {𝑝}
7: end for
8: end for
9: end for

4.4.2 Frequent SequenceMining (FSM). In order to localize the
culprit, MARS needs to find out the most frequent sub-sequences
in the abnormal set. However, a path that has 𝐿 switches can have
1
2𝐿(𝐿 + 1) sub-sequences. Naïvely calculating all sub-sequences
of all paths is inefficient and time-wasting, even though there are
duplicate sub-sequences of different paths. To efficiently find out

351

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Benran Wang, Hongyang Chen, Pengfei Chen, Zilong He, Guangba Yu

the most frequently occurring sub-sequence in the abnormal set,
Frequent Sequence Mining (FSM) is a prominent solution. With
the method of depth-first search or pattern-growth, FSM prunes
sequences that are not frequent as early as possible to speed up the
algorithm and return frequent sequence patterns.In our evaluation
(§5.5), PrefixSpan[23] performs the best, using the minimum run-
ning time and relative less memory. FSM algorithms process a list
of sequences and output frequent sequence patterns with 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 .
The 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 of sequence 𝑠𝑎 is defined as the number of sequences
that contain 𝑠𝑎 . In MARS, the frequent sequence pattern is switch
or link (two switches).

For example, suppose control plane receives data with four
𝑝𝑎𝑡ℎ1 = ⟨𝑠3, 𝑠2, 𝑠4⟩ and two 𝑝𝑎𝑡ℎ2 = ⟨𝑠6, 𝑠2, 𝑠7⟩. If the configuration
of FSM sets the max pattern length as 2 and the min relative support
as 50%, i.e., min 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = (4+2)/2 = 3 in this case. The frequent se-
quence patterns result in (⟨𝑠2⟩, ⟨𝑠2, 𝑠4⟩, ⟨𝑠3⟩, ⟨𝑠3, 𝑠2⟩, ⟨𝑠4⟩). Here the
pattern with the highest 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 is ⟨𝑠2⟩, whose 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 6, and
other patterns’ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 are 4. Other patterns like ⟨𝑠6⟩ are pruned
because their 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 is lower than the min support.

4.4.3 Spectrum-based Fault Localization (SBFL). After find-
ing out frequent sequences as culprits, MARS needs to sort them
in order to filter out Top-N culprits. As an approach towards pro-
gram fault localization, SBFL utilizes various program spectra from
software tests at code level or feature level, and corresponding
test results to calculate each test case’s suspicious score [5]. MARS
extends SBFL from the software domain to the network domain,
ranking each culprit sequences pattern by comparing the propor-
tion of normal/abnormal data sets with and without the pattern.

Relative risk is a statistical analysis technique in medical stud-
ies [35]. MARS integrates relative risk into SBFL to calculate the
suspicious score of each pattern as

𝑆𝑐𝑜𝑟𝑒 (𝑝𝑎𝑡𝑡𝑒𝑟𝑛) =
𝑁𝑝𝑓 /(𝑁𝑝𝑓 + 𝑁𝑝𝑠)
𝑁𝑛𝑓 /(𝑁𝑛𝑓 + 𝑁𝑛𝑠)

, (1)

where 𝑁𝑝𝑓 is the number of packets in abnormal set (failing test)
whose path contains the specific pattern, 𝑁𝑝𝑠 is the number of
packets in normal set (successful test) whose path contains the
specific pattern, 𝑁𝑛𝑓 and 𝑁𝑛𝑠 is the number of packets whose path
does not contain the specific 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 in failing test and successful
test. To avoid the erro of division by zero, 𝑁𝑛𝑓 can be consid-
ered as adding a constant, normally equal to 1, when the pro-
cessing data set is too small and all abnormal data share a same
pattern. In this case, the equation variation can be written as
(𝑁𝑝𝑓 /(𝑁𝑝𝑓 + 𝑁𝑝𝑠))/((𝑁𝑛𝑓 + 1)/(𝑁𝑛𝑓 + 𝑁𝑛𝑠)). The numerator of
(1) is the abnormal proportion of this 𝑝𝑎𝑡𝑡𝑒𝑟𝑛, and the denominator
stands for the abnormal proportion of other patterns. A higher
score value indicates a higher possibility that the pattern is the
source of failure, as compared to other patterns.

4.4.4 Culprit localization. The root cause of why a node/link
behaves abnormally can vary. To give more comprehensive help to
network operators, MARS relies on signature matching to assign a
cause for each culprit pattern with telemetry data. By querying the
paths that passed through the frequent patterns in the diagnosis
data, MARS assigns causes for culprits according to packet counts
and packet size at edge switches (to calculate throughput), total
queue depth in the whole path, and the topology information. Each

Algorithm 3 Culprit localization
Input: Frequent pattern 𝐹 , Diagnosis data 𝐷
Output: Culprits Set 𝐶
1: for 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ∈ 𝐹 do
2: for 𝑓 𝑙𝑜𝑤 that traverse 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 do
3: 𝑐𝑢𝑙𝑝𝑟𝑖𝑡 .𝑐𝑎𝑢𝑠𝑒 ← Signature(𝐷)
4: 𝑐𝑢𝑙𝑝𝑟𝑖𝑡 .𝑠𝑐𝑜𝑟𝑒 ← 𝑝𝑎𝑡𝑡𝑒𝑟𝑛.𝑠𝑐𝑜𝑟𝑒 · # pkts of 𝑓 𝑙𝑜𝑤

pkts go through 𝑝𝑎𝑡𝑡𝑒𝑟𝑛

5: 𝐶 ← 𝐶 ∪ 𝑐𝑢𝑙𝑝𝑟𝑖𝑡
6: end for
7: end for
8: 𝐶 ←merge(𝐶)

culprit will earn a score that is the pattern score multiplied by the
corresponding proportion of the path, as shown in Alg. 3.

We give five signatures for five common root causes at flow level,
switch level, and port level. The signatures can be extended if more
root causes are considered.
• Micro-burst is a flow-level cause. It is a short-lived spike of
flow that exceeds average traffic, leading to queue buildup
and resulting in a high latency or packet loss [10, 12]. Its
signature is whether a flow’s pps (packets per seconds) raises
sharply in the problematic period.
• ECMP Load Imbalance is a switch-level cause. The paths
between edge switches are usually not single but multiple.
For instance, there are four equal paths from 𝑠11 to 𝑠15 in
(Fig. 6). Ideally, each hop can assign the traffic equally for load
balance (e.g., 𝑠9 sends equally traffic to 𝑠1 and 𝑠2). However,
imperfect hash algorithm and uneven flow distribution under
time and space may bring about ECMP load imbalance [37].
If 𝑠9 fails to balance the traffic between two paths, say, more
flows are set towards to 𝑠1. Though high delay happens at 𝑠1
with queue building up, the root cause is at another switch
𝑠9. The signature of the root cause is whether the throughput
of each path in an ECMP group is evenly distributed when a
switch’s queue experiences sudden congestion.
• Process Rate Decrease is a port/switch-level cause. Due to
limitation of resource (switch CPU, memory, etc.) or imper-
fect schedule scheme, the processing rate of the switch may
decrease. As switch cannot process packet in time, a low
process rate will bring about queuing buildup, therefore the
latency raises up. Its signature is that pps remains relatively
stable when a queue buildup occurs.
• Delay is a port/switch-level cause. Besides process rate de-
crease, switch errors like interrupts, insufficient power sup-
ply and configuration errors can result in delays outside the

Figure 6: Fat-tree Topology.

352

MARS: Fault Localization in Programmable Networking Systems with Low-cost In-Band Network Telemetry ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

queue. The identifying characteristic of this root cause is
that there is not obvious change in both pps and queue depth,
yet the culprit pattern still has a high suspicious score.
• Drop is a port/switch-level cause. Though transient drop
may happen due the high latency related network faults
described above, unanticipated packet loss can also result
from link failure like poor cable connection, unwell-behaved
network updates, and missing forwarding table entries [53].
MARS detects drops by verifying the sequence ID of the
sample epoch. Unlike other root causes related to latency,
MARS applies another analysis logic to diagnosis drop event.
The time range of the drop event can be known with the
“epoch gap” field in the diagnosis data (as described in §4.3.2).
MARS uses the number of dropped packets, as determined
from the packet counter in the source and sink switches,
to identify the affected flows and estimate the number of
dropped packets. These flows are then categorized into the
abnormal set, while unrelated flows are considered the nor-
mal set. MARS then runs another instance of SBFL with these
two sets, and the link or switch with the highest suspicious
score is considered the most likely culprit of the drop event.

While different frequent patterns may attribute to the same
culprit, MARS merges the same cause at last. The actual abnormal
localization dominates the causes’ score eventually, i.e., the cause
score should be lower than the SBFL score of the culprit pattern.
Therefore, the merged score of a flow-level cause is the maximum
score of repeat items, while other kinds of causes’ merged score
is calculated by summation. In addition, MARS merges port-level
causes of the same type into a single switch-level cause when they
are assigned to multiple ports within the same switch.

5 EVALUATION
5.1 Experiment Setup
We developed two prototypes of MARS for evaluation. The perfor-
mance of MARS is evaluated on a Barefoot Tofino switch [8] in P4
with 1429 lines of code (LOC) in the data plane. The switch emu-
lates multiple logical switches port-to-port connected by fiber-optic
cables. The port rate is set as 10 Gbps. The Switch is physically
connected to four Linux machines as hosts. Moreover, a simula-
tion environment is set up in Mininet with BMv2 P4 software
switches[2] on a physical machine with 8-core CPU, 16 GB mem-
ory, and Ubuntu 18.04 OS under a fat-tree topology (Fig. 6). The
background flows’ packet size and inter-packet gap are consistent
with the dataset of UW datacenter trace[10] and the ECMP strategy
is based on path weight. The control plane is written with 827 LOC
in Python, and root cause analysis is implemented with 793 LOC in
Python, using the SPMF data-mining library [17].

5.2 Fault Injection
The transmission speed of background flow is about 200 packets
per second. Micro-bursts are generated by injecting one transient
flow in a great amount, over 1000 pps within a second. The burst
flow occupies the queue in switches quickly, leading to a transient
high latency event (Fig. 7(a)). ECMP Load Imbalance is generated
by setting a randomly picked switch’s ECMP strategy from 1:1
to an imbalance ratio (random from 1:4 to 1:10). As a result, the

timestamp
0.50

0.75

1.00

1.25

1.50

la
te

nc
y

(m
s)

1e7
burst
others

(a) Micro-burst

timestamp

2

3

4

la
te

nc
y

(m
s)

1e6
ECMP path 1
ECMP path 2

(b) ECMP

Figure 7: Examples of Anomaly Scenario.

throughput of two paths in an ECMP group varies (Fig. 7(b)). As
the number of packets forwarded to one ECMP path increases,
the latency of that path increases, while the latency of the other
path decreases. Process Rate Decrease scenarios randomly select a
port of a randomly picked switch and decrease its packet process
rate lower than 100 pps. Delay and Drop event are generated with
Chaosblade [1] by injecting the anomaly to the switch’s interface(s).

5.3 Anomaly Detection Effectiveness
Fig. 8 presents the anomaly detection results on comparison be-
tween dynamic threshold and static threshold. The higher threshold
causes more false negatives and lower recall, while the lower thresh-
old causes more false positives. Static thresholds are easier to trigger
false alarms, leading to low precision. As the reservoir can adjust
to dynamic network traffic, it avoids many false alarms and reaches
high precision. Furthermore, the reservoir without penalty factor
𝛼 is much easier to be affected by anomalies (high latency), leading
to numerous false negatives. The penalty factor helps the reservoir
avoid this problem at the cost of 0.02 precision according to re-
cently detected anomaly counts. As a result, the dynamic threshold
of MARS achieves 0.96 Recall, 0.97 Precision, and 0.97 F1 score.

5.4 Fault Localization Effectiveness
We evaluate the effectiveness of MARS in localizing faults in mul-
tiple scenarios. To enable the comparison to MARS, we adopted
SpiderMon[47], IntSight[31], and SyNDB[26] to output an ordered
culprit list. The result of SpiderMon is ordered by the degree in its
Wait-For Graph (WFG). The result of IntSight and SyNDB is ordered
according to the data from the conditional flow report and 𝑝-record,
respectively. The result of SpiderMon is based on the level in its
Wait-For Graph (WFG), while the ranking of IntSight and SyNDB is
based on the query data from the flow report and 𝑝-record, respec-
tively. The effectiveness of SyNDB may be overstated (represented
by gray color in Table 1) as it is query-based and requires expert
knowledge to determine which telemetry data it should query.

To evaluate the effectiveness of MARS, we introduce two metrics
that are widely used in root cause localization. Recall of Top-k
(𝑹@𝒌) reveals the probability that the root cause can be located
within the top 𝑘 culprits provided by the algorithm [29, 52]. A
survey [27] conducted that over 73% developers only consider Top-
5 ranked elements. Thus, this paper splits the results into 𝑅@𝑘 (𝑘 =

1, 2, 3, 5). Exam Score is a metric to measure the percentage of the
false positives that need to be excluded manually by admin before
locating the real root cause [24, 39, 49]. If the root cause is out of
Top-5, we set a default 10 false positive cause before it. Note that the

353

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Benran Wang, Hongyang Chen, Pengfei Chen, Zilong He, Guangba Yu

0.25 0.50 0.75 1.00
Precision

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

100 ms
500 ms
1000 ms
5000 ms
Reservoir
Reservoir without

Figure 8: Anomaly detection
under different thresholds.

Table 1: Recall and Exam Score of MARS (MS), SpiderMon (SM), IntSight (IS) and SyNDB (SN).
Here only SN is aided by expert knowledge to diagnose.

Anomaly Cause
𝑅@1 (%) 𝑅@2 (%) 𝑅@3 (%) 𝑅@5 (%) Exam Score

MS SM IS SN MS SM IS SN MS SM IS SN MS SM IS SN MS SM IS SN
Micro-burst 75 50 10 44 85 62 39 73 92 73 60 79 96 75 81 94 0.3 0.3 2.4 1.5

ECMP 88 70 29 50 100 96 50 79 100 96 54 96 100 100 96 100 0.1 0.4 2.5 0.8
Process Rate 94 100 71 100 100 100 100 100 100 100 100 100 100 100 100 100 0.1 0 0.3 0

Delay 73 - - 100 83 - - 100 87 - - 100 93 - - 100 0.4 10 10 0
Drop 67 - - 100 94 - - 100 100 - - 100 100 - - 100 0.4 10 10 0
Overall 83 44 21 79 95 52 32 90 97 54 40 95 99 55 55 99 0.3 4.1 5.0 0.5

higher 𝑅@𝑘 is better, while the lower Exam Score is better. Table 1
shows the result of the evaluation.

SpiderMon focuses on the micro-burst flow that occupies most
line-rate. In this case, most flows wait for the culprit flow, thus the
degree of the culprit vertex is high, with a large indegree and a small
outdegree. However, when a flow bursts in a great amount, most
wait-for relation is between burst flow itself, i.e., the indegree and
outdegree are similar and SpdierMon would fail to localize the root
cause. As SpiderMon only carries a cumulative latency of queuing
delta time, which is based on whether to send the “spider” notice
packet, it cannot sense the anomaly outside the queue. Therefore,
SpiderMon cannot detect the exceptions of delay and drop, thus
failing to start a root cause analysis. Though IntSight can sense
the drop event at flow-level by comparing the source count and
destination, it fails to locate the drop event at a switch/port-level.
Similar to SpiderMon, IntSight updates contention points according
to queuing delta time. As a result, IntSight falls short to locate the
deeper root cause. As IntSight is not good at aggregate reports
into a ranked metric, its recall is relatively low until Top-5. Since
SyNDB cannot decide which data should be queried and diagnose
without expert knowledge, it has to iterate the diagnosis process
for all kinds of failure causes to find the root cause. Therefore, we
have to assume SyNDB knows the root cause at first to conduct
the corresponding diagnosis process, rendering SyNDB with expert
knowledge to outperform other approaches in many circumstances.
Besides, SyNDB does not have a trigger rule for drop events except
for updating a forwarding rule. For packet loss caused by other
reasons, SyNDB cannot sense it timely. Moreover, to check whether
a drop event happened in history, traversing the entire database is
needed, which is time-consuming.

In a nutshell, MARS is efficient to localize root cause without
expert experience. It achieves 0.95 𝑅@2 and 0.3 Exam Score overall.
While SpiderMon and IntSight are skilled in specific scenarios,
they fall short to detect delay and drop events. SyNDB has a high
coverage of the network data, thus performing well in all scenarios
as the same as MARS. However, its overhead is tremendous, which
will be illustrated in the next subsection.

5.5 Overhead
Network Bandwidth. We estimated the network bandwidth of
baselines to be compared with MARS, as depicted in Fig. 9. “Teleme-
try” refers to the additional bandwidth required for packet informa-
tion, such as INT headers. “Diagnosis” refers to the data sent from

the data plane to the control plane, including telemetry data for
root cause analysis. SyNDB does not consume telemetry bandwidth
as it does not require INT headers. However, it requires all switches
to send recorded data to control plane, causing a significant amount
of diagnosis bandwidth. IntSight requires a large INT header (33B)
to perform anomaly detection and root cause analysis in switches,
consuming a significant amount of telemetry bandwidth. It sends
data to the control plane conditionally, resulting in less diagno-
sis bandwidth compared to SyNDB. SpiderMon has much lower
telemetry bandwidth compared to IntSight as its INT header only
contains latency information. Unlike SyNDB and SpiderMon which
collect data from all switches, MARS only requires edge switches
to send diagnosis data. In addition, MARS collects less data per
edge switch compared with IntSight. For example, the bit map of
IntSight that indicates a specific switch in packet’s transmission
path is usually set at 48 bits per map. Thus, MARS consumes less
diagnosis bandwidth. However, MARS requires more telemetry in-
formation in the INT header, leading to a slightly greater telemetry
bandwidth than SpiderMon, but still much smaller than IntSight.
Overall, MARS has the least total bandwidth consumption and the
smallest diagnosis overhead. Though the total bandwidth overhead
of SpiderMon and MARS is near, MARS collects information in a
more comprehensive manner, providing a more dimensional and
thorough root cause analysis.

Switch Resource Usage. Fig. 10 shows the usage of switch
resource1 and how MARS scales with the Ring Table size. Ring
Table size indicates the number of history packet can be collected
to the control plane on each switch once a time. The history data is
saved in the SRAM (Static RAM) register of switch. MARS fits in
the Tofino pipeline comfortably for now, and can scale to record
more data as switch memory size increases over time [33].

Switch Memory Usage for PathID. The switch memory usage
of IntSight is𝑀IS =

∑
𝑝∈𝑝𝑎𝑡ℎ𝑠 #ℎ𝑜𝑝𝑝 × 𝑠𝑖𝑧𝑒 (MATIS), and MARS re-

quires 𝑀MS =
∑
𝑝∈𝑝𝑎𝑡ℎ𝑠

∑
ℎ𝑝 ∈ℎ𝑜𝑝𝑠 (𝑝) 𝑝ℎ𝑎𝑠ℎ × 𝑠𝑖𝑧𝑒 (MATMS). Here

𝑝ℎ𝑎𝑠ℎ ∈ (0, 1) is the probability of hash conflict. As a result,𝑀IS >

𝑀MS holds in all cases if MATIS = MATMS. In a𝐾 = 4 fat-tree topol-
ogy, there are 216 paths between edge switches (8 one-hop paths, 8
three-hop paths, and 96 five-hop paths). As IntSight needs to assign
MAT entries for all switches on a path, it needs to assign 512 MAT
1The PHV (Packet Header Vector) carries packet data throughout the Tofino pipeline.
Hash Bits are used in hash generators, e.g., ECMP, and to calculate PathID. TCAM
(Ternary Content Addressable Memory) is utilized in the matching part of MAT, such
as the longest-prefix match for IP addresses. Action Data are the stage data for PHV
ALUs (Arithmetic Logic Units).

354

MARS: Fault Localization in Programmable Networking Systems with Low-cost In-Band Network Telemetry ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

MARS SM IS SN

0

50

100

150

B
an

dw
id

th
 (K

B
)

telemetry
diagnosis

Figure 9: Extra bandwidth.

0 25 50 75 100
Usage (%)

Action Data

TCAM

Hash Bits

PHV

0 5 10
SRAM Usage (MB)

1k

5k

10k

50k

of
 h
is
to
ry
 p
ac
ke
t

Figure 10: The resource usage in Tofino

PrefixSpan*

PrefixSpan

CM-SPAM*

SPAM*
CM-SPADE

SPADE
CM-SPAM

SPAM
LAPIN

GSP
0

200

400

600

ru
nn

in
g

tim
e

(m
s)

pattern len 2
default

25

50

75

100

125

m
em

or
y

(M
B

)

memory

Figure 11: Overhead of FSM.

entries in total, with each MAT entry consuming around 7 bytes
of memory. For MARS, though a MAT occupies around 10 bytes of
memory, only 48 MAT entries are enough to distinguish all the 112
paths, with CRC16/CRC32 as the hash algorithm. Consequently,
MARS saves more 43.6% switch memory than IntSight.

FSM Algorithms. Fig. 11 shows the comparison of different
FSM algorithms in our fault scenarios, including PrefixSpan [23],
Lapin [48], GSP [42], Spade [50], Spam [6], SM-Spade and SM-
Spam [16]. Besides the min 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 , Some algorithms can limit
the maximum pattern length. Since MARS only considers patterns
whose length is less than two, the algorithmswithmaximumpattern
length equals two perform relatively better. Most algorithms finish
in 200 ms and consume less than 30 MB of memory. PrefixSpan
performs the best among all algorithms.

5.6 Limitation
Expanding on the types of fault reasons requires expert knowledge
intervention. Experts need to analysis and summarize the fault
reasons, so that they can design corresponding signatures for fault
matching. Besides, MARS can not handle continuous packet loss
that has not been restored and report it promptly, as MARS cannot
compare the packet count without receiving new packets.

6 RELATEDWORK
Out-of-band network diagnosis. Out-of-band diagnosis meth-

ods either use packet mirroring at switches to monitor the net-
work [21, 40, 46, 55], or send probes into the network to estimate
the network status [18, 43]. NetSight [21] creates copies for all
packets in the forwarding device and sends them to the control
plane for further diagnosis. However, the “always on” mirroring for
all packets incurs excessive data collection that is unrelated to the
diagnosis. While [40, 46, 55] utilize sampling technique to reduce
monitoring overheads, they perform poorly in diagnosis because
simply sampling misses unexpected events easily. Pingmesh [18]
and NetBouncer [43] install agents on each end-host to send probe
packets, which would be collected by a processor to detect and
diagnose the network failures. However, the probing traffic and
the production traffic may travel along various paths, hindering
accurate and timely diagnosis of transient failures.

Programmable switch assisted diagnosis. Since out-of-band
network diagnosis methods introduce extra overhead to the net-
work, existing works aim to leverage programmable switches to
monitor the network and localize the network failure. BurstRadar [25],
ConQuest [13], *Flow [41] depict the status of the queues when

packets enter in the switch. However, they indiscriminately monitor
and collect telemetry data from switches. SpiderMon [47] reduces
the report overheads by providing an on-demand collection method.
Only when a switch detects an anomaly, the telemetry data in all
switches would be collected for fault localization. However, in most
data centers, link utilizations are rather low in all layers except the
core, and a subset of the core links often experience high utiliza-
tion [10]. It is challenging to minimize the usage of core switches
due to the requirement for monitoring and data collection. There-
fore, MARS only needs the telemetry data collected from the edge
switches to perform fault localization. Like SpiderMon, IntSight [31]
and Marple [36] also detect anomalies by preset thresholds, hinder-
ing the adoption of the detecting accuracy in the network where the
traffic is versatile. On the contrary, MARS detects anomalies with
dynamic thresholds. Query-based diagnosis systems [19, 26, 45, 53]
require the operators to understand the network and the potential
locations of the failures in advance, hindering the timely and con-
venient diagnosis in a large-scale network. On the contrary, MARS
is capable of automatically detecting and localizing the failures
without any static queries.

7 CONCLUSION
This paper proposes MARS, a low-cost system for anomaly detec-
tion and precise root cause localization in programmable networks.
MARS achieves low-cost monitoring using INT and an on-demand
strategy to monitor, detects anomalies including drop and high
delay with dynamic thresholds, and localizes the root cause with
FSM and SBFL. Our evaluation on a real-world Tofino testbed and a
simulated Mininet environment shows that, even with a low over-
head in network bandwidth and switch memory, MARS can achieve
accurate anomaly detection (0.97 F1 score) and precise root cause
localization (0.95 R@2) for diverse network faults.

ACKNOWLEDGMENTS
The research is supported by the National Key Research and Devel-
opment Program of China (No. 2019YFB1804002), the National Natu-
ral Science Foundation of China (No. 62272495), the Guangdong Ba-
sic and Applied Basic Research Foundation (No. 2023B1515020054).
The corresponding author is Pengfei Chen.

REFERENCES
[1] 2021. Chaosblade. https://github.com/chaosblade-io/chaosblade. Accessed:

2021-12-03.
[2] 2022. Bmv2. http://bmv2.org/. Accessed: 2022-09-13.
[3] 2023. P4Runtime Control Plane API. https://github.com/p4lang/p4runtime.

Accessed: 2022-02-12.

355

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Benran Wang, Hongyang Chen, Pengfei Chen, Zilong He, Guangba Yu

[4] Kanak Agarwal, Eric Rozner, Colin Dixon, and John Carter. 2014. SDN Traceroute:
Tracing SDN Forwarding without Changing Network Behavior. In HotSDN ’14.
ACM, New York, USA, 145–150. https://doi.org/10.1145/2620728.2620756

[5] Aitor Arrieta, Sergio Segura, Urtzi Markiegi, Goiuria Sagardui, and Leire Etxe-
berria. 2018. Spectrum-Based Fault Localization in Software Product Lines.
Information and Software Technology 100 (2018), 18–31. https://doi.org/10.1016/j.
infsof.2018.03.008

[6] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. 2002. Sequential
PAttern Mining Using a Bitmap Representation. In KDD ’02. ACM, New York,
USA, 429–435. https://doi.org/10.1145/775047.775109

[7] Jozef Babiarz, RomanM. Krzanowski, KaynamHedayat, Kiho Yum, andAlMorton.
2008. A Two-Way Active Measurement Protocol (TWAMP). Request for Comments
RFC 5357. Internet Engineering Task Force. https://doi.org/10.17487/RFC5357

[8] barefoot. 2023. Open Tofino. https://github.com/barefootnetworks/Open-Tofino.
Accessed: 2022-02-03.

[9] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni Antichi,
Minian Yu, andMichaelMitzenmacher. 2020. PINT: Probabilistic In-bandNetwork
Telemetry. In Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication. Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/3387514.3405894 arXiv:2007.03731

[10] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network Traffic
Characteristics of Data Centers in the Wild. In IMC ’10. ACM Press, Melbourne,
Australia, 267. https://doi.org/10.1145/1879141.1879175

[11] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.
In ACM SIGCOMM Computer Communication Review, Vol. 44. 87–95. https:
//doi.org/10.1145/2656877.2656890

[12] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, and Ori Rot-
tenstreich. 2018. Catching the Microburst Culprits with Snappy. In Proceedings
of the Afternoon Workshop on Self-Driving Networks. ACM, Budapest Hungary,
22–28. https://doi.org/10.1145/3229584.3229586

[13] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori Rottenstre-
ich, Steven A Monetti, and Tzuu-Yi Wang. 2019. Fine-Grained Queue Measure-
ment in the Data Plane. In CoNEXT ’19 (Orlando, Florida). ACM, New York, USA,
15â€“29. https://doi.org/10.1145/3359989.3365408

[14] Chongrong Fang, Haoyu Liu, Mao Miao, Jie Ye, Lei Wang, Wansheng Zhang,
Daxiang Kang, Biao Lyv, Peng Cheng, and Jiming Chen. 2020. VTrace: Automatic
Diagnostic System for Persistent Packet Loss in Cloud-Scale Overlay Network.
In Proceedings of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and Protocols
for Computer Communication (New York, USA) (SIGCOMM ’20). ACM, 31–43.
https://doi.org/10.1145/3387514.3405851

[15] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, and
Eric Chung. 2018. Azure Accelerated Networking: SmartNICs in the Public Cloud.
In NSDI ’18.

[16] Philippe Fournier-Viger, Antonio Gomariz, Manuel Campos, and Rincy Thomas.
2014. Fast Vertical Mining of Sequential Patterns Using Co-occurrence Infor-
mation. In Advances in Knowledge Discovery and Data Mining (Lecture Notes
in Computer Science), Vincent S. Tseng, Tu Bao Ho, Zhi-Hua Zhou, Arbee L. P.
Chen, and Hung-Yu Kao (Eds.). Springer International Publishing, Cham, 40–52.
https://doi.org/10.1007/978-3-319-06608-0_4

[17] Philippe Fournier-Viger, Antonio Gomariz, Ted Gueniche, et al. 2014. SPMF: A
Java Open-Source Pattern Mining Library. (2014), 5.

[18] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave
Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis
Kurien. 2015. Pingmesh: A Large-Scale System for Data Center Network Latency
Measurement and Analysis. 45, 4 (aug 2015), 139â€“152. https://doi.org/10.1145/
2829988.2787496

[19] Arpit Gupta, Rüdiger Birkner, Marco Canini, Nick Feamster, Chris Mac-Stoker,
and Walter Willinger. 2016. Network Monitoring as a Streaming Analytics
Problem. In HotNets ’16 (Atlanta, GA, USA). ACM, New York, USA, 106â€“112.
https://doi.org/10.1145/3005745.3005748

[20] Peter J. Haas. 2016. Data-Stream Sampling: Basic Techniques and Results. In Data
Stream Management: Processing High-Speed Data Streams, Minos Garofalakis,
Johannes Gehrke, and Rajeev Rastogi (Eds.). Springer, Berlin, Heidelberg, 13–44.
https://doi.org/10.1007/978-3-540-28608-0_2

[21] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and
Nick McKeown. 2014. I Know What Your Packet Did Last Hop: Using Packet
Histories to Troubleshoot Networks. In NSDI 14. 71–85. https://www.usenix.
org/conference/nsdi14/technical-sessions/presentation/handigol

[22] Chenhao Jia, Tian Pan, Zizheng Bian, et al. 2020. Rapid Detection and Localization
of Gray Failures in Data Centers via In-band Network Telemetry. In 2020 IEEE/IFIP
Network Operations and Management Symposium. IEEE, Budapest, Hungary, 1–9.
https://doi.org/10.1109/NOMS47738.2020.9110326

[23] Jian Pei, Jiawei Han, B. Mortazavi-Asl, H. Pinto, Qiming Chen, U. Dayal, and
Mei-Chun Hsu. 2001. PrefixSpan,: Mining Sequential Patterns Efficiently by
Prefix-Projected Pattern Growth. In Proceedings 17th International Conference
on Data Engineering. IEEE Comput. Soc, Heidelberg, Germany, 215–224. https:
//doi.org/10.1109/ICDE.2001.914830

[24] Jiajun Jiang, Ran Wang, Yingfei Xiong, Xiangping Chen, and Lu Zhang. 2019.
Combining Spectrum-Based Fault Localization and Statistical Debugging: An
Empirical Study. In ASE. IEEE, 502–514. https://doi.org/10.1109/ASE.2019.00054

[25] Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and Boon Thau Loo. 2018.
BurstRadar: Practical Real-time Microburst Monitoring for Datacenter Networks.
InAPSys ’18. ACM, New York, USA, 1–8. https://doi.org/10.1145/3265723.3265731

[26] Pravein Govindan Kannan, Nishant Budhdev, Raj Joshi, and Mun Choon Chan.
2021. Debugging Transient Faults in Data Centers Using Synchronized Network-
wide Packet Histories. In NSDI ’21. 253–268. https://www.usenix.org/conference/
nsdi21/presentation/kannan

[27] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’
Expectations on Automated Fault Localization. In ISSTA ’16. ACM, New York,
USA, 165–176. https://doi.org/10.1145/2931037.2931051

[28] Yuliang Li, Rui Miao, Mohammad Alizadeh, and Minlan Yu. 2019. DETER: Deter-
ministic TCP Replay for Performance Diagnosis. In NSDI ’19. 437–452.

[29] Jinjin Lin, Pengfei Chen, and Zibin Zheng. 2018. Microscope: Pinpoint Perfor-
mance Issues with Causal Graphs in Micro-service Environments. In Service-
Oriented Computing. Springer, Cham, 3–20. https://doi.org/10.1007/978-3-030-
03596-9_1

[30] Zhengzheng Liu, Jun Bi, Yu Zhou, Yangyang Wang, and Yunsenxiao Lin. 2018.
NetVision: Towards Network Telemetry as a Service. In ICNP. 247–248. https:
//doi.org/10.1109/ICNP.2018.00036

[31] Jonatas Marques, Kirill Levchenko, and Luciano Gaspary. 2020. IntSight: Diagnos-
ing SLO Violations with in-Band Network Telemetry. In Proceedings of the 16th
International Conference on Emerging Networking EXperiments and Technologies
(Barcelona Spain, 2020-11-23). ACM, 421–434. https://doi.org/10.1145/3386367.
3431306

[32] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
Enabling Innovation in Campus Networks. ACM SIGCOMM Computer Commu-
nication Review (2008). https://doi.org/10.1145/1355734.1355746

[33] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
Silkroad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-
ing Asics. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication. 15–28. https://doi.org/10.1145/3098822.3098824

[34] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David
Zats. 2015. TIMELY: RTT-based Congestion Control for the Datacenter. ACM
SIGCOMM Computer Communication Review 45, 4 (2015). https://doi.org/10.1145/
2829988.2787510

[35] Julie A Morris and Martin J Gardner. 1988. Statistics in Medicine: Calculating
Confidence Intervals for Relative Risks (Odds Ratios) and Standardised Ratios and
Rates. British Medical Journal (Clinical research ed.) 296, 6632 (1988), 1313–1316.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2545775/

[36] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.
Language-Directed Hardware Design for Network Performance Monitoring. In
Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication (Los Angeles, CA, USA) (SIGCOMM ’17). ACM, New York, USA, 85â€“98.
https://doi.org/10.1145/3098822.3098829

[37] Bronson Nathan. 2014. Solving the Mystery of Link Imbalance: A Metastable
Failure State at Scale. https://engineering.fb.com/2014/11/14/production-
engineering/solving-the-mystery-of-link-imbalance-a-metastable-failure-
state-at-scale/

[38] P4. 2020. In-Band Network Telemetry (INT) Dataplane Specification. https:
//p4.org/p4-spec/docs/INT_v2_1.pdf

[39] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D.
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and Improving Fault
Localization. In ICSE. IEEE, 609–620. https://doi.org/10.1109/ICSE.2017.62

[40] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner, Wes Felter, Kanak Agarwal,
John Carter, and Rodrigo Fonseca. 2014. Planck: Millisecond-Scale Monitoring
and Control for Commodity Networks. In SIGCOMM ’14. ACM, New York, USA,
407–418. https://doi.org/10.1145/2619239.2626310

[41] John Sonchack, Oliver Michel, Adam J. Aviv, Eric Keller, and Jonathan M. Smith.
2018. Scaling Hardware Accelerated Network Monitoring to Concurrent and
Dynamic Queries With *Flow. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). USENIX Association, Boston, MA, 823–835. https://www.
usenix.org/conference/atc18/presentation/sonchack

[42] Ramakrishnan Srikant and Rakesh Agrawal. 1996. Mining Sequential Patterns:
Generalizations and Performance Improvements. In EDBT ’96 (Lecture Notes in
Computer Science), Peter Apers, Mokrane Bouzeghoub, and Georges Gardarin
(Eds.). Springer, Berlin, Heidelberg, 1–17. https://doi.org/10.1007/BFb0014140

356

https://doi.org/10.1145/2620728.2620756
https://doi.org/10.1016/j.infsof.2018.03.008
https://doi.org/10.1016/j.infsof.2018.03.008
https://doi.org/10.1145/775047.775109
https://doi.org/10.17487/RFC5357
https://doi.org/10.1145/3387514.3405894
https://arxiv.org/abs/2007.03731
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/3229584.3229586
https://doi.org/10.1145/3359989.3365408
https://doi.org/10.1145/3387514.3405851
https://doi.org/10.1007/978-3-319-06608-0_4
https://doi.org/10.1145/2829988.2787496
https://doi.org/10.1145/2829988.2787496
https://doi.org/10.1145/3005745.3005748
https://doi.org/10.1007/978-3-540-28608-0_2
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/handigol
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/handigol
https://doi.org/10.1109/NOMS47738.2020.9110326
https://doi.org/10.1109/ICDE.2001.914830
https://doi.org/10.1109/ICDE.2001.914830
https://doi.org/10.1109/ASE.2019.00054
https://doi.org/10.1145/3265723.3265731
https://www.usenix.org/conference/nsdi21/presentation/kannan
https://www.usenix.org/conference/nsdi21/presentation/kannan
https://doi.org/10.1145/2931037.2931051
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1109/ICNP.2018.00036
https://doi.org/10.1109/ICNP.2018.00036
https://doi.org/10.1145/3386367.3431306
https://doi.org/10.1145/3386367.3431306
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/3098822.3098824
https://doi.org/10.1145/2829988.2787510
https://doi.org/10.1145/2829988.2787510
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2545775/
https://doi.org/10.1145/3098822.3098829
https://engineering.fb.com/2014/11/14/production-engineering/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/
https://engineering.fb.com/2014/11/14/production-engineering/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/
https://engineering.fb.com/2014/11/14/production-engineering/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1145/2619239.2626310
https://www.usenix.org/conference/atc18/presentation/sonchack
https://www.usenix.org/conference/atc18/presentation/sonchack
https://doi.org/10.1007/BFb0014140

MARS: Fault Localization in Programmable Networking Systems with Low-cost In-Band Network Telemetry ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

[43] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu, Karl Deng,
Dongming Bi, and Dong Xiang. 2019. NetBouncer: Active Device and Link Failure
Localization in Data Center Networks. In NSDI ’19. USENIX Association, Boston,
MA, 599–614. https://www.usenix.org/conference/nsdi19/presentation/tan

[44] Shaofei Tang, Deyun Li, Bin Niu, Jianquan Peng, and Zuqing Zhu. 2020. Sel-INT:
A Runtime-Programmable Selective In-Band Network Telemetry System. 17, 2
(2020), 708–721. https://doi.org/10.1109/TNSM.2019.2953327

[45] Ross Teixeira, Rob Harrison, Arpit Gupta, and Jennifer Rexford. 2020. Pack-
etScope: Monitoring the Packet Lifecycle Inside a Switch. In SOSR ’20 (San Jose,
CA, USA). ACM, New York, USA, 76â€“82. https://doi.org/10.1145/3373360.
3380838

[46] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Stefano Vissicchio, and Laurent
Vanbever. 2018. Stroboscope: Declarative Network Monitoring on a Budget.
In NSDI 18. 467–482. https://www.usenix.org/conference/nsdi18/presentation/
tilmans

[47] Weitao Wang, Xinyu Crystal Wu, Praveen Tammana, Ang Chen, and T. S. Eugene
Ng. 2022. Closed-Loop Network Performance Monitoring and Diagnosis with
SpiderMon. 267–285. https://www.usenix.org/conference/nsdi22/presentation/
wang-weitao-spidermon

[48] Zhenglu Yang and M. Kitsuregawa. 2005. LAPIN-SPAM: An Improved Algorithm
for Mining Sequential Pattern. In ICDEW ’05. 1222–1222. https://doi.org/10.1109/
ICDE.2005.235

[49] Guangba Yu, Pengfei Chen, Hongyang Chen, Zijie Guan, Zicheng Huang, Linxiao
Jing, TianjunWeng, Xinmeng Sun, and Xiaoyun Li. 2021. MicroRank: End-to-End
Latency Issue Localization with Extended Spectrum Analysis in Microservice En-
vironments. In Proceedings of the Web Conference 2021. ACM, Ljubljana Slovenia,

3087–3098. https://doi.org/10.1145/3442381.3449905
[50] Mohammed J. Zaki. 2001. SPADE: An Efficient Algorithm for Mining Frequent

Sequences. Machine Learning 42, 1 (Jan. 2001), 31–60. https://doi.org/10.1023/A:
1007652502315

[51] Matthew J. Zekauskas, Anatoly Karp, Stanislav Shalunov, Jeff W. Boote, and
Benjamin R. Teitelbaum. 2006. A One-way Active Measurement Protocol (OWAMP).
Request for Comments RFC 4656. IETF. https://doi.org/10.17487/RFC4656

[52] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin Xiang, and
Chuan He. 2019. Latent Error Prediction and Fault Localization for Microservice
Applications by Learning from System Trace Logs. In ESEC/FSE 2019. ACM, New
York, USA, 683–694. https://doi.org/10.1145/3338906.3338961

[53] Yu Zhou, Chen Sun, Hongqiang Harry Liu, et al. 2020. Flow Event Telemetry on
Programmable Data Plane. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication (SIGCOMM ’20). ACM,
New York, USA, 76–89. https://doi.org/10.1145/3387514.3406214

[54] Yibo Zhu, Nanxi Kang, Jiaxin Cao, et al. 2015. Packet-Level Telemetry in Large
Datacenter Networks. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication (London United Kingdom). ACM, 479–491.
https://doi.org/10.1145/2785956.2787483

[55] Yibo Zhu, Nanxi Kang, Jiaxin Cao, et al. 2015. Packet-Level Telemetry in Large
Datacenter Networks. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication (London, United Kingdom) (SIGCOMM
’15). ACM, New York, USA, 479â€“491. https://doi.org/10.1145/2785956.2787483

357

https://www.usenix.org/conference/nsdi19/presentation/tan
https://doi.org/10.1109/TNSM.2019.2953327
https://doi.org/10.1145/3373360.3380838
https://doi.org/10.1145/3373360.3380838
https://www.usenix.org/conference/nsdi18/presentation/tilmans
https://www.usenix.org/conference/nsdi18/presentation/tilmans
https://www.usenix.org/conference/nsdi22/presentation/wang-weitao-spidermon
https://www.usenix.org/conference/nsdi22/presentation/wang-weitao-spidermon
https://doi.org/10.1109/ICDE.2005.235
https://doi.org/10.1109/ICDE.2005.235
https://doi.org/10.1145/3442381.3449905
https://doi.org/10.1023/A:1007652502315
https://doi.org/10.1023/A:1007652502315
https://doi.org/10.17487/RFC4656
https://doi.org/10.1145/3338906.3338961
https://doi.org/10.1145/3387514.3406214
https://doi.org/10.1145/2785956.2787483
https://doi.org/10.1145/2785956.2787483

	Abstract
	1 Introduction
	2 Background
	3 Motivation
	4 Design and Implementation
	4.1 Definition
	4.2 Telemetry Collection
	4.3 Anomaly Detection
	4.4 Root Cause Analysis

	5 Evaluation
	5.1 Experiment Setup
	5.2 Fault Injection
	5.3 Anomaly Detection Effectiveness
	5.4 Fault Localization Effectiveness
	5.5 Overhead
	5.6 Limitation

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

