
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2023 1

MicroFI: Non-Intrusive and Prioritized
Request-Level Fault Injection for Microservice

Applications
Hongyang Chen, Pengfei Chen*, Guangba Yu, Xiaoyun Li, Zilong He

Abstract—Microservice is a widely-adopted architecture for constructing cloud-native applications. To test application resiliency, chaos
engineering is widely used to inject faults proactively in applications. However, the searching space formed by possible injection
locations is huge due to the scale and complexity of the application. Although some methods are proposed to effectively explore
injection space, they cannot prioritize high-impact injection solutions. Additionally, the blast radius of faults injected by existing methods
is typically full of uncertainty, causing faults of multiple application functions. Although some tools are designed to conduct request-level
injection, they require instrumentation on application code. To tackle these problems, this paper presents MicroFI, a non-intrusive fault
injection framework, aiming to efficiently test different application functions with request-level injection. Request-level injection limits the
blast radius to specified requests without any source code modification. Additionally, MicroFI leverages historical injection results and
parallel technique to accelerate the searching. Moreover, An enhanced PageRank is used to measure the impact of faults and prioritize
high-impact faults that fail more functions. Evaluations on three microservice applications show that MicroFI precisely injects faults and
reduces up to 91% redundant faults on average. Additionally, by employing prioritization, MicroFI reduces an average of 47.3%
injection budgets to cover all high-impact faults.

Index Terms—Microservice, Fault Injection, Chaos Engineering, Service Mesh, Tracing

✦

1 INTRODUCTION

M ICROSERVICE architecture has become a popular ar-
chitecture to implement a large-scale, cloud-native

application. With this architecture, the application is de-
composed into dozens of small, loosely-coupled services
that communicate through simple APIs [1], [2]. Each service
comprises several to hundreds of instances. With the rapid
evolution of user requirements, the quantity of application
functions (e.g., Login, Search) as well as the kind of services
increases, and the dependent relationships between services
become complex. Such complexity hinders the development
and orchestration of microservice applications. Therefore,
service mesh [3], a communication infrastructure, is pro-
posed to resolve this problem by providing proxies to man-
age network traffic between services. For example, in Fig.1,
the proxies manage the traffic among service instances. As
a result, the scale of applications increases, leading to a
higher level of network complexity [4], [5]. However, the
complex interactions, interference and dependencies among
components render applications more fragile [6]–[9].

Postmortem reports published by Gremlin [10] that the
absence or inadequacy of resiliency (i.e., fault-handling)
mechanisms would probably lead to user-visible faults, and
result in a huge economic loss and serious user experience
violations. For example, a defective resiliency logic had led
to failures of instance creation in Google Compute Engine in
2018 [11], impacting the services deployed on it. Therefore, it
is a critical task to verify whether the resiliency mechanisms
act as expected all the time.

Today, to assure applications are resilient to various
faults, chaos engineering [12] is widely adopted in IT
companies (e.g., Netflix [13], Google [14], Microsoft [15],
Linkedin [16]). It is a discipline of randomly injecting faults

Checkout

/PlaceOrder

Proxy

Frontend

Checkout

Search
Product

Proxy

/Search

/Checkout

Product

/GetProduct

Proxy

/ListProduct
/Browse ❌

Injection Point
- Service: Product
- API: /GetProduct
- Target request: Search Product

Browse
 Product

❌

Fig. 1: Several call chains of three application functions.
Service instances communicate with others through proxies
which are equipped with forwarding rules for different API
invocations. An API-level fault of the Product service affects
requests issued to two other API functions, namely Search
Product and Checkout.

into a production system to build confidence in the re-
siliency [17]. It helps IT companies to alleviate costly out-
ages by preparing their teams for unknowns and protecting
the customer experience [18].

Generally, chaos engineering is manually performed in
production, and faults are typically injected according to
domain knowledge [10], [13], [19]. For example, Netflix has
exploited the knowledge from domain expertise within each
team responsible for developing individual service to gen-
erate heuristics to guide the injection [13]. However, such
a routine brings some problems. i) The chaos experiment
may cause unintended impacts on production applications
if the blast radius [12] is not controlled. The blast radius
refers to the scope of the impact that fault injection may
have. The injection of service-level faults, including faults at
the service-instance-level and API-level, may affect requests
that invoke different application functions which utilize the
same malfunctioning service (service instance or API). For
example, Table 1 shows the response time of various types
of requests in an open-source application Hipster Shop [20].

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3363902

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2023 2

TABLE 1: Average response time (ms) of different types of
requests in different cases (without any faults (i.e. Normal)
and with different service-instance-level faults injected)

URL Method Normal CPU
Exhaustion

Memory
Exhaustion

I/O
Exhaustion

http://hs-url/ Get 107 441 114 381
http://hs-url/cart Get 102 556 143 2525
http://hs-url/cart Post 194 759 280 3266

http://hs-url/checkout Post 266 762 331 3171
http://hs-url/product/* Get 95 671 167 2616

It can be seen that the blast radius of the injected service-
instance-level fault is not controlled, leading to an increase
in the response time of all types of requests that invoke the
target instance. Such injected faults with uncontrolled blast
radius typically cause unintended impacts to the applica-
tion. For example, as shown in Fig.1, an injected API-level
fault can abort the invocation of the API /GetProduct for the
propose of testing the SearchProduct function. However,
if other functions also invoke the same API, the injected
fault may also impact requests to those functions, such as
the Checkout function. ii) The chaos experiment in produc-
tion requires operators to concentrate on the applications
in case some faults raise unnecessary customer pain. iii)
The knowledge-based injection is inefficient and unscalable.
Considering an application with 100 services, the potential
solutions space of fault injection—combinations of fault
locations—is 2100 − 1. In such a huge space, experts need
to invest significant time and effort to choose injection
solutions and find a feasible fault.

Facing these problems, we argue that chaos engineering
should be efficiently performed with a minimized blast
radius, with a focus on restricting the impact to target
requests. It is not a novel concept to conduct operations on
the specified type of requests. For example, “Critical User
Interaction attribution” has been introduced by Google [21]
to provide aggregated observability for the specified type of
requests using tracing technique. Similarly, it is important
to consider the blast radius in chaos engineering to con-
trol unintended consequences and ensure the safety of the
application under test. However, chaos engineering with a
minimized blast radius requires a new injection tool since
most of prior tools only support service-level [22], service-
instance-level [23], [24] or API-level fault injection [25].
Faults injected by these tools affect all requests that pass
through the target service, the target instance or the target
API. Although some prior tools are designed to support
request-level fault injection, they all require instrumentation
on application source code. Additionally, efficient chaos en-
gineering requires a new injection strategy since prior strate-
gies explore injection space by exhaustive or knowledge-
based searching [19], [22], [26]–[30]. These requirements
pose challenges, including i) How to control the blast radius
of the injected fault without any instrumentation to appli-
cation codes. ii) How to utilize runtime information to test
the application efficiently even if the quantity of application
functions and the fault injection space are huge.

To address these challenges, we design MicroFI, a non-
intrusive and fine-grained fault injection framework for
calculating fault injection solutions in microservice appli-
cations. Each injection solution contains multiple injection
points. Since MicroFI aims to break down invocations to
service’s API, the injection point consists of the target service
and the target API. i) To address the first challenge, we
design the non-intrusive request-level fault injection, which

precisely restricts the blast radius to the specific type of
requests without causing unexpected faults in applications.
ii) To address the second challenge, we propose a new injec-
tion strategy by combining Lineage Driven Fault Injection
(i.e., LDFI) [31] and PageRank [32]. With the extensions, our
method supports testing multiple functions in parallel and
prioritizing high-impact faults that simultaneously break
down multiple functions. Experimental results on three rep-
resentative open-source microservice applications show that
MicroFI supports non-intrusive injection with a precisely
controlled blast radius. MicroFI reduces execution time by
up to 76% on average in calculating injection solutions,
and brings an average reduction of 47.3% in the number
of injection budget to expose all high-impact faults.

Contributions of this paper are: i) To control the blast
radius of faults, we utilize service mesh and distributed trac-
ing technique to implement the non-intrusive request-level
fault injection. Only pre-configured requests are affected.
This method can readily be applied to various applications
without any knowledge of application source code. ii) We
propose a lightweight and online injection strategy. It au-
tomatically calculates injection solutions without redundant
failure exploration, and prioritizes high-impact faults within
limited injections. iii) We design and implement MicroFI.
Evaluations on three open-source microservice applications,
namely Hipster Shop [20], TrainTicket [33] and Hotel Reserva-
tion [34] demonstrate the effectiveness of MicroFI.

This paper is organized as follows. Section 2 introduces
the related work and Section 3 presents the preliminaries of
main techniques in MicroFI and introduces the motivations.
Section 4 and Section 5 outline and specify our approach. In
Section 6, we evaluate our approach on three microservice
applications. Section 7 discusses the limitations of MicroFI
and the threats to validity. Section 8 concludes this paper.

2 RELATED WORK

Table 2 presents a comprehensive comparison amongst ex-
isting methods on fault injection from different perspectives.
Different columns represent different perspectives and their
definitions are shown as follows. Exploration stands for
injection space exploration methods. Target System presents
the kind of systems where the tools target. Fault Model
defines the kind of injected faults. Pruning indicates the
optimization of the exploration that prunes the fault space.
Prioritization indicates if injection solutions are prioritized.
Blast radius presents the minimum impact scope of faults
generated by these tools. Instrumentation indicates whether
the tools need to modify source code. Multiple Functions
indicates whether the tools support joint injection space
exploration for all application functions.

Fault Injection Tools. Recently, several tools have been
proposed to inject faults to the microservice application,
general distributed systems or cloud infrastructure, shown
in Table 2. Some of tools [27], [28] support injecting perfor-
mance faults (CPU overload, memory exhaustion, network
failure, disk failure, etc.) and crash failures (node crash,
instance termination, etc.) into the infrastructure (nodes,
containers, etc.) hosting the microservice application. They
also manipulate network to inject performance faults (HTTP
request delay, etc.) or crash failures (service unavailable,

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3363902

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2023 3

TABLE 2: The comparisons between existing works from different perspectives
Exploration Name Target System Fault Model Pruning Prioritization Blast Radius Instrumentation Multiple

Functions

ChaosMonkey [26] Microservice,
Infrastructure Crash failures No No Service

Instance No No
Exhaustive search ChaosBlade [27],

ChaosMesh [28]
Microservice,
Infrastructure

Performance faults,
Crash failures No No Service

Instance No No

Gremlin [10] Microservice
Performance faults,

Crash failures,
Crash-recovery failures

No No Request Yes No

Filibuster [22] Microservice Functional faults Dynamic
reduction No Service Yes No

3MileBeach [35] Microservice Functional faults,
Performance faults No No Request Yes Yes

Prefail [19] Distributed
Systems

Network failures,
Disk failures,

Crash failiures

Developer
specified
policies

No System No No

Setsudo [30] Distributed
Systems

Network failures,
Disk failures,

Crash failiures
No No System No No

Developer
specified

Fate and
Destini [36]

Distributed
Systems

Network failures,
Disk failures,

Crash failiures

Heuristics
rules No System Yes No

LDFI-Netflix [13] Microservice Functional faults,
Performance faults No No Request (FIT [37]) Yes No

IntelliFT [38] Microservice Functional faults,
Performance faults

Heuristics
rules

Heuristics
rules

Service
Instance No YesLDFI

MicroFI Microservice Functional faults,
Performance faults

Heuristics
rules

Fault
Impact Request No Yes

TraceID (TID) : 1 SpanID (SID) : A ParentID (PID) : [None]
Service Name (SVC-N) : A' API: a (User-specific K-V Pairs)Span A

Span B

Span C

Span D

Time

Request of RPC Call/RestAPI Invoke Response of RPC Call/RestAPI Invoke

B'-b

C'-c

D'-d

Call Graph G

A'-a
SVC-N: B' API: b
TID: 1 SID: B PID: A

TID: 1 SID: C PID: B
SVC-N: C' API: c

SVC-N: D' API: d
TID: 1 SID: D PID: A

Fig. 2: A trace example with four spans and its call graph in
one request
etc.) to the application. [19], [30], [36] supports injecting
network failure, disk failure and crash failure to distributed
systems by interposing failure logic into I/O related sys-
tem calls. Other tools [10], [13], [22], [35], [38] manipulate
network interactions between services to simulate the injec-
tion of performance and functional faults to microservice
application. Among them, some tools [10], [35], [37] enable
injection to affect specific requests, but their usages require
instrumentation on source code. Since services are usually
implemented in different programming languages, users
could not afford to add additional code to the source code
appropriately without any prior knowledge, hindering the
widespread adoption of these tools. To address the issue,
3MileBeach [35] supports request-level fault injection by
interposing at the message serialization library. While this
approach avoids the need for application code instrumen-
tation in some cases (e.g. Java, Python), applications imple-
mented in certain languages (e.g., Go) may still require code
modification to support request-level injection. Moreover,
3MileBeach requires modifications to the message serial-
ization library for different languages, which can be costly
and time-consuming. Since existing request-level injection
tools conduct modifications to the application code, they
require a restart of the application, leading to a period
of service unavailability unavoidably. In production, such
service unavailability is not acceptable as it would cause
user experience violation. In contrast, MicroFI supports non-
intrusive request-level injection which limits the blast radius
to the target request without requiring any instrumentation
and without restarting the application. The simplicity and
effectiveness of non-intrusive request-level injection make

MicroFI applicable to various applications.
Exploration methods. Existing exploration methods can

be divided into three categories, namely exhaustive search,
developer specified and LDFI. Exhaustive search based
methods [26]–[28] are inefficient because they explore the
fault space exhaustively and check whether all the combi-
nations of faults can lead to failures. Specifically, Chaos-
Blade [27] and ChaosMesh [28] enable users to inject mul-
tiple faults in parallel and orchestrate them by manually
defining chaos experiment workflow. It allows users to pri-
oritize which fault should be injected more. However, since
the minimum blast radius of ChaosBlade and ChaosMesh
is service instance, the impact of simultaneously injected
faults is mixed, hindering the precise control of fault injec-
tions. Moreover, the fault orchestration mechanism requires
manual configuration. Developer specified based methods
[10], [19], [22], [30], [36] are not flexible enough because they
require expert knowledge to guide the search. LDFI based
methods [13], [38] are efficient and scalable by searching
the potential faults with runtime information. LDFI-Netflix
[13] explores the injection space using the basic LDFI while
IntelliFT [38] optimizes LDFI by pruning exploration space
with heuristics rules and prioritizing faults with integration
test technique. The objective of IntelliFT is similar to Mi-
croFI, but the execution of IntelliFT would be slow and
hard to converge if the quantity of application functions
is large. Further, its prioritization requires knowledge en-
coded heuristics rules while MicroFI automatically priori-
tizes faults with runtime information.

3 BACKGROUND AND MOTIVATION

3.1 Background
3.1.1 Preliminaries
Service Mesh [3]. As the transition from a monolithic appli-
cation to a microservice application can result in increased
maintenance cost, service mesh has been widely adopted to
facilitate the development and orchestration of microservice
applications [39]. Specifically, the popular cloud providers
(e.g., Alibaba [40], Tencent [41], Google [42], etc) have
provided their service mesh platforms to their customers.
Service mesh serves as a networking infrastructure that

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3363902

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2023 4

enables inter-service communication, offering a transparent
and language-agnostic means for dynamically configuring
networking and security functions. Typically, service mesh
is implemented as two layers, a control plane responsible
for managing the configuration and behavior of the mesh,
and a data plane implemented as a network proxy (e.g.
Envoy [43]) deployed as a sidecar alongside each service
instance. All the inbound and outbound traffic for each
service instance must first pass through its proxy, which
handles tasks such as routing, load balancing, health check-
ing, fault injection. As shown in Fig.1, each service instance
is deployed with a proxy that handles all requests within
the system, making it simple to conduct fault injection to
impact inter-service invocations.

In this research, MicroFI utilizes the service mesh frame-
work, Istio [25], to inject faults to affect network interactions
between services. Actually, MicroFI is not tightly dependent
on Istio, it can also be applied to other frameworks.
Tracing [44]. End-to-end distributed tracing is a valuable
tool for profiling and understanding the execution of re-
quests in microservice systems. A trace depicts the execution
process of a request through services, which can be repre-
sented as a call path of the request. As shown in Fig.2, a trace
consists of a set of spans (colored blocks in Fig.2) organized
in a tree structure and each span represents a remote service
invocation. A trace denotes as T = (s1, s2, · · · , sn), where
si denotes the span. Each trace has a unique trace ID while
each span has a unique span ID and records the context
of each service invocation. The trace context includes trace
ID, span ID, parent ID and any user-specific key-value
pairs such as the service name and invoked APIs. The
propagation mechanism supports correlating events across
services. The context is bundled and propagated across
services, often via HTTP protocol. Specifically, there are two
popular tracing standards, namely OpenTelemetry [45] and
OpenTracing [46]. The trace context of OpenTelemetry contains
Traceparent (Tp) and Tracestate (Ts). Traceparent identifies
the incoming request and consists of version (v), trace-id
(t), parent-id (p), and trace-flag (f). Tracestate provides ad-
ditional vendor-specific trace information. The trace context
of OpenTracing contains Baggage which is a key-value pair
that could record user-specific information. With the tracing
logic, Traceparent and Tracestate of OpenTelemetry as well as
Baggage of OpenTracing are injected into requests as request
headers and implicitly propagated across services.

In this research, MicroFI utilizes the collected trace data
to construct the API call graph for each request, which is
then used to calculate the injection solutions. The API call
graph contains a set of distinct call paths and each path
corresponds to an alternative computation that can serve
the request. Moreover, MicroFI utilizes the propagation
mechanism of tracing to propagate the request token for
implementing request-level fault injection.
CNF formula [47]. A Conjunctive Normal Form (CNF) for-
mula is a Boolean formula that is a disjunction of clauses.
A clause is a conjunction of literals and a literal is either
a propositional variable or the negation of a propositional
variable. A CNF formula represents a logical proposition
that can be either True or False, depending on the assignment
of truth values to its variables. All clauses in a CNF formula
must be satisfied for the overall CNF formula to be True.

SAT Solving [48]. The Boolean Satisfiability Problem (SAT)
is a decision problem that asks whether a given logical
formula, represented in Conjunctive Normal Form, can be
satisfied by a truth assignment of its variables. Given a CNF
formulaF = f1∧· · ·∧fn, the SAT problem answers whether
there exists a solution such that the formula equals to True.
A SAT solver is a tool that can be used to determine the
satisfiability of a given CNF formula. If a satisfying truth
assignment exists, the solver can find one or more such
assignments.

Specifically, the failure of any node within the call path
invalidates the whole path. Therefore, in the context of this
research, the call path is encoded into a clause and solutions
that satisfy the clause can effectively invalidate the path. If
all paths in a call graph are destroyed (i.e., all clauses in F
becomes True), the request can not be served and a failure
occurs. Therefore, identifying a failure scenario corresponds
to finding a solution to the CNF formula F .
Davis-Putnam-Logemann-Loveland algorithm [49]. DPLL
is a well-known method for determining the satisfiability
and calculating the solutions of the CNF formula. The
algorithm is the pillar of most modern SAT solvers (e.g.
Z3 Solver [50], MiniSAT [51]). Due to its ability to quickly
deduce the values of certain variables, it can significantly
reduce the search space and improve the overall perfor-
mance of the solver. Specifically, given a CNF formula
F = f1 ∧ · · · ∧ fn, DPLL aims to find a truth assignment
of the variables in F such that the formula evaluates to True,
or to conclude that no such assignment exists.

DPLL runs iteratively by simplifying the formula and
making decisions about the truth values of its variables
through the adoption of three rules, namely unit propaga-
tion, pure literal elimination, and splitting. Unit propagation
states that if a clause contains a single literal, the literal value
can be directly deduced. Pure literal elimination states that if
a literal appears in the formula but its negation does not, the
value of that literal can be deduced and clauses that contain
that literal can be eliminated. If there are no literals that can
be deduced using the above rules, the splitting rule would
choose a literal and split the formula into two branches. The
first branch assumes that the literal is True and the other
branch assumes that it is False. DPLL will then solve each
branch separately and combine the results finally.

3.1.2 Problem Statement
After introducing several preliminaries, the problem state-
ment is formulated as follows.

Different application functions have different types of
requests. Given AF = {af1, af2, · · · , afn} and R =
{r1, r2, · · · , rn}, we use afi to denote an application func-
tion and ri to denote the corresponding type of request. By
analyzing the trace of the request r ∈ R, we can obtain a
complete execution process and the corresponding API call
graph G = (X,E), which contains one call path. x ∈ X
denotes the invoked API extracted from the corresponding
span and e ∈ E denotes the call relation. Given the call
graph G = (X,E) for one type of request r, the nodes
x ∈ X can be represented as different literals x′. We
represent the call path in the graph using a clause, which
can be constructed with a conjunction of all literals x′. The
clause is denoted as f = x′

1 ∨ x′
2 ∨ · · · ∨ x′

n. If there exist

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3363902

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2023 5

additional call paths for r such as g′, the corresponding
clause f ′ can be combined with f using the logical “and”
relation. The final CNF formula for the call graph of r is
denoted as F = f1∧f2∧· · ·∧fn, where f1, · · · , fn represent
the clauses for the call paths g1, · · · , gn.

After constructing the CNF formula F for each type of
request, the objective of the problem is to efficiently find
injection solutions P for each application function bf ∈ BF
by solving F and prioritize the solutions. The set of all solu-
tions for a given formula F is denoted as P = [p1, · · · , pk],
where each solution pi = [x′

i, · · · , x′
j] represents a truth

assignment in which the variables in pi are assigned to True
and the remaining variables are assigned to False.

3.2 Motivations

Motivation #1: Unexpected impacts caused by faults with
an uncontrolled blast radius hinder the adoption of chaos
engineering in production. A recent study [18] has reported
that only 30% of chaos experiments were performed in
production environment while others were performed in
development or staging environments. However, testing in
the last two environments without production workload is
insufficient to find defects in resiliency mechanisms. One of
the inhibitors to perform chaos experiments in production
is that some unexpected faults might happen. Moreover, it
is inevitable for the application to experience partial failure
[52], where only some of its functions are broken. It could
be precisely simulated by failing the specific type of requests
corresponding to the target application function. Prior tools
either demand code instrumentation or cannot precisely
simulate partial failure because of the incapability of limiting
the blast radius to the specific requests. Therefore, we
are motivated to design non-intrusive request-level fault
injection to limit the blast radius to the specified requests.

Motivation #2: Testing different functions encounters
redundant injection calculations, causing the testing to
be time-consuming. Microservice applications implement
various application functions using different logic and inter-
nal service invocations. However, some functions multiplex
same services and APIs to implement different operations.
During one-by-one exploration for testing multiple func-
tions, the existing exploration methods never utilize histor-
ical injection results to alleviate the repetitive injections and
calculations for the subsequent application functions test-
ing. Therefore, we are motivated to use historical results
to prune the fault space in testing different functions.

Motivation #3: Complex and versatile applications hin-
der the fault prioritization. In practice, software reliability
engineers (i.e., SREs) usually set an error budget [53] for
each application, which defines the number of times the
application is allowed to fail. Therefore, given the limited
resources and time, it is essential to prioritize high-impact
faults. Moreover, new application functions are continually
deployed or updated to meet the business and user de-
mands. Thus, the scale and complexity of the applications
are changed dynamically. The complexity and dynamics im-
pede knowledge-based prioritization because experts need
to constantly encode their knowledge into rules whenever
a function is deployed or updated. Thus, we are motivated
to automatically prioritize injection solutions during fault
space exploration based on runtime information.

Reqs

Fault
Injection

Monitor Historical
Injection
Results

4
Request
Marker

2

1
2

3

Microservice
Under Test

Injection
Solutions

 Top1, Top2, …

 [3, 2, …]

6
Req1:
Req2:

 [3, 1, …]

3
Injection Recommenders

Trace
Observations

Injection
Hypotheses

Client

Coordinator
1

5 Injection
Executor

Req Tokens:
Req1: /indexJason
Req2: /loginPaul

Req2 Recipe

Req1 Recipe

Fig. 3: The Overview of MicroFI
TABLE 3: Response time of requests to the ProductCatalog
service in Hipster Shop under two conditions

Condition Abnormal Normal
Fault Type CPU Memory Read Write Crash

Response Time 0.44s 0.05s 2s 2s Fail 0.03s

4 SYSTEM DESIGN

4.1 MicroFI Overview

Fig.3 provides an overview of MicroFI. For each target
request type (e.g., Req1, Req2 in Fig.3), users need to write
a recipe, which configures the fault type to inject and the
type of request to affect. Initially, with the recipe, Coordinator
(marked as 1⃝) first translates it into the failure scenario—
the combination of the type of injected fault and the tar-
get request to test. Then it sends attributes of the target
request to Request Marker (marked as 2⃝). Since there are
two types of requests for testing, Coordinator bootstraps
two corresponding Injection Recommenders (marked as 3⃝)
which automatically and parallelly calculate hypotheses
for target requests. While requests are generated by the
client, these requests will be intercepted by Request Marker
before they invoke user functions, which utilizes the tracing
technique to mark the target request. Subsequently, Injection
Recommender retrieves tracing data of the target request
to calculate and prioritize the injection hypotheses. These
hypotheses are then utilized by Injection Executor (marked
as 5⃝) to construct service routing rules for request-level
fault injection. After injection, Injection Recommender checks
the observation data to determine whether the injected fault
fails the target request. During parallel calculation, fault
injection results are recorded into Historical Injection Results
(marked as 4⃝), and they are shared by all the Injection Rec-
ommenders to accelerate the subsequent calculation. Finally,
failure solutions (marked as 6⃝) for each target request are
sorted and sent to users.

4.2 Fault Model

In a microservice application, services need to cooperate to
process user requests. The cooperation is achieved through
invocations between services, which is implemented with
communication protocols like Restful API [54] and Remote
Procedure Calls (i.e., RPCs) [55]. The response to an individ-
ual user request is a composition of responses from separate
invocations to different services.

Table 3 presents the response time of requests sent to
the ProductCatalog service in the Hipster Shop under two
conditions. All services in the application are deployed
with one instance. The response time is calculated as the
duration between the moment a client send a request to
the ProductCatalog service and the moment it receives a
response from it. So, in this experiment, the application was
deployed with Istio and its observability for application per-
formance was utilized to measure the response time. During

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3363902

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2023 6

the experiment, a bunch of requests belonging to the same
type (i.e., http://hs-url/product/*) and invoking the same
API of the ProductCatalog were uniformly generated. It
ensures that the requests invoke the same business function,
thereby eliminating any interference caused by variations
in function logic that may impact the measurement. Under
a normal condition, we measured the response time of
the request and obtain normal response time. Under an
abnormal condition, we injected 4 types of faults into the
instance of the ProductCatalog shown in Table 3, and mea-
sured their corresponding response time during injection.
In details, we utilized ChaosBlade [27] to inject CPU ex-
haustion, memory exhaustion, and crash faults respectively.
The CPU exhaustion fault occupied 50% CPU resources
within the service, the memory exhaustion fault occupied
50% memory resources and the crash fault suspended the
service. Additionally, Strace [56] was used to inject 2-second
delay to system calls (i.e., sys read and sys write).

It has been observed that injecting faults into the service
often leads to an increase in response time and the invoca-
tion may be aborted in some cases. This behavior can be at-
tributed to the fact that these faults consume computational
resources within the service or prolong the execution time of
essential system calls (e.g., sys read, sys write), hindering
the service to efficiently handle incoming requests. More-
over, the injection of these faults always has varying impact
on the requests. Thus, as these faults ultimately impact
inter-service invocations, we simulate them and emulate
the desired failure effects by manipulating the network
interactions between services. Therefore, in this study, we
inject two different faults (i.e., Delay and Abort) to fail
inter-service invocations by leveraging service mesh.

4.3 Non-Intrusive Request-level Injection

As Motivation #1 highlights that the injected faults with an
uncontrolled blast radius always cause unexpected impacts
to the microservice application. Consequently, MicroFI aims
to mitigate this issue by controlling the impact of injected
fault on the target request without causing any impact to
other business functions. The fault injection mechanism is
designed with Request Marker (Section 4.3.2) and Injection Ex-
ecutor (Section 4.3.3). Request Marker marks requests through
trace creation and token propagation, presented in Fig.4(a)
and 4(b). Injection Executor injects faults by failing target
invocations between services, presented in Fig.4(c).

4.3.1 Challenge of Non-intrusive Request-level Injection
To ensure the injected fault only affects the specified func-
tion, it is crucial to mark the request invoking the function
and its subsequent API invocations serving the function.

MicroFI marks an individual request and its subsequent
API invocations by adding a token to the request and
propagating it along with the API invocations. However,
ensuring the token propagation across services during the
subsequent invocations is non-trivial. A straightforward
solution is to manually add the token propagation codes
in the application codes. However, the method necessitates
appropriate application codes modification, which can be
inefficient. Alibaba® proposes an non-intrusive solution by
leveraging tracing. Specifically, Alibaba establishes a map-
ping table that correlates the trace ID of the marked request

with the corresponding added token [57]. Then, with service
mesh, the proxy of each service instance verifies whether
the trace ID of each incoming request exists in the table. If
it does, the proxy adds the token to the outcoming request
header. Although this method supports non-intrusive token
propagation, the table query operation for each request
introduces additional computation overhead.

4.3.2 Process of Non-intrusive Request Marking
To address this challenge, we leverage the propagation
mechanism of trace context, which has been introduced
in Section 3.1.1. In this study, we use OpenTelemetry to
introduce our method. Fig.4(a) and Fig.4(b) show the details
of how Request Marker marks the request and propagates the
token through the tracing mechanism.

Trace creation. The first step is to mark the target request
by creating the trace for the request and add the token into
the trace context. As shown in Fig.4(a), before the target re-
quest flows into the application and invokes an application
function, a Request Marker agent will start to trace the request
and add a token, a key-value pair (“T=/indexJason”), to
the Tracestate. Then, the agent forwards the marked request
to the application. The added key-value pair is passed across
services as a request header.

Token propagation. Since the trace context is propagated
across services automatically, MicroFI utilizes the tracing
technique to implement the propagation of the generated
token across services. Unlike the method used by Alibaba®,
we embed the token in the trace context and use the prop-
agation mechanism to propagate the token without creating
the table. As shown in Fig.4(b), we embed the token into the
field “Tracestate” and leverage it to convey the token. When
the service instance receives the incoming request, the trace
context is implicitly propagated to the outcoming request
through trace context propagation mechanism.

4.3.3 Process of Request Failing
Combining the added header, the fault injection solution
computed from Injection Recommender, and the type of in-
jected fault, Injection Executor constructs a service routing
rule (e.g., the rule in Fig.8(c)). Then, Injection Executor sends
the rule to the proxy of the target service instance.

The rule of each service instance’s proxy instructs the
proxy to inspect invocation messages between services and
perform injection actions if a message matches the specified
criteria. As Fig.4(c) shows, the rule of A describes that A
should normally forward all the requests that pass to A.
Therefore, the marked request is forwarded normally by A.
However, the rule of B describes that B should abort the
request that has a header, “T=/indexJason”. Therefore, B
aborts the forwarding of the marked request.

4.4 Injection Solutions Recommendation
As an application may consist of hundreds of microservices,
the potential solution space of fault injection (i.e., combina-
tions of fault locations) is huge, making it challenging to
determine which APIs MicroFI should target first in testing
the application. To address this issue, MicroFI introduces
the fault injection recommendation algorithm, depicted in
Algorithm 1, which helps to overcome this problem.

For a target type of requestR, Injection Recommender first
collects trace data δ forR and T for all requests (line 6). With

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3363902

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2024 at 04:54:52 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2023 7

Request
Marker
Agent

HTTP Request
 Header:
 - Path: “/index”
 - User: Jason

Proxy

Service

Invocation Request
Header*:
- Tp: v-t'-p'-f
- Ts:T=/indexJason

 Incoming Request

Outcoming Request

Tracing Logic

Service Logic

Routing Rule:
- Match: *
 Action: Forward

Routing Rule:
- Match:
 Header:
 Ts: T=/indexJason
 Action: Abort

(a) Trace Creation (b) Token Propagation (c) Request Failing

A

Proxy

Service

❌

B

HTTP Request
 Header:
 - Path: “/index”
 - User: Jason
 - Tp: v-t-p-f
 - Ts: T=/indexJason

Fig. 4: The execution process of request marking (trace creation & token propagation) & request failing

Algorithm 1: Failure Solutions Recommendation
Input: The type of target request R
Output: Final Injection Solutions Σ

1 τ ← Candidate Injection hypotheses;
2 H ← Historical Injection Results;
3 S ← scores of all APIs;
4 initialize F ;
5 while |τ | ≠ 0 do
6 Collect trace data δ and T for R and all requests;
7 Convert δ to clause f ; F ← update as F = F ∪ f ;
8 Φ = Calculating minimal hypotheses(F);
9 Φ′ = Redundant hypotheses elimination(Φ,H);

10 τ = τ ∪ Φ′;
11 S ← update with trace data T using APIRank;
12 ϕ = Hypotheses Prioritization(τ,S), τ = τ − ϕ;
13 fail← Failure Effect Observe(execute(ϕ));
14 if fail then
15 Σ = Σ ∪ ϕ, H = H ∪ ϕ;
16 end
17 end

Frt.Index

Rec.LsR

Prod.LsP

Call Path CNF Formula Candidate
Hypotheses1 2 3

7 8
SAT

Solver

Frt.Index ∨
Rec.LsR ∨
Prod.LsP

Frt.Index ∨
(Rec.LsR ∧
Rec.DefR) ∨
Prod.LsP

{Frt.Index},
{Rec.LsR},
{Prod.LsP}

{Frt.Index},
{Rec.LsR,
Rec.DefR},
{Prod.LsP}

Frt.Index

Rec.DefR

6

{Rec.LsR},
{Prod.LsP}

Prioritized
Hypotheses

{Rec.LsR,
Rec.DefR},
{Prod.LsP}

4

9

Req2
Req1

5 Req2

Req1'

❌

Rec.LsRFrt.Index Rec.DefR Prod.LsPFrt.GetR Prod.GetP

Application

Fig. 5: An example of Algorithm 1

the trace data, the algorithm consists of four steps: i) By an-
alyzing the call path recorded by δ, the clause f is obtained
and the CNF F for R is updated (line 7). The details of
trace collection are provided in Section 4.4.1. ii) By passing
F into an SAT solver, a set of minimal candidate hypotheses
can be generated (line 8), as described in Section 4.4.2.
Specifically, the hypothesis is the minimal injection solution
only when it has the ability to cause the target request to
fail, while any subset of it is not able to fail the request.
Then, any hypotheses that have already been recorded in
Historical Injection Results H are removed (line 9-10). The
process of eliminating redundant hypotheses is depicted
in Section 4.4.3. iii) T is used to update the importance
scores S of APIs using APIRank. With S , candidate injection
hypotheses τ are ranked and the highest-impact hypothesis
ϕ is selected (line 11-12). The prioritization process is shown
in Section 4.4.4. iv) A fault is injected based on ϕ, and the

application is observed to decide whether the injected fault
causes the request to fail, as introduced in Section 4.4.5. If
the request fails, ϕ is written to H and recorded in Final
Injection Solutions Σ (line 13-16). These processes (line 6-
15) continues until all τ is empty. Specifically, it is necessary
to update H if the implementation logic of a tested API (§)
is updated. During updating, the solutions in H which are
related to § should be removed from H.

Before introducing the details, an example of Algo-
rithm 1 is illustrated. Fig.5 shows two types of requests
(Req1 and Req2) and depicts the process of calculating one
of the solutions for failing Req1 (i.e., {Rec.LsR,Rec.DefR}).
Note that, this process is followed by the process of ob-
taining the first solution {Frt.Index}, which is prioritized
as the first hypothesis and evaluated as the first injection
solution. 1⃝ shows the failure-free API-level service call path
of Req1. It can be converted into a formula which only
contains one clause: Frt.Index ∨ Rec.LsR ∨ Prod.LsP (2⃝).
Then, the formula is fed into an SAT solver to generate
a set of minimal hypotheses, each of which represents
fault points that should be tested via fault injection. Based
on the current formula, the minimal hypotheses (3⃝) are:
{Frt.Index}, {Rec.LsR} and {Prod.LsP}. Note that, since we
have validated that Frt.Index is an injection solution, we
eliminate the hypothesis {Frt.Index} from the hypotheses
set. Next, with the trace data generated by Req1 and Req2,
the scores of APIs are calculated. The hypotheses are ranked
(4⃝) according to the scores. Then, the top-1 hypothesis
({Rec.LsR}) is selected and a fault is injected. After send-
ing the same type of request (Req1’), the application still
responds successfully and a new service call graph exists
as 5⃝. Rec.DefR provides an alternative computation when
Rec.LsR fails. The new call path is transformed into the
clause: Frt.Index ∨ Rec.DefR, which is connected with 2⃝ to
get 7⃝. By solving the updated formula, the obtained lat-
est minimal hypotheses are: {Frt.Index}, {Rec.LsR,Rec.DefR}
and {Prod.LsP} shown in 8⃝. The hypothesis {Frt.Index}
is also eliminated from the hypotheses set. With the up-
dated scores, the hypotheses are ranked and the hypothesis
{Rec.LsR,Rec.DefR} is selected which finally causes Req1 to
fail and regarded as a solution. The process in Fig.5 will
continue to repeat until all hypotheses have been validated.

4.4.1 Call Graph Construction
Injection Recommender firstly collects trace data generated
from all requests. Then, among the full trace data, trace data
of R are filtered based on the propagated token added in
the request header. With the aggregation of the filtered trace
data, the corresponding call graph is extracted.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3363902

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2023 8

Replicas-1

Replicas-2

Bcast-Service-A

Bcast-Service-B

Fig. 6: Store operation on a storage system
4.4.2 The Minimal Candidate Hypotheses Calculation
As Section 3.1.1 presents, the request R can not be served
and a failure occurs in the application if the corresponding
extracted call graph is destroyed. However, it is non-trivial
to find all minimal injection solutions that can destroy the
call graph and fail the request due to application complexity.
One straightforward method is to simply traverse each call
path in the graph and inject faults at each edge to destroy
the graph. However, it is not efficient to give all minimal
solutions, especially in a complex application. For a call
graph with N nodes, the injection space can be as large as:

∑

1≤k≤N

(
N

k

)
= 2N − 1

For example, Fig.6 shows a storage system with replication,
where data is stored on two replicas and the store is per-
formed by two broadcasts. To fail the store operation, faults
must be simultaneously injected into both replicas or into
both broadcast services. It is important to note that the po-
tential injection solution space of Fig.6 is 24 − 1, which may
seem feasible to explore. However, as the application scale
expands, the exhaustive exploration becomes challenging.
Moreover, the solutions that calculates by injecting fault at
each edge are not minimal. To efficiently identify all min-
imal solutions, MicroFI employs the Boolean Satisfiability
theorem. MicroFI first constructs the CNF formula for the
generated call graphs. Then, the objective of identifying a
failure scenario is converted into finding a solution to the
generated CNF formula. MicroFI uses the SAT solver to
calculate solutions to the CNF formula.

CNF formula construction. Given the call graph G that
comprises a set of call paths g1, · · · , gn for serving one type
of request, the corresponding CNF formula is constructed
as F = f1 ∧ · · · ∧ fn, where f1, · · · , fn represent the clauses
correlated with the call paths g1, · · · , gn.

Hypotheses calculation. Solutions that satisfy the CNF
formula and make the formula as True indicate potential
failures in serving the request. Therefore, with the con-
structed CNF formula, MicroFI calculates the set of min-
imal hypotheses using the SAT solver, whose key is the
DPLL algorithm that has been introduced in Section 3.1.1.
After calculation, the redundant hypotheses are removed
(Section 4.4.3) and the remaining hypotheses are ranked
(Section 4.4.4). Faults are injected based on the prioritized
hypotheses. If a new call path is discovered, indicating that
the injected faults do not fail the request, the corresponding
clause is combined with F .

4.4.3 Elimination of Redundant Hypotheses
As Motivation #2 presents, there are some redundant solu-
tions in multiple application functions testing. Therefore, a
heuristic rule is introduced to optimize the process.

When multiple functions invoke the same API of the
same service, the result of testing the API in the previous
function testing is used to prune the searching space of the

subsequent function testing. In subsequent function testing,
retesting the same API is unnecessary and the previous
result can be used as the solution. The principle behind this
rule is that the fault handling logic of the same API is the
same even in distinct invocations. Therefore, after obtaining
candidate hypotheses, Injection Recommender checks if the
same hypotheses exist in H. If so, the corresponding solu-
tions of existed hypotheses are obtained through H directly
and will be validated by injection. For example, in Fig.1,
both the SearchProduct and Checkout functions invoke the
same API (/GetProduct). If the testing for the Checkout func-
tion has calculated the final solution corresponding to the
API (/GetProduct), then another testing for the SearchProduct
function should skip the calculation for the API and directly
validate whether the solution fails the SearchProduct.

4.4.4 Prioritization of Fault Injection Hypotheses
As Motivation #3 presents, due to the high demand for
prioritizing high-impact injection solutions with a limited
error budget as well as the difficulty in manual prioritiza-
tion in complex applications, Injection Recommender uses an
enhanced PageRank (i.e., APIRank) to prioritize hypotheses
with higher impact based on runtime information.

In a microservice application, the impact scope is large
once all invocations to an API fail. Thus, the problem of
computing the impact value for each API is converted into
computing the importance for each API. The evaluation for
the importance of each API is based on two insights. i) If the
API is invoked by more services, it is more important. Once
a fault is injected into it, all services depending on it would
be affected. ii) If the API is covered by more request traces, it
is more important. Once a fault is injected into it, all requests
depending on it would fail. Inspired by MicroRank [58],
which measures the anomalous scores for each service with
PageRank to localize faults, we propose APIRank which
assigns a importance score for each API by combining the
static application topology and dynamic request paths.

Personalized PageRank (PPR). APIRank is based on
PPR [59], which analyzes the graph of heterogeneous nodes
(i.e., APIs and traces in this study). Given an oriented graph
G = (V, E), where |V | = N represents the number of nodes
and |E| = M represents the number of edges, PPR firstly
constructs a transition matrix A ∈ RN×N . The matrix ele-
ment Ast denotes the probability that a random walk from
s to t and its value is computed using the left equation in
Eq(1), where O(s) represents the out-neighbor of s. With the
constructed transition matrix and a given preference vector
u, the PPR equation can be solved as v = c · Av+(1− c) ·u,
where c is the damping factor ranging from 0 to 1 and v is
the Personalized PageRank vector (PPV) for u. The solution
to this equation can be approximated through an iterative
algorithm. The q-th iteration is shown as Eq (2). The final
solution corresponds to scores of all nodes.

Ast =

{
1

|O(s)| , ∃t ∈ O(s)

0, otherwise
; A =

[Aaa Aat

Ata 0

]
(1)

v(q) = c · Av(q−1) + (1− c) · u (2)

Construction of the transition matrix in APIRank.
In this research, APIRank uses the transition matrix A
to address both insights mentioned above. The matrix is

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3363902

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2023 9

partitioned as the right equation in Eq(1). To profile the
invocation frequency of APIs called by other services (to
meet insight i)), APIRank constructs Aaa based on the real
time call graph, generated from the trace data T . Since
the call graph captures the invocation relationship among
APIs from different service instance,Aaa profiles transitions
between APIs. To profile the coverage of APIs invoked by
different requests (insight ii)), APIRank constructs Aat and
Ata based on the API-trace graph, whose nodes represent
APIs and traces respectively. Note that traces generating
the same call path are identified as the same kind of trace.
Since the API-trace graph describes the relationship between
traces of requests and the corresponding invoked APIs, Aat

and Ata describe the transitions between APIs and traces.
Construction of preference vector. APIRank constructs

the preference vector u as u = [uT
a , u

T
t]

T , where ua is for
APIs and ut is for traces. Since APIRank has no preference
for APIs, ua is set as 0⃗. For the preference vector for traces,
APIRank considers the number of traces that belong to
the same kind. If a particular type of request is invoked
frequently, the corresponding kind of traces will have a
larger number of occurrences and deserves more attention.
Thus, ut is set as [θ1, θ2, ..., θm]T and θi is set as n−1

i∑
n−1
j

,

where m is the number of kinds of traces and ni is the
number of traces belonging to the kind of trace i.

Calculation of each API’s score and the rank of hy-
potheses. After the calculation of A and u, the initial PPV
v(0) is set as [vTa , v

T
t]

T . va is set as [1
Na

, 1
Na

, ..., 1
Na

] where
Na denotes the number of APIs. vt is set as [1

Nt
, 1
Nt

, ..., 1
Nt

]
where Nt denotes the number of trace kinds. The estimated
importance scores of all APIs are obtained by iteratively
solving Eq(2) until the convergence is achieved. With the
estimated scores, the score of each hypothesis is calculated.
In the case of hypothesis with multiple injection points, the
highest score among them is selected as the score for that
hypothesis. With the scores of the candidate hypotheses,
Injection Recommender ranks hypotheses and recommends
the hypothesis with the highest score.

We utilize 5⃝ in Fig.5 as an example to illustrate
the prioritization. Candidate hypotheses are {Frt.Index},
{Rec.LsR,Rec.DefR} and {Prod.LsP}. Fig.7 displays the call
graph and the API-trace graph, which are the basis for
constructing the transition matrix A in Fig.7. Since there are
3 distinct kinds of traces and each kind only has one trace,
the preference vector for traces ut is [13 ,

1
3 ,

1
3]

T . Combined
with the preference vector for APIs ua which is set to 0⃗,
the preference vector u is [0, 0, 0, 0, 0, 0, 1

3 ,
1
3 ,

1
3]. Given

that the number of APIs (i.e., Na) is 6 and the number
of kinds of traces (i.e., Nt) is 3, the initial PPV v(0) is
[16 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
3 ,

1
3 ,

1
3]. With a 20 iteration following Eq(2)

where c is set to 0.85, the final scores of APIs are given as
S(Frt.GetR, Prod.GetP, Frt.Index,Rec.LsR,Rec.DefR,
Prod.LsP) = [0.158, 0.161, 1, 0.517, 0.477, 0.354]. Given
that {Frt.Index} has been previously identified as an
injection solution, it will not be considered as further testing.
Therefore, the prioritized hypothesis is {Rec.LsR,Rec.DefR}
which has the highest score except {Frt.Index}. Then, the
selected hypothesis will be determined whether it fails
the target request by injection. If so, the hypothesis is
considered as a solution.

Rec.LsRFrt.Index Rec.DefR Prod.LsPFrt.GetR Prod.GetP
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

A =

2
66666666666666664

Frt.GetR Prod.GetP Frt.Index Rec.LsR Rec.DefR Prod.LsP Req-1 Req-2 Req-1’

0 0 0 0 0 0 0 1/3 0
0 0 0 1/2 0 0 0 1/3 0
0 0 0 0 0 0 1/3 0 1/2
1 0 1/2 0 0 0 1/3 1/3 0
0 0 1/2 0 0 0 0 0 1/2
0 0 0 1/2 0 0 1/3 0 0
0 0 1/2 1/2 0 1 0 0 0
1 1 0 1/2 0 0 0 0 0
0 0 1/2 0 1 0 0 0 0

3
77777777777777775

(3)

contains multiple injection points, we use the highest
score among it as the score. With the score of the
candidate solutions, Injection Recommender ranks the
solutions and recommends a solution with the highest
score. For 5� in Figure 6 , we can get the PPV:
S(Frt.GetR, Prod.GetP, Frt.Index, Rec.LsR,
Rec.DefR, Prod.LsP) = [0.158, 0.161, 1, 0.517, 0.477, 0.354] .
Given that we have verified Frt.Index as an injection
solution, it will not be considered for further testing.
Therefore, the prioritized solution in 5� should be
{Rec.LsR, Rec.DefR} which has the highest score,
disregarding the previously validated solution of Frt.Index.

4.5.5 Failure effect Observation
To evaluate whether the injected fault invalidates the target
request, three rules are designed based on the response.
Firstly, we check the status code of the response. If the
request is responded without a 200 status code, it is failed.
Secondly, we observe the payload of the response. If the
payload contains keywords like error or timeout, the request
is failed. Thirdly, we measure the response time of the
request. If the response time exceeds the threshold set in
the “timeout-retry” mechanism, the request is failed.

5 EVALUATION

We have implemented a prototype of MicroFI on Kuber-
netes [51] with Istio [39], two of the leading microservice
infrastructures. MicroFI is implemented in Python 3.7 and
uses Z3 solver [48] as the SAT solver. MicroFI has been
containerized and can be directly deployed on a Kubernetes
cluster. Our evaluation seeks to address the following re-
search questions:

• RQ1: Can MicroFI precisely control the blast radius
of fault injection?

• RQ2: Is the optimization of MicroFI effective to ac-
celerate injection solutions calculation?

• RQ3: Is MicroFI helpful to expose high-impact injec-
tion solutions through prioritization?

• RQ4: What is the overhead of MicroFI in controlling
the blast radius of fault injection?

5.1 Evaluation Setup

Fig. 8. The topology of experiment platform.

Our prototype is evaluated with three popular open-
source microservice applications as presented in Table 4.
Since there are no timeout handling logic in these ap-
plications, we use Istio to set timeout for these services.
To generate external requests and invoke corresponding
business functions in applications, we utilize the workload
generator Locust [52]. As shown in Figure 8, we have built
a distributed testbed that comprises of 12 virtual machines
(VM) and a 3-node ElasticSearch [53] cluster. Each VM is
equipped with a 4-core CPU, 16 GB memory, and runs with
the Ubuntu 18.04 operating system. All VMs are located
within the same local area network to elimintate network jit-
ter. With these VMs, we have created a 12-node Kubernetes
cluster (v1.20.1) with Istio (v1.12.0) installed. We utilize an
open-source tracing system Jaeger [54] to collect tracing
data. The microservice benchmark and Jaeger collectors are
deployed within the cluster. Service instances first send trace
information to the Jaeger collector on each node, which
then forwards the aggregated trace data to the ElasticSearch
cluster for persistent storage. The components of MicroFI
are also deployed in the Kubernetes cluster. The number of
Request Marker instances is scaled according to the bench-
mark application workload, whereas the other components
of MicroFI are deployed as a single instance. The instance

Req2 Req2

Req1
Req1

Req1'

Call graph

API-Trace graph

Fig. 7: The transition matrix for 5⃝ in Fig.5

4.4.5 Failure Effect Observation
To evaluate whether the injected fault invalidates target
requests, three rules are designed based on the response.
Firstly, we check the status code of the response. If the
request is responded without a 200 status code, it fails.
Secondly, we observe the payload of the response. If the
payload contains keywords like error or timeout, the request
fails. Thirdly, we measure the response time of the request.
If the response time exceeds the threshold preset in the
“timeout-retry” mechanism, the request fails.

4.5 Parallel Calculation
With request-level fault injection, the impact of each testing
is isolated to a single type of requests, without affecting
other requests. Therefore, if multiple types of requests need
to be tested, a group of Injection Recommender instances
can be launched simultaneously to calculate fault injection
solutions for each type of request in parallel.

In details, when multiple types of requests need to be
tested, Coordinator first initializes a group of Injection Recom-
mender instances, which are responsible for calculating the
injection solutions for each type of request. Then, Coordinator
generates a global unique token for each type of target
request, which will be used by Request Marker to differen-
tiate requests and implement request-level fault injection.
With global unique tokens generated for different types of
requests, Injection Executor can construct the corresponding
rules for failing each type of request accordingly. During
the calculation of injection solutions for different types of
request, the fault injection results validated by Injection
Recommender are recorded into Historical Injection results.
This historical records are then shared by all instances of In-
jection Recommender to support the elimination of redundant
hypotheses, which is introduced in details in Section 4.4.3.

5 IMPLEMENTATION

We have implemented MicroFI based on Kubernetes [60]
and Istio [25], two of the leading microservice infrastruc-
tures. MicroFI is implemented in Python language and
chooses Z3 solver [50] as the SAT solver. MicroFI has been
containerized to support directly deployed in a Kubernetes
cluster. Moreover, MicroFI implements Request Marker in
two versions to support injecting request-level fault in the
application that utilizes either the OpenTelemetry or Open-
Tracing tracing standards.

Specifically, MicroFI implements Coordinator to translate
a recipe into the failure scenario and activate a correspond-
ing Injection Recommender for each scenario. The recipe that
users need to configure contains two parts. The first part
is the definition of the target request. The functions of an
application are always triggered by different user requests.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3363902

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2023 10

TargetRequest:
URL: /index
Header:
- user: Jason

Fault:
type: Abort
attribute:
− key: percentage

value: 100
− key: httpStatus

value: 503

hosts:
- target_service
http:
- match:

- url:
prefix: target_service_API

headers:
Tracestate:

regex: .*T=/indexJason.*
fault:

abort:
percentage: 100
httpStatus: 503

route:
- destination:

host: computed_service
(b)Globally unique token:

“/indexJason”

(a) Recipe (c) Service
routing

rule

Fig. 8: An example of a recipe and the corresponding glob-
ally unique token and service routing rule

Requests are defined by different request URLs. Moreover,
there are different users invoking requests to an application.
The requests are distinguished by different user information
in the header of requests. Therefore, the definition of the tar-
get request should be denoted with request attributes, such
as its URL, the caller and query string parameters. With re-
quest attributes translated from the recipe, a globally unique
token (T) for the target request is obtained by concatenating
all request attributes together. For example, the globally
unique token for the recipe in Fig.8(a) is /indexJason.

The second part of the recipe is the type of injected fault.
As Section 4.2 presents, MicroFI supports two primitive
faults (Delay and Abort) and they can be configured with
different parameters. For both faults, users can specify the
possibility of the target invocation being affected by the
fault with percentage. For Abort fault, users can specify the
error code that the target invocation returns with httpStatus.
For the type of Delay fault, users can increase the request
latency of the target invocation with delayTime.

Fig.8(a) shows an example of the recipe. The recipe in-
structs MicroFI to affect requests that Jason calls whose URL
are “/index”. During testing, MicroFI aborts all invocations
to the target_service_API of target_service which
are calculated by Injection Recommender.

6 EVALUATION

Our evaluation seeks to address the questions. RQ1: Can
MicroFI precisely control the blast radius of fault injection?
(Section 6.2) RQ2: Is the optimization of MicroFI effective
to accelerate injection solutions calculation? (Section 6.3)
RQ3: Is MicroFI helpful to expose high-impact injection
solutions through prioritization? (Section 6.4) RQ4: What
is the overhead of MicroFI in controlling the blast radius of
fault injection? (Section 6.5)

6.1 Evaluation Setup

……

Request
Marker
Instance

Injection
Recommender

Instance

Injection
Executor
Instance

Coordinator
Instance

Application
Service

Instance

Node-1 Node-2 Node-3

ElasticSearch ClusterKubernetes Cluster

Collector Collector Collector

Istiod
Instance

Collector

Container
Istio Proxy

Collector

Fig. 9: The topology of experiment platform

TABLE 4: The description of three evaluation applications
Microservice
Applications Hipster Shop Hotel Reservation TrainTicket

Services 11 8 41
Business Functions 6 4 7

Communication
Protocol gRPC gRPC HTTP

Application
Language

Java, Go, C#,
NodeJS, Python

Go Java

Tracing Standard Open Telemetry Open Tracing Open Tracing

Our prototype is evaluated with 3 representative open-
source microservice applications as presented in Table 4.
Specifically, Hotel Reservation is a relatively small-scale
benchmark designed to simulate an online system for book-
ing hotels. Hipster Shop is a medium-scale application that
serves as a web-based e-commerce that allows users to
browse, order, and purchase products. TrainTicket is larger
and more complex, providing various business functions
for booking railway tickets. These applications reflect the
characteristics of industrial microservice applications [33],
[34], encompassing not only their scale and complexity but
also in their programming languages, communication pro-
tocols (gRPC and HTTP), and tracing standards. Therefore,
these application are representative and widely used as the
experiment benchmarks [4], [38], [58], [61]–[64].

Since there are no timeout handling logic in these ap-
plications, we use Istio to set timeout for these services.
To generate external requests and invoke corresponding
business functions in applications, we utilize the workload
generator Locust [65]. As shown in Fig.9, we have built
a distributed testbed that comprises 12 virtual machines
(VM) and a 3-node ElasticSearch [66] cluster. Each VM is
equipped with a 4-core CPU, 16 GB memory, and runs with
the Ubuntu 18.04 operating system. All VMs are located
within the same local area network to elimintate network
jitter. With these VMs, we have created a Kubernetes cluster
(v1.20.1) with Istio (v1.12.0) installed. We utilize an open-
source tracing system Jaeger [67] to collect tracing data. The
microservice benchmark and Jaeger collectors are deployed
within the cluster. Service instances first send trace data to
the Jaeger collector on each node, which then forwards the
aggregated trace data to the ElasticSearch cluster for per-
sistent storage. Components of MicroFI are also deployed
in the Kubernetes cluster. The number of Request Marker
instances is scaled out according to the benchmark ap-
plication workload, whereas other components of MicroFI
are deployed as a single instance. The instance of Injection
Recommender receives trace data from the ElasticSearch and
computes injection solutions that will be sent to the instance
of Injection Executor to construct routing rules. The routing
rules are then distributed to the target service via Istio.

For RQ2 and RQ3, since most services in these three
applications have no fault handling logic, timeout error
message would propagate backwards to upstream services
along the service call chain. As a result, injected faults cause
failures in application functions easily. Therefore, we use
version-based request routing that Istio provides to handle
faults, which is the same way as in [38]. In details, when
the error message is propagated from the injected service
to the upstream service, the upstream service will invoke
another backup service that has the same function as the
injected service. In this study, a small-scale application hr-
3 is constructed by adding 2 replicas (i.e., backup service)

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3363902

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2024 at 04:54:52 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2023 11

for services in Hotel Reservation. A medium-scale application
hipster-2 is constructed by adding 1 replica for services
in Hipster Shop. A larger scale application hipster-3 is con-
structed by adding 2 replicas in Hipster Shop. Another larger
scale application tt-2 is constructed by adding 1 replica for
services in TrainTicket.

6.2 Control of the Blast Radius
In this evaluation, we compare the blast radius of three
levels of faults to show the capability of MicroFI to limit
fault impact on specified requests. We respectively select
the injection tool ChaosBlade (CB) to inject Service-Instance-
level (SI-level) faults, utilize Istio (IST) to inject API-level
faults [25] and use MicroFI (MFI) to inject request-level
faults. Gremlin (GM) and 3MileBeach (3MB) are also used
to inject request-level faults to compare with MicroFI.

During evaluation, we deploy 1 to 3 instances for each
service in three benchmark applications and leverage the
load balancer in Istio to distribute requests equally to each
instance. In total, there are 9 groups of experiments in
this evaluation. The experiment indexes in three different
colors are shown in Table 5 and Table 6 presents experi-
ments in three applications (1⃝- 3⃝ in Hipster Shop, 1⃝- 3⃝ in
TrainTicket, 1⃝- 3⃝ in Hotel Reservation). Each experiment
includes three different levels of injection experiments. For
each experiment, Locust uniformly generates requests to
invoke different business functions evenly for 36 minutes,
with a concurrency level set as 100. In each experiment,
we conduct 7 injection experiments sequentially and each
injected fault lasts for 3 minutes. Moreover, a 2-minutes-
recovery period is set between two consecutive injection
experiments, ensuring that the application can recover from
the previous fault before injecting next fault.

Fault configurations are shown in Table 5, where each
row corresponds to settings of three levels of injections ex-
periment (i.e., SI-level, API-level, request-level) in the same
group of experiments. ChaosBlade is used to intermittently
drop 50% of the target service instance’s network packets
to affect requests passing through the target instance. Istio
is used to abort 100% of target API invocations in target
services. MicroFI and Gremlin are used to either abort or
delay 100% of the target API invocation requests when the
target business function is called, with a delay time set to
1.5s. Since 3MileBeach injects faults by manipulating seri-
alization libraries to modify status code of requests, it lacks
the capability to delay requests. Thus, it is only used to inject
Abort faults. For example, experiment 1⃝ includes 7 injection
experiments on Hipster Shop. The SI-level fault is to drop
50% packet of Cart service instance and the API-level fault
is to abort 100% requests that invoke /GetCart API in Cart.
The request-level Abort fault is to abort 100% requests
that invoke the /GetCart API when the function (http://hs-
url/cart) is invoked while the request-level Delay fault is
to delay these invocation requests for 1.5s.

Moreover, each application service may provide multiple
callable APIs, with each API being invoked by different re-
quests. For example, the Cart service in Hipster Shop offers
multiple APIs (/GetCart, /AddCart, etc.) , where the /GetCart
API is invoked by different business function requests (e.g.,
http://hs-url/, http://hs-url/cart/checkout, etc.). Due to
the possibility of multiple business function requests calling

the same service or the same API, the blast radius of injected
faults varies depending on the level of fault injection.

To measure the blast radius of different injection level,
we assess the number of business functions that are affected
during injections. The impact on each function is character-
ized by measuring changes in its success rate, response time
of requests, and number of failed requests. Note that, in each
experiment, different faults are injected respectively and the
blast radius of each fault is measured separately.

Fig.10 presents changes in success rate and P99 latency
of different application functions requests during the exper-
iment 2⃝, where three levels of faults (7 faults) are injected
into the ProductCatalog service. The blocks with different
colors present the time periods during which different
faults are injected. Specifically, lines with different colors
in Fig.10(a) present changes in success rate of different
functions requests during the experiment while lines with
different colors in Fig.10(b) present changes of p99 latency
of different function requests. i) As shown in Fig.10(a),
requests of almost all functions are broken down by the SI-
level fault, and requests of four different business functions
are broken down completely by the API-level fault. This is
because ProductCatalog service is usually invoked to serve
all application functions and the target API (/GetProduct)
is invoked to serve 4 functions. ii) In contrast, request-
level faults injected by MFI, GM and 3MB only affect one
target type of requests due to their capability of blast radius
control. Specifically, the request-level Abort fault only fails
all requests that invoke one business function (http://hs-
url/product/*) in Fig.10(a) and the request-level Delay
fault only delays requests that invoke the same function
in Fig.10(b). Since the request-level Delay fault does not
trigger the timeout logic, the target requests respond suc-
cessfully with longer responses and the success rates of
all requests remain unchanged. iii) Since these request-
level injection tools only affect specific requests, the impacts
of faults injected by them are similar. iv) Particularly, in
Fig.10(a), during the injection of an SI-level fault, since the
service has two instances, the success rates of the affected
requests do not drop to 0. Further, as shown in Fig.10(b), be-
cause the API-level and request-level Abort faults abort all
target requests, we can find that the response time of those
failed requests decreases. Due to the space limitation, one
application is selected to present changes of success rates
and response time. Complete results for all applications are
presented in Table 6.

Table 6 demonstrates the failure ratios of requests for
each application function during fault injection experiments
with experiment index 1⃝- 3⃝, 1⃝- 3⃝, 1⃝- 3⃝. Since request-
level Delay fault does not trigger the timeout logic in ser-
vices, there are no failed requests. Thus, we present results
of Abort fault. Table 6 reveals the same conclusions as in
Fig.10. i) As CB columns show, SI-level faults cause failures
across almost all different types of external requests (i.e,
different business functions). However, due to the presence
of another replica instance for the injected service instance,
failure rates of the affected functions do not reach 100%. ii)
As IST column shows, API-level faults fail multiple types
of external requests completely because all invocations that
pass through the target API are broken down. iii) As MFI/
3MB/ GM column shows, request-level faults only fail API

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3363902

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2023 12

TABLE 5: Details of Different fault injection experiments to answer RQ1.
Application

Experiment
Index

Target Service
Service-instance-level (CB) API-level (IST) Request-level (MircoFI (MFI), 3MileBeach (3MB), Gremlin (GM))

Fault Type Fault Type Target API Fault Type Target API Target Request

Hipster
Shop

1⃝ Cart

Network loss
for 50% packets

Abort 100%
requests

/GetCart /GetCart http://hs-url/cart
2⃝ ProductCatalog /GetProduct /GetProduct http://hs-url/product/*
3⃝ Recommendation /ListRecommendation /ListRecommendation http://hs-url/cart/checkout

TrainTicket
1⃝ Order /order/tickets /order/tickets http://tt-url/searchTicketReserve
2⃝ Route /route/* /routes/* http://tt-url/ticketPreserve
3⃝ Route-Plan /cheapestRoute /cheapestRoute http://tt-url/advancedSearch

Hotel
Reservation

1⃝ Search /Nearby /Nearby http://hr-url/hotels
2⃝ Profile /GetProfiles /GetProfiles http://hr-url/recommendations
3⃝ Reservation /MakeReservation

Abort 100%
requests

(MFI, 3MB, GM)
/

Delay 100%
requests
for 1.5s

(MFI, GM)
/MakeReservation http://hr-url/reservations

0 5 1 0 1 5 2 0 2 5 3 0 3 50
2 0
4 0
6 0
8 0

1 0 0

Su
cce

ss
Ra

te
(%

)

T i m e s t a m p (m i n)F a u l t I n j e c t i o n E n dF a u l t I n j e c t i o n S t a r t

S I - l e v e l F a u l t
(N e t w o r k l o s s , 5 0 %)

A P I - l e v e l
F a u l t (A b o r t)

R e q u e s t - l e v e l
F a u l t

(M F I , A b o r t)
R e q u e s t - l e v e l

F a u l t
(M F I , D e l a y)

 < h s - u r l > / < h s - u r l > / c a r t (G e t) < h s - u r l > / c a r t (P o s t)

R e q u e s t - l e v e l
F a u l t

(M F I , D e l a y)

R e q u e s t - l e v e l
F a u l t

(G M , A b o r t)R e q u e s t - l e v e l
F a u l t

(G M , D e l a y)

R e q u e s t - l e v e l
F a u l t

(3 M B , A b o r t)

(a) Success rate

0 5 1 0 1 5 2 0 2 5 3 0 3 5
0
4
8

1 2
1 6

P9
9 L

ate
ncy

 (s)

T i m e s t a m p (m i n)F a u l t I n j e c t i o n E n dF a u l t I n j e c t i o n S t a r t

S I - l e v e l F a u l t
(N e t w o r k l o s s , 5 0 %)A P I - l e v e l

F a u l t (A b o r t)

R e q u e s t - l e v e l
F a u l t

(M F I , A b o r t)

R e q u e s t - l e v e l
F a u l t

(M F I , D e l a y)

 < h s - u r l > / c h e c k o u t < h s - u r l > / p r o d u c t / *

R e q u e s t - l e v e l
F a u l t

(G M , A b o r t)

R e q u e s t - l e v e l
F a u l t

(G M , D e a l y)
R e q u e s t - l e v e l

F a u l t
(3 M B , A b o r t)

(b) P99 Latency

Fig. 10: The success rate and P99 latency of different application function requests in Hipster Shop during experiment 2⃝
TABLE 6: Comparison of the failure ratios of application functions requests under different levels of fault injection

Application
External Requests Failure Ratio of Application Functions Requests

URL Method
CB IST MFI/ 3MB/ GM CB IST MFI/ 3MB/ GM CB IST MFI/ 3MB/ GM

1⃝ Cart 2⃝ ProductCatalog 3⃝ Recommendation

Hipster Shop

http://hs-url/ GET ✓(6.8%) ✓(100%) ✗ ✓(30.4%) ✗ ✗ 0 ✗ ✗

http://hs-url/cart GET ✓(4.1%) ✓(100%) ✓(100%) ✓(48.7%) ✓(100%) ✗ ✓(47.8%) ✓(100%) ✗

http://hs-url/cart POST ✓(5.9%) ✗ ✗ ✓(39.8%) ✓(100%) ✗ ✗ ✗ ✗

http://hs-url/cart/checkout POST ✓(2%) ✓(100%) ✗ ✓(2.8%) ✓(100%) ✗ ✓(50%) ✓(100%) ✓(100%)
http://hs-url/product/* GET ✓(9.5%) ✓(100%) ✗ ✓(69.8%) ✓(100%) ✓(100%) ✓(45.8%) ✓(100%) ✗

Train Ticket

1⃝ Order 2⃝ Route 3⃝ Route-Plan
http://tt-url/searchTicketReserve GET ✓(40.8%) ✓(100%) ✓(100%) ✓(48.9%) ✓(100%) ✗ ✗ ✗ ✗

http://tt-url/ticketPreserve POST ✓(35.7%) ✓(100%) ✗ ✓(40.1%) ✓(100%) ✓(100%) ✗ ✗ ✗

http://tt-url/advancedSearch GET ✓(52.7%) ✓(100%) ✗ ✓(44.9%) ✓(100%) ✗ ✓(46.7%) ✓(100%) ✓(100%)
http://tt-url/clientPayment POST ✓(49.7%) ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Hotel
Reservation

1⃝ Search 2⃝ Profile 3⃝ Reservation
http://hr-url/recommendations GET ✗ ✗ ✗ ✓(50.1%) ✓(100%) ✓(100%) ✗ ✗ ✗

http://hr-url/hotels GET ✓(51.1%) ✓(100%) ✓(100%) ✓(43.7%) ✓(100%) ✗ ✓(45.7%) ✓(100%) ✗

http://hr-url/reservations POST ✓(50.2%) ✓(100%) ✗ ✗ ✗ ✗ ✓(50.8%) ✓(100%) ✓(100%)
• 1⃝ - 3⃝, 1⃝ - 3⃝, 1⃝ - 3⃝ denote the Experiment Index in Table 5. ✓ presents that the injected fault fails function requests while ✗ presents that the fault does not.

invocations that are triggered by specified requests, leading
the target type of requests to fail completely.

Summary. Unlike SI-level and API-level faults which
cause a less controlled impact on microservice systems with
a higher degree of randomness (i.e., potentially fail multiple
business functions), MicroFI achieves a fine-grained and
accurate request-level injection by precisely controlling the
blast radius of a fault into the target request. The benefit of
the fine-grained control is similar to that of other request-
level injection tools, while MicroFI requires no instrumen-
tation to application source code. This capability facilitates
chaos engineering in production and the simulation of par-
tial failures, removing concerns proposed in Motivation#1.

6.3 Effectiveness of Calculating Injection Solutions

In RQ2, MicroFI is compared with other methods to prove
its efficiency in calculating injection solutions. Moreover,
in this evaluation, MicroFI calculates injection solutions
without prioritization. In addition to choosing the basic
LDFI and the LDFI optimized by IntelliFT as baselines for
comparison, we have also implemented a random strategy
called RandomFI to prove the effectiveness of LDFI. Ran-
domFI follows a similar process to LDFI but gives injection
hypotheses randomly. In each iteration, it selects a random
value v ranging from 1 to the number of explored APIs.
Then it selects v APIs randomly to construct injection hy-
pothesis and inject faults into them. If the target request
fails, the hypothesis is considered as one injection solution.
Otherwise, RandomFI updates the list of explored APIs
and repeats injections. The process continues until all the

3 5 7
8 3 3

2 5 5 8 2 5 4 9

9 0 1 1 7
4 1 0 2 2 0

4 1 8 6 1 5 0 1 3 47 2 6 0 1 0 2 1 1 7
h r - 3 h i p s t e r - 2 h i p s t e r - 3 t t - 2

2 5 0

7 5 0

0

5 0 0

1 0 0 0
2 2 5 0
2 7 5 0

o
f In

jec
tio

ns

 M i c r o F I (1 - b y - 1)
 L D F I (I n t e l l i F T)
 L D F I (b a s i c)
 R a n d o m

Fig. 11: Quantity of injections for calculating all the minimal
solutions
minimal solutions have been obtained or the given number
of injections is reached.

To prove the effectiveness of MicroFI in giving all the
minimal solutions for multiple application functions, we
compare the number of injections used by MicroFI with
those of baselines when calculating all the minimal solutions
for each function. Additionally, we conduct a comparison
with baselines using the same quantity of injections which
equals to the injection quantity required by MicroFI. The
evaluation is based on three aspects, namely execution time,
the number of found minimal solutions per second and
solutions coverage. The solutions coverage is calculated as
the ratio of solutions obtained by each method to the total
number of solutions. The execution time comprises the time
spent on calculation, trace collection and injection execution.
The measurements are repeated for five times.

Fig.11 presents the number of injections used to calculate
all injection solutions by different methods. Fig.12(a) shows
the execution time used by different methods with the same
injection quantity. i) Compared with LDFI (basic), the injec-

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3363902

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2023 13

9 1 1 0 3 1 2 2
2 3 22 0 2

3 0 9

8 5 0
5 3 5

7 0

2 3 5
3 2 2

4 6 1

2 0 4 2 3 6
3 4 6

4 6 3

7 8 6 7 1 0 5 1 2 2
h r - 3 h i p s t e r - 2 h i p s t e r - 3 t t - 2

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
8 0 0
8 5 0

Ex
ecu

tio
n t

im
e (

s) R a n d o m L D F I (b a s i c)
 L D F I (I n t e l l i F T) M i c r o F I (1 - b y - 1)
 M i c r o F I (P a r a l l e l)

(a) Execution time

h r - 3 h i p s t e r - 2 h i p s t e r - 3 t t - 20 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6

 R a n d o m L D F I (b a s i c) L D F I (I n t e l l i F T) M i c r o F I (1 - b y - 1) M i c r o F I (P a r a l l e l)

Fo
un

d M
ini

ma
l S

olu
tio

ns
per

 Se
con

d

h r - 3 h i p s t e r - 2 h i p s t e r - 3 t t - 20
2 0
4 0
6 0
8 0

1 0 0

Co
ver

age

(b) Found minimal solutions/s and Coverage

Fig. 12: Comparisons of different methods given the same
quantity of injections

tion quantity and the execution time are reduced through
the pruning and the parallel technique. About 48% injec-
tions on average are reduced with the pruning technique
and about 76% execution time on average are reduced with
the parallel technique. This is because MicroFI skips the
calculation and injections used to get the known solutions.
By using the results from previous testings, MicroFI is able
to directly validate whether solutions for a previously tested
API are also solutions for the current testing, without the
need for additional injection executions. Furthermore, since
MicroFI provides the request-level injection, the testings for
multiple functions are performed in parallel. Therefore, the
time used in parallel testing only depends on the time used
in the longest testing. ii) The execution efficiency improve-
ment achieved by MicroFI compared to LDFI (basic) varies
across different applications. In Fig.12(b), for applications
with services deployed with one replica service (i.e., hipster-
2 and tt-2), the improvement in found solutions per second
is 10.6x in hipster-2 and 11.6x in tt-2. iii) The execution
efficiency improvement achieved by MicroFI, relative to
LDFI(basic), becomes more significant as the scale of tested
applications increases. Testing functions one by one with
MicroFI reduces 49% injections in hipster-2 while it reduces
75% in a larger application (hipster-3). Parallel testing by
MicroFI reduces 78% execution time in hipster-2 while it
reduces 87% in hipster-3. This improvement is closely related
to the complexity of the application. When dealing with
complex application, LDFI (basic) requires more injections
to validate the calculated hypotheses. This increased com-
plexity leads to longer time spent on SAT solving due to
the construction of tedious CNF formulas corresponding to
the application functions. In contrast, MicorFI accelerates
testing for multiple functions by sharing historical injec-
tion results, which further simplifies the constructed CNF
formula. The simplification reduces injection quantity and
execution time needed to obtain all solutions.

Fig.11 and Fig.12 also prove the effectiveness of SAT
solving in calculating the minimal solutions. i) In Fig.11,
it is proved that RandomFI requires more injections to get

TABLE 7: Number of failed functions with 3 prioritized
methods in 3 applications

Method T1 T2 T3 T4 T5 T6 T7 T8
Hotel

Reservation
(hr-3)

Static 1 2 2 3 4 4 4 4
Dynamic 2 2 2 4 4 4 4 4
APIRank 2 4 4 4 4 4 4 4

Hipster
Shop

(hipster-3)

Static 1 3 4 4 4 5 5 6
Dynamic 4 5 5 5 5 5 5 6
APIRank 4 5 5 5 5 6 6 6

TrainTicket
(tt-2)

Static 3 3 7 7 7 7 7 7
Dynamic 4 4 4 4 4 4 4 4
APIRank 4 4 4 7 7 7 7 7

• T1-T9 denote Top1-Top9 prioritized hypotheses.

all solutions due to its adoption of a random strategy to
guide injection. It introduces plenty of redundant injections.
ii) Given same injections as MicroFI, RandomFI needs less
execution time without the need of SAT solving as shown in
Fig.12(a). However, it exhibits significantly lower solution
coverage and finds fewer solutions per second in Fig.12(b).
These findings indicate that while RandomFI may be faster
in terms of execution time, it lacks the effectiveness and
efficiency in identifying solutions.

Fig.12 also demonstrates that IntelliFT significantly re-
duces the injection quantity and the execution time. Since
most services in the call chain lack recovery logic, the
same error message is propagated throughout the call chain.
Therefore, the heuristic rules employed by IntelliFT effec-
tively prune the injection space. However, since IntelliFT
requires more injections than MicroFI to get all minimal
solutions, the solution coverage of IntelliFT is 5.25% on
average lower than MicroFI.

To mitigate the interference caused by the randomness
in the evaluation (i.e., time measurement, random selection
of RandomFI), we conduct a Mean Difference T-test with
a significance level 5% to investigate potential significant
differences in the measurement results of each method. The
analysis indicates that in the case of relative small-scale
application (hr-3), MicroFI exhibits similar performance to
IntelliFT in terms of obtained solutions/s and coverage
(with p − value ≥ 0.05). However, for other measurements
on different applications, MicroFI significantly outperforms
other methods (with p− value ≤ 0.05). Moreover, the mea-
surement results in other evaluations have been subjected
to a statistical test with a significance level set to 5%.

Summary. Compared with LDFI (basic) and RandomFI,
MicroFI removes about 48% and 91% redundant injections
on average, while decreasing execution time by 76% and
28% on average given the same injection quantity. Com-
pared with IntelliFT, MicroFI decreases time by 51% on av-
erage and obtains a higher coverage improved by 5.25% on
average. Moreover, MicroFI always obtains more solutions
during execution. It proves that MicroFI addresses the time-
consuming problem in testing multiple functions presented
in Motivation#2.

6.4 Effectiveness of Prioritizing Injection Hypotheses
In RQ3, we demonstrate MicroFI’s effectiveness in priori-
tizing hypotheses that can be high-impact solutions, con-
sidering two perspectives. i) To prove the effectiveness of
prioritization through the integration of both static appli-
cation topology and dynamic request traces, we perform
a comparison between APIRank and two methods. These
methods solely rely on either the static topology (Static) or

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3363902

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2023 14

the dynamic traces (Dynamic). ii) We also compare MicroFI
with other methods to evaluate their effectiveness regarding
the prioritization of injection hypotheses.

In the first evaluation, APIRank is compared with Static
and Dynamic. Static ranks candidate injection hypotheses
using the application topology. It relies on the topology to
rank each service API based on the number of other APIs
that depend on it. Then Static prioritizes hypothesis whose
injection points are ranked on the top. Dynamic relies on
dynamic traces. It first calculates the number of invocations
for each API and then ranks each API based on the num-
ber of invocations. Dynamic prioritizes injection hypothesis
whose injection points are invoked by most requests. For
comparisons, we measure the number of business functions
failed by Top1-Top8 hypotheses ranked by each method.

Table 7 shows the comparison results in different ap-
plications. These results show that APIRank requires fewer
high-ranking hypotheses to fail all functions. For exam-
ple, APIRank fails all functions in hr-3 by injecting faults
based on Top1-Top2 hypotheses while Static needs Top1-
Top4 hypotheses and Dynamic needs Top1-Top5 hypothe-
ses. This discrepancy arises from the limitation of relying
solely on either static topology or dynamic traces, as they
provide incomplete information about the running appli-
cation. Solely relying on static topology for prioritization
falls short in capturing the service invocation relationships
in serving different application functions. Prioritizing with
dynamic traces prefers hypotheses whose injection points
are covered by a large number of requests. However, if
the volume of requests is significantly skewed towards an
application function, Dynamic might neglect other functions
with fewer requests. Specifically, Static needs fewer high-
ranking solutions to fail all functions in tt-2. This is be-
cause the performance of Static is related to the application
topology. In TrainTicket, all application functions invoke the
same two services that are depended by the largest number
of other services. The preference for them contributes to
the improvement in prioritization capabilities of Static. In
contrast, APIRank prioritizes solutions based on runtime
information, making it less sensitive to the application im-
plementation and topology.

0 3 6 9 1 2 1 5 1 8
02
46
81 0

Qu
an

tity
of

Fa
ilu

res

I n j e c t i o n B u d g e t

 R - R u l e I n t e l l i F T *
 M i c r o F I

(a) Quantity of failures

0 3 6 9 1 2 1 5 1 80
2 5
5 0
7 5

1 0 0

%
Fa

iled

Fu
nct

ion
s

I n j e c t i o n B u d g e t

 R - R u l e
 I n t e l l i F T *
 M i c r o F I

(b) Percentage of failed functions

Fig. 13: Evaluation of prioritization methods in hr-3

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
05

1 01 52 02 5

Qu
an

tity
of

Fa
ilu

res

I n j e c t i o n B u d g e t

 R - R u l e I n t e l l i F T *
 M i c r o F I

(a) Quantity of failures

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
02 04 06 08 01 0 0

%
Fa

iled

Fu
nct

ion
s

I n j e c t i o n B u d g e t

 R - R u l e
 I n t e l l i F T *
 M i c r o F I

(b) Percentage of failed functions

Fig. 14: Evaluation of prioritization methods in hipster-3
Then, we compare MicroFI with other methods in testing

multiple functions within limited injections. Motivation #3
claims that SREs always set an error budget for each appli-
cation to define the number of failures, making it important
for prioritization method to prioritize high-impact faults
within a limited injection budget. Thus, we evaluate the

5 1 5 2 5 3 5 4 50 1 0 2 0 3 0 4 0 5 005
1 01 52 02 53 0

Qu
an

tity
of

Fa
ilu

res

I n j e c t i o n B u d g e t

 R - R u l e I n t e l l i F T *
 M i c r o F I

(a) Quantity of failures

5 1 5 2 5 3 5 4 50 1 0 2 0 3 0 4 0 5 0
02 04 06 08 01 0 0

%
Fa

iled
Fu

nct
ion

s

I n j e c t i o n B u d g e t

 R - R u l e I n t e l l i F T *
 M i c r o F I

(b) Percentage of failed functions

Fig. 15: Evaluation of prioritization methods in tt-2
performance of different methods in prioritizing injection
solutions within limited injection budgets (quantity of injec-
tions). Given a sufficient number of injections, hypotheses
prioritized by these methods can always fail all functions,
hindering the valid evaluation for these methods. Conse-
quently, the injection budgets in the evaluation have been
set within a range from about 0% to 40% of the minimum
injection quantity required for hr-3 (41), hipster-3 (102), tt-2
(117), shown in Fig. 11. We select IntelliFT and a rules-based
method R-rules as baseline methods. IntelliFT is tailored to
IntelliFT* in this study in two aspects to ensure fair and
focused comparisons. i) The initial set of injection hypothe-
ses for each request is directly provided by LDFI (the same
as IntelliFT) at the initialization stage. The modification
is made to ensure the injection budgets only include the
number of injections used in prioritization. So, the focus
of the evaluation lies in the performance of prioritization
strategies. ii) The second aspect of the modification is about
the mutation process in constructing each test. We have
restricted the mutation of IntelliFT* to changing the request
type and the injection hypothesis. Unlike IntelliFT, which
also mutates fault types and test cases, IntelliFT* does not
change the fault type. Only Abort fault is selected in this
evaluation to directly fail the target invocation. Additionally,
since each application function is only invoked by one type
of request, the mutation of the request type is equivalent to
changing the test case. Thus, the reduction of mutation at-
tributes does not increase the number of injections required
during prioritization.

Moreover, we also implement another method, R-rules,
which prioritizes faults with two heuristic rules. Each
heuristic rule corresponds to one intuition respectively. i)
R-rules prefers to inject faults to APIs that have more
dependencies. A failed API only affects services that invoke
it and invocations cause dependencies between services.
Therefore, the dependencies of service APIs can be used
to approximate their failure impact [68], [69]. ii) R-rules
prefers to inject faults to injection hypotheses that contains
APIs that belong to the same service or locate on the same
node. This rule is derived based on the likelihood of injec-
tion solutions [13]. As the resiliency logic remains similar
among APIs within the same service [13], the probability of
simultaneous failures in those APIs is higher. Additionally,
considering that single-node crashes are more likely than
the simultaneous failure of multiple nodes [70], APIs on the
same node are more prone to fail. The likelihood of each
solution is used to determine the order.

Fig. 13-15 show the evaluations on different prioritiza-
tion methods. Quantity of failures denotes the count of
triggered failures within the system, reflecting the times
when business functions are observed as failed when faults
are injected based on prioritized hypotheses. Furthermore,
to capture the diversity of distinct failed functions, we use
the percentage of failed functions as an additional metric.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3363902

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2023 15

It indicates the percentage of business functions externally
observed as failed, which is calculated as the proportion
of failed functions in all functions. i) Given limited injec-
tion budgets, the hypotheses prioritized by MicroFI always
cause more failures and fail more application functions
than hypotheses prioritized by IntelliFT* and R-rules. ii)
Although hypotheses prioritized by IntelliFT* cause fewer
failures and fail fewer functions when the given injection
budgets are few, its performance improves as injection bud-
gets increase. The explanations for i) and ii) are shown
as follows. IntelliFT* needs accumulation of test history,
which could guide the constructions of subsequent testings.
Specifically, IntelliFT* randomly constructs fault tests and
executes them initially. Then it relies on the test history to
guide the fault space exploration, including selecting which
attributes (Request or Injection point) to mutate and how
to mutate. If the test history is not enough, the exploration
and the mutation will be performed randomly. As a result,
IntelliFT* causes fewer failures and fails fewer functions at
the beginning, hindering the achievement of good perfor-
mance. In contrast, MicroFI relies on trace data rather than
test history to prioritize high-impact injection hypotheses,
rendering it to always cause failure at the beginning. Since
R-rules does not consider historical injection results, it con-
ducts many duplicate injections and thus performs worse.

Summary. Motivation#3 claims that the application com-
plexity and dynamic hinder the manual prioritization. The
evaluation proves the effectiveness of the prioritization
strategy of MicroFI. Compared with other methods, MicroFI
reduces an average of 47.3% injection budgets to prior-
itize hypotheses for failing all business functions. These
prioritized hypotheses can be recommended as high-impact
solutions.

6.5 Overhead of Request-level Fault Injection

1 0 2 0 5 0 1 0 0 1 5 00
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0 A v e r a g e L a t e n c y

 R P S

C o n c u r r e n c y

Av
era

ge
La

yen
cy(

ms
)

0
5
1 0
1 5
2 0

RP
S

Fig. 16: Performance in hipster-2 under different workloads
In RQ4, we evaluate the request-level injection overhead

on hipster-2. We first use Locust to uniformly generate
requests without any request-level injection capacity in dif-
ferent concurrency, and then compare the results on average
latency and RPS (i.e., request per second) of requests as
shown in Fig.16. The generation at each concurrency lasts
for five minutes. As we can see, the curve of average
latency becomes steeper and the curve of RPS becomes
flatter when the concurrency reaches 100. Meanwhile, when
the concurrency reaches 150, hipster-2 serves abnormally and
fails to handle some generated requests. Thus, the maximum
concurrency is 100 and concurrency levels are set to 10,
20, 50, 100. Under these different concurrency levels, we
uniformly generate requests to hipster-2 for five minutes and
measure the average latency in four cases. The first case is
for hipster-2 without any deployment of injection tools and
other three cases are for hipster-2 with the deployment of
MicroFI, Gremlin and 3MileBeach. As injected faults affect

the response time of requests, we measure the response time
of requests which experience all necessary steps for injection
but still respond normally. Each measurement lasts for five
minutes and is repeated for five times.

Fig.17 shows average response time at different concur-
rency levels. It is evident that the response time increases in
the range of 43%-75% with the use of request-level fault
injection, regardless of the tool employed (e.g., MicroFI,
Gremlin, or 3MileBeach). There are several reasons. Firstly,
all these tools necessitate the use of Request Marker to mark
the target requests. This introduces additional overhead as
the target request must traverse the Request Marker before
reaching the application. However, this overhead can be
minimized in production by integrating the Request Marker
logic into the existing gateway. Secondly, both MicroFI and
Gremlin rely on the proxy provided by the service mesh
to inject faults, and proxies of services need to sequen-
tially check routing rules to determine if incoming requests
should be affected by the fault. Therefore, additional latency
is introduced, which can be mitigated through service mesh
optimization techniques, such as Cilium [71]. As Gremlin
does not require tracing to propagate the request token
and 3MileBeach avoids interaction overheads caused by the
service mesh, Gremlin (48%-52%) and 3MileBeach (43%-
51%) increase lower latency compared to MicroFI (71%-
75%). However, to enable the capability of request-level
fault injection, they require the target application to be
restarted, resulting in a period of service unavailability. In
contrast, MicroFI does not introduce this overhead. Addi-
tionally, Gremlin and 3MileBeach require application-level
instrumentation, whereas MicroFI does not.

To evaluate the resource overhead introduced by the
request-level injection of MicroFI, we conduct experiments
on hipster-2 and the concurrency is set as 100. Then, we
record the CPU and memory usage of each node every sec-
ond during experiments. Linux commands sar and free are
used to measure CPU and memory respectively. Once we
obtain the CPU usage and memory usage of each node, we
calculate the average usage per node. The resource usages
are captured in four cases, namely MicroFI deployed with
workload, MicroFI deployed without workload, MicroFI
not deployed with workload, and MicroFI not deployed
without workload. Each measurement lasts for 3 minutes
and is repeated for five times. Fig.18 shows the results.

As we can see in Fig.18(a), the deployment of request-
level injection of MicroFI always consumes more memory.
When no workload is generated, the deployment of MicroFI
consumes an additional 256MB of memory per node com-
pared to the case where MicroFI is not deployed. When the
workload is generated, the case where MicroFI is deployed
consumes 282MB more memory per node than the case
where MicroFi is not deployed. This increase in memory
consumption is attributed to the deployment of service
mesh and Request Marker, which requires more memory on
nodes. On the contrary, the deployment of MicroFI does not
increase the CPU usage. As shown in Fig.18(b), the average
CPU usage per node in the case where nodes are deployed
with MicroFI is almost equal to the case where nodes are
deployed without MicroFI. The generated workload does
not increase the consumption of CPU.

Summary. To support request-level injection, the re-

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3363902

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2023 16

1 1 9 . 8

2 1 0 . 1
1 8 0 . 8 1 7 3 . 5

1 2 2 . 8

2 1 4 . 3 1 8 2 . 5 1 7 5 . 1

3 6 8 . 8

6 4 1 . 1
5 5 2 . 3 5 3 2 . 2

1 9 6 9 . 8

3 4 4 2
3 0 0 1 . 3 2 9 6 5 . 2

0
5 0

1 0 0
1 5 0
2 0 0
2 5 0

(a) C o n c u r r e n c y = 1 0Av
era

ge
La

ten
cy(

ms
)

0
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

(b) C o n c u r r e n c y = 2 0

 w / o R L - I n j e c t i o n M i c r o F I
 G r e m l i n 3 M i l e B e a c h

Av
era

ge
La

ten
cy(

ms
)

3 2 5
4 5 0
5 7 5
7 0 0

(c) C o n c u r r e n c y = 5 0Av
era

ge
La

ten
cy(

ms
)

1 5 0 0
2 0 0 0
2 5 0 0
3 0 0 0
3 5 0 0

(d) C o n c u r r e n c y = 1 0 0Av
era

ge
La

ten
cy(

ms
)

Fig. 17: Average response time of hipster-2 in different concurrency under different cases (without request-level injection
(i.e. RL-Injection), with RL-Injection using MicroFI, Gremlin and 3MileBeach)

8 9 4 . 3 9 0 1 . 7

1 1 5 0
1 1 8 3 . 8

4 . 2

1 0 . 7

4 . 1

1 1

8 0 0
9 0 0

1 0 0 0
1 1 0 0
1 2 0 0

Us
ed

Me
mo

ry
(M

B)

(a) M e m o r y U s a g e 0
2
4
6
8

1 0
1 2

- L o a d (- M i c r o F I) + L o a d (- M i c r o F I) - L o a d (+ M i c r o F I) + L o a d (+ M i c r o F I)

Us
ed

CP
U (

%)

(b) C P U U s a g e
Fig. 18: Comparison results on CPU and memory usage of
MicroFI with and without workload
sponse time of the request is prolonged by MicroFI in the
range of 71%-75% due to the introduction of Request Marker
and service mesh. Compared to other request-level injection
tools, MicroFI increases latency by 18%-23% to support non-
intrusive injection. Moreover, the deployment of MicroFI
consumes approximately 250MB of memory without incur-
ring any significant overhead in terms of CPU usage.

7 DISCUSSIONS

Limitations. (i) One potential problem is that MicroFI re-
lies on distributed tracing. Powered by the observablility
infrastructures [72]–[74], tracing has been widely adopted in
industrial microservice applications [75], rendering MicroFI
to be easily utilized in these systems. However, MicroFI
cannot work in applications without tracing. Firstly, the
request-level fault injection relies on the trace propagation
mechanism to mark specified requests and their subsequent
invocations. Some instrumentation to application code is
required to propagate the request token for applications
without tracing. Secondly, the fault injection strategy relies
on trace data to calculate injection solutions. Trace data is
crucial as it records the execution process of each business
function. Though application topology can be considered as
an alternative to calculate solutions, it is unable to accurately
calculate solutions and the obtained solutions would fail the
entire application rather than a specific business function.
(ii) It is beyond the scope of this study to discuss how to
conduct SAT solving more efficiently. Since the time used
in calculating solutions is occupied by SAT solving, the exe-
cution time would increase as the application grows larger.
However, MicroFI is still more efficient than other works.
(iii) MicroFI targets at injecting faults to directly fail or delay
the requests to application functions. A full discussion of
how to inject an appropriate resource exhaustion fault (e.g.,
which type of faults to inject and how much intensity of the
injected resource exhaustion fault) to precisely fail or delay
the requests are not discussed in this study.

Threats to Validity. The internal threat to validity mainly
lies in the robustness to distributed tracing standards. Mi-
croFI supports two popular tracing standards (i.e., Open-
Tracing and OpenTelemetry) among them. To alleviate this
threat, MicroFI provides a flexible extension method to sup-
port other tracing standards as necessary. The external threat

to validity mainly lies in the applications selected in this
study. They may not represent the existing microservice ap-
plications. We try to cover the implementation differences of
microservice applications, such as communication protocol,
application scale and programming languages. However,
MicroFI still requires a little customization to adopt the cases
that we have not taken into account.

8 CONCLUSION
We propose MicroFI—a fine-grained fault injection frame-
work for microservice applications, which tests the re-
siliency for multiple application business functions based on
the request-level fault injection and prioritizes high-impact
faults. We design the non-intrusive request-level fault injec-
tion that limits the blast radius into the target requests with
the tracing and service mesh technique. Then we extend
LDFI algorithm with injection space pruning technique and
parallel technique to accelerate multiple business functions
testing without redundant injections. An enhanced PageR-
ank algorithm is also employed to support high-impact
faults searching. The evaluations on three representative
open-source microservice applications confirm the effective-
ness of MicroFI. In the future, we plan to improve MicroFI
in considering more information to construct fault tests.

REFERENCES

[1] J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint performance
issues with causal graphs in micro-service environments,” in
Service-Oriented Computing - 16th International Conference, ICSOC
2018, Hangzhou, China, November 12-15, 2018, Proceedings, ser. Lec-
ture Notes in Computer Science, C. Pahl, M. Vukovic, J. Yin, and
Q. Yu, Eds., vol. 11236. Springer, 2018, pp. 3–20.

[2] H. Zhou, M. Chen, Q. Lin, Y. Wang, X. She, S. Liu, R. Gu, B. C. Ooi,
and J. Yang, “Overload control for scaling wechat microservices,”
in Proceedings of the ACM Symposium on Cloud Computing, ser. SoCC
’18. New York, NY, USA: ACM, 2018, p. 149–161.

[3] O. Sheikh, S. Dikaleh et al., “Modernize digital applications with
microservices management using the istio service mesh,” in Pro-
ceedings of the 28th Annual International Conference on Computer
Science and Software Engineering, ser. CASCON ’18. USA: IBM
Corp., 2018, p. 359–360.

[4] Y. Gan, Y. Zhang, , C. Delimitrou et al., “Seer: Leveraging big data
to navigate the complexity of performance debugging in cloud
microservices,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’19. New York, NY, USA: ACM,
2019, p. 19–33.

[5] X. Zhou, X. Peng et al., “Latent error prediction and fault localiza-
tion for microservice applications by learning from system trace
logs,” in Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2019. New York, NY, USA:
ACM, 2019, p. 683–694.

[6] P. Huang, C. Guo et al., “Gray failure: The achilles’ heel of cloud-
scale systems,” in Proceedings of the 16th Workshop on Hot Topics in
Operating Systems, ser. HotOS ’17. New York, NY, USA: ACM,
2017, p. 150–155.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3363902

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2023 17

[7] H. S. Gunawi, M. Hao et al., “Why does the cloud stop computing?
lessons from hundreds of service outages,” in Proceedings of the
Seventh ACM Symposium on Cloud Computing, ser. SoCC ’16. New
York, NY, USA: ACM, 2016, p. 1–16.

[8] D. Cotroneo et al., “How bad can a bug get? an empirical analysis
of software failures in the openstack cloud computing platform,”
in Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2019. New York, NY, USA:
ACM, 2019, p. 200–211.

[9] X. Li, G. Yu, P. Chen, H. Chen, and Z. Chen, “Going through
the life cycle of faults in clouds: Guidelines on fault handling,”
in 2022 IEEE 33rd International Symposium on Software Reliability
Engineering (ISSRE), 2022, pp. 121–132.

[10] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and
V. Sekar, “Gremlin: Systematic resilience testing of microservices,”
in 2016 IEEE 36th International Conference on Distributed Computing
Systems (ICDCS), 2016, pp. 57–66.

[11] “Google compute engine incident #18012,” https://status.cloud.g
oogle.com/incident/compute/18012, 2022.

[12] H. Tucker, L. Hochstein, N. Jones, A. Basiri, and C. Rosenthal,
“The business case for chaos engineering,” IEEE Cloud Computing,
vol. 5, no. 3, pp. 45–54, 2018.

[13] P. Alvaro, K. Andrus et al., “Automating failure testing research
at internet scale,” in Proceedings of the Seventh ACM Symposium on
Cloud Computing, ser. SoCC ’16. New York, NY, USA: ACM, 2016,
p. 17–28.

[14] “Google dirt: Disaster recovery testing.” https://www.oreilly.co
m/library/view/chaos-engineering/9781492043850/ch05.html.

[15] “Azure chaos studio.” https://azure.microsoft.com/en-us/serv
ices/chaos-studio/\#overview, 2021.

[16] “Chaos engineering at linkedin: The “linkedout” failure injection
testing framework.” https://www.infoq.com/news/2018/06/li
nkedout-failure-injection/”, 2021.

[17] A. Basiri, N. Behnam et al., “Chaos engineering,” IEEE Software,
vol. 33, no. 3, pp. 35–41, 2016.

[18] Gremlin, “state-of-chaos-engineering,” https://www.gremlin.co
m/state-of-chaos-engineering/2021/?ref=blog, 2022.

[19] P. Joshi, H. S. Gunawi, and K. Sen, “Prefail: A programmable
tool for multiple-failure injection,” in Proceedings of the 2011 ACM
International Conference on Object Oriented Programming Systems
Languages and Applications, ser. OOPSLA ’11. New York, NY, USA:
ACM, 2011, p. 171–188.

[20] “Hipstershop,” https://github.com/GoogleCloudPlatform/mic
roservices-demo, 2021.

[21] K. Lee, “Beyond distributed tracing,” in SRECon 2022. San
Francisco, CA: USENIX Association, Mar. 2022.

[22] C. S. Meiklejohn, A. Estrada, Y. Song, H. Miller, and R. Padhye,
“Service-level fault injection testing,” in Proceedings of the ACM
Symposium on Cloud Computing, ser. SoCC ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 388–402.

[23] L. Zhang, B. Morin, B. Baudry, and M. Monperrus, “Maximizing
error injection realism for chaos engineering with system calls,”
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 4,
pp. 2695–2708, 2022.

[24] J. Simonsson, L. Zhang et al., “Observability and chaos engineering
on system calls for containerized applications in docker,” Future
Gener. Comput. Syst., vol. 122, pp. 117–129, 2021.

[25] “Istio,” https://istio.io/latest/docs.
[26] “Chaosmonkey,” https://github.com/Netflix/chaosmonkey.
[27] “Chaosblade,” https://github.com/chaosblade-io/chaosblade.
[28] “Chaosmesh,” https://chaos-mesh.org/”.
[29] “Litmus,” https://github.com/litmuschaos/litmus.
[30] P. Joshi, M. Ganai et al., “Setsudo: Perturbation-based testing

framework for scalable distributed systems,” in Proceedings of
the First ACM SIGOPS Conference on Timely Results in Operating
Systems, ser. TRIOS ’13. New York, NY, USA: ACM, 2013.

[31] P. Alvaro, J. Rosen, and J. M. Hellerstein, “Lineage-driven fault
injection,” in Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, ser. SIGMOD ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 331–346.

[32] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank
citation ranking: Bringing order to the web.” Stanford InfoLab,
Technical Report 1999-66, November 1999, previous number =
SIDL-WP-1999-0120.

[33] X. Zhou, X. Peng, T. Xie et al., “Benchmarking microservice
systems for software engineering research,” in Proceedings of the
40th International Conference on Software Engineering: Companion
Proceeedings, ser. ICSE ’18. New York, NY, USA: ACM, 2018, p.
323–324.

[34] Y. Gan, Y. Zhang, C. Delimitrou et al., “An open-source benchmark
suite for microservices and their hardware-software implications
for cloud& edge systems,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’19. New York,
NY, USA: ACM, 2019, p. 3–18.

[35] J. Zhang, R. Ferydouni, A. Montana, D. Bittman, and P. Alvaro,
“3milebeach: A tracer with teeth,” in Proceedings of the ACM
Symposium on Cloud Computing, ser. SoCC ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 458–472.

[36] H. S. Gunawi, T. Do et al., “Fate and destini: A framework for cloud
recovery testing,” in Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation, ser. NSDI’11. USA:
USENIX Association, 2011, p. 238–252.

[37] A. Basiri, L. Hochstein, N. Jones, and H. Tucker, “Automating
chaos experiments in production,” in Proceedings of the 41st In-
ternational Conference on Software Engineering: Software Engineering
in Practice, ser. ICSE-SEIP ’19. IEEE Press, 2019, p. 31–40.

[38] Z. Long, G. Wu et al., “Fitness-guided resilience testing of
microservice-based applications,” in 2020 IEEE International Con-
ference on Web Services (ICWS), 2020, pp. 151–158.

[39] A. O. Duque et al., “A qualitative evaluation of service mesh-based
traffic management for mobile edge cloud,” in 2022 22nd IEEE
International Symposium on Cluster, Cloud and Internet Computing,
2022, pp. 210–219.

[40] “Alibabacloud service mesh,” https://www.alibabacloud.com/e
s/product/servicemesh, 2023.

[41] “Tencent cloud mesh,” https://www.tencentcloud.com/product
s/tcm, 2023.

[42] “Anthos service mesh,” https://cloud.google.com/anthos/servic
e-mesh?hl=es, 2023.

[43] “Envoy,” https://www.envoyproxy.io/, 2022.
[44] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,

M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a
large-scale distributed systems tracing infrastructure,” Google,
Inc., Tech. Rep., 2010.

[45] “Opentelemetry,” https://opentelemetry.io/, 2022.
[46] “Opentracing,” https://opentraicng.io/, 2022.
[47] P. Jackson and D. Sheridan, “Clause form conversions for boolean

circuits,” in Proceedings of the 7th International Conference on Theory
and Applications of Satisfiability Testing, ser. SAT’04. Berlin, Heidel-
berg: Springer-Verlag, 2004, p. 183–198.

[48] T. Schoning, “A probabilistic algorithm for k-sat and constraint
satisfaction problems,” in 40th Annual Symposium on Foundations of
Computer Science (Cat. No.99CB37039), 1999, pp. 410–414.

[49] M. Davis, G. Logemann, and D. Loveland, “A machine program
for theorem-proving,” Commun. ACM, vol. 5, no. 7, p. 394–397, jul
1962.

[50] “The z3 theorem prover,” https://github.com/Z3Prover/z3.
[51] “The minisat page,” http://minisat.se, 2022.
[52] C. Lou, P. Huang, and S. Smith, “Understanding, detecting and lo-

calizing partial failures in large system software,” in 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
20). Santa Clara, CA: USENIX Association, 2020, pp. 559–574.

[53] “Little known ways to better use your error budgets,” https://
www.blameless.com/blog/4-surprising-error-budget-use-cases.

[54] R. T. Fielding and R. N. Taylor, “Architectural styles and the de-
sign of network-based software architectures,” Ph.D. dissertation,
University of California, Irvine, 2000, aAI9980887.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3363902

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2023 18

[55] A. D. Birrell and B. J. Nelson, “Implementing remote procedure
calls,” ACM Trans. Comput. Syst., vol. 2, no. 1, p. 39–59, feb 1984.

[56] “Strace,” https://man7.org/linux/man-pages/man1/strace.1.ht
ml, 2023.

[57] “Realizing the new value of service mesh: accurately controlling
the blast radius (chinese),” https://developer.aliyun.com/article
/878287, 2023.

[58] G. Yu, P. Chen et al., “Microrank: End-to-end latency issue local-
ization with extended spectrum analysis in microservice environ-
ments,” in Proceedings of the Web Conference 2021, 2021, pp. 3087–
3098.

[59] G. Jeh and J. Widom, Scaling Personalized Web Search. New York,
NY, USA: Association for Computing Machinery, 2003, p. 271–279.

[60] “Kubernetes,” https://kubernetes.io/, 2021.
[61] X. Zhou, X. Peng, T. Xie et al., “Fault analysis and debugging of

microservice systems: Industrial survey, benchmark system, and
empirical study,” IEEE Transactions on Software Engineering, vol. 47,
no. 2, pp. 243–260, 2021.

[62] Z. Huang, P. Chen et al., “Sieve: Attention-based sampling of end-
to-end trace data in distributed microservice systems,” in 2021
IEEE International Conference on Web Services, 2021, pp. 436–446.

[63] Z. He, P. Chen et al., “Graph based incident extraction and di-
agnosis in large-scale online systems,” in Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’22. New York, NY, USA: ACM, 2023.

[64] Y. Gan, C. Delimitrou et al., “Sage: Practical and Scalable ML-
Driven Performance Debugging in Microservices,” in Proceedings
of the Twenty Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems), April 2021.

[65] “Locust: An open source load testing tool.” https://locust.io/.
[66] elasticsearch. (2015) elasticsearch/elasticsearch. [Online]. Avail-

able: https://github.com/elasticsearch/elasticsearch
[67] “Jaeger,” https://www.jaegertracing.io/, 2022.
[68] T. Yang, M. R. Lyu et al., “Aid: Efficient prediction of aggregated

intensity of dependency in large-scale cloud systems,” in 2021 36th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2021, pp. 653–665.

[69] J. Yin, X. Zhao et al., “Cloudscout: A non-intrusive approach to
service dependency discovery,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 5, pp. 1271–1284, 2017.

[70] A. Raina and R. Ellupuru, “Madaari: Ordering for the monkeys.”
Brooklyn, NY: USENIX Association, Mar. 2019.

[71] “Cilium,” https://cilium.io/, 2022.
[72] Datadog, “Cloud monitoring as a service,” https://www.datado

ghq.com/, 2023.
[73] Apache, “Skywalking,” https://skywalking.apache.org/, 2023.
[74] Alibaba, “Application real-time monitoring service,” https://ww

w.alibabacloud.com/es/product/arms, 2023.
[75] C. Zhang, X. Peng, D. Zhang et al., “Deeptralog: Trace-log com-

bined microservice anomaly detection through graph-based deep
learning,” in 2022 IEEE/ACM 44th International Conference on Soft-
ware Engineering (ICSE), 2022, pp. 623–634.

Hongyang Chen received his BE degree from
Sun Yat-sen University, China, in 2020 and
is currently pursuing the Ph.D. degree in the
School of Computer Science and Engineering,
Sun Yat-sen University. His current research ar-
eas focus on distributed system, cloud comput-
ing, chaos engineering and software defined net-
working.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3162857, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 18

in ESEC/FSE’19: Proc. of the 27th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2019.

[32] W. Meng, Y. Liu, F. Zaiter, S. Zhang, Y. Chen, Y. Zhang, Y. Zhu,
E. Wang, R. Zhang, S. Tao et al., “Logparse: Making log parsing
adaptive through word classification.”

[33] Q. Le and T. Mikolov, “Distributed representations of sentences
and documents,” in ICML’14: Proc. of the 31st International Confer-
ence on Machine Learning, 2014, pp. 1188–1196.

[34] H. Xiao, “bert-as-service,” https://github.com/hanxiao/bert-as-s
ervice, 2018.

[35] “Bert pretrained models,” https://github.com/google-research/
bert, 2021, [Online].

[36] Y. Li, N. Du, and S. Bengio, “Time-dependent representation for
neural event sequence prediction,” arXiv preprint arXiv:1708.00065,
2017.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[38] “Hadoop,” https://hadoop.apache.org/, 2021, [Online].
[39] “filebeats,” https://www.elastic.co/beats/filebeat, 2021, [On-

line].
[40] “chaosblade,” https://github.com/chaosblade-io, 2021, [Online].
[41] “Loghub datasets,” https://zenodo.org/record/3227177, 2021,

[Online].
[42] “Bluegene/l message types,” https://www.usenix.org/cfdr-dat

a#hpc4, 2019, [Online].
[43] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools

and benchmarks for automated log parsing,” in ICSE(SEIP)’19:
Proc. of the 41st International Conference on Software Engineering:
Software Engineering in Practice. IEEE Press, 2019, pp. 121–130.

[44] A. Oliner and J. Stearley, “What supercomputers say: A study of
five system logs,” in DSN’07: Proc. of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE,
2007, pp. 575–584.

[45] H. Dai, H. Li, C. S. Chen, W. Shang, and T.-H. Chen, “Logram:
Efficient log parsing using n-gram dictionaries,” IEEE Transactions
on Software Engineering, 2020.

[46] A. Pi, W. Chen, X. Zhou, and M. Ji, “Profiling distributed systems
in lightweight virtualized environments with logs and resource
metrics,” in Proceedings of the 27th International Symposium on High-
Performance Parallel and Distributed Computing, 2018, pp. 168–179.

[47] M. Nagappan, K. Wu, and M. A. Vouk, “Efficiently extracting
operational profiles from execution logs using suffix arrays,” in
ISSRE’09: Proc. of the 20th International Symposium on Software
Reliability Engineering. IEEE, 2009, pp. 41–50.

[48] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection
in distributed systems through unstructured log analysis,” in
ICDM’09: Proc. of the 9th IEEE International Conference on Data
Mining. IEEE, 2009, pp. 149–158.

[49] M. Mizutani, “Incremental mining of system log format,” in
SCC’13: 2013 IEEE International Conference on Services Computing.
IEEE, 2013, pp. 595–602.

[50] H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and A. Mueen,
“Logmine: Fast pattern recognition for log analytics,” in CIKM’16:
Proc. of the 25th ACM International on Conference on Information and
Knowledge Management. ACM, 2016, pp. 1573–1582.

[51] K. Q. Zhu, K. Fisher, and D. Walker, “Incremental learning of
system log formats,” ACM SIGOPS Operating Systems Review,
vol. 44, no. 1, pp. 85–90, 2010.

[52] K. Shima, “Length matters: Clustering system log messages using
length of words,” arXiv preprint arXiv:1611.03213, 2016.

[53] R. Vaarandi, “A data clustering algorithm for mining patterns
from event logs,” in IPOM’03: Proc. of the 3rd IEEE Workshop on
IP Operations & Management. IEEE, 2003, pp. 119–126.

[54] M. Nagappan and M. A. Vouk, “Abstracting log lines to log event
types for mining software system logs,” in MSR’10: Proc. of the 7th
IEEE Working Conference on Mining Software Repositories. IEEE,
2010, pp. 114–117.

[55] R. Vaarandi and M. Pihelgas, “Logcluster-a data clustering and
pattern mining algorithm for event logs,” in CNSM’15: Proc. of the
11th International Conference on Network and Service Management.
IEEE, 2015, pp. 1–7.

[56] W. Meng, Y. Liu, F. Zaiter, S. Zhang, Y. Chen, Y. Zhang, Y. Zhu,
E. Wang, R. Zhang, S. Tao et al., “Logparse: Making log parsing
adaptive through word classification,” in 2020 29th International
Conference on Computer Communications and Networks (ICCCN).
IEEE, 2020, pp. 1–9.

[57] S. Nedelkoski, J. Bogatinovski, A. Acker, J. Cardoso, and O. Kao,
“Self-supervised log parsing,” arXiv preprint arXiv:2003.07905,
2020.

[58] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer,
“Failure diagnosis using decision trees,” in ICAC’04: Proc. of the
first International Conference on Autonomic Computing. IEEE, 2004,
pp. 36–43.

[59] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “Failure prediction
in ibm bluegene/l event logs,” in ICDM’07: Proc. of the 7th IEEE
International Conference on Data Mining. IEEE, 2007, pp. 583–588.

[60] M. Farshchi, J.-G. Schneider, I. Weber, and J. Grundy, “Experience
report: Anomaly detection of cloud application operations using
log and cloud metric correlation analysis,” in ISSRE’15: Proc. of
the 26th International Symposium on Software Reliability Engineering.
IEEE, 2015, pp. 24–34.

Xiaoyun Li is currently pursuing the Ph.D.
degree with the School of Computer Sci-
ence and Engineering, Sun Yat-sen University,
Guangzhou, China. She received her BE degree
from Sun Yat-sen University, in 2019. Her cur-
rent research areas include log analysis and AI-
driven operations.

Pengfei Chen is currently an associated pro-
fessor in the School of Computer Science and
Engineering of Sun Yat-sen University. Mean-
while, he is a Ph.D. advisor. Dr. Chen gradu-
ated from the department of computer science
of Xi’an Jiaotong University with a Ph.D. de-
gree in 2016. Now, he is interested in distributed
systems, AIOps, cloud computing, Microservice
and BlockChain. Especially, he has strong skills
in cloud computing. So far, Dr. Chen has pub-
lished more than 50 papers in some international

conferences including IEEE INFOCOM, WWW, ACM/IEEE CCGRID,
ICSOC, IEEE ICWS, IEEE ICPADS and journals including IEEE TDSC,
IEEE TNNLS, IEEE TR, IEEE TSC, IEEE TETC, IEEE TCC. He serves
as of program committee member of multiple conferences and reviewers
of some internal journals such as IEEE Transactions on Cybernetics,
Information Science, and Neurocomputing.

Linxiao Jing received the B.E. degree from
School of Computer Science and Technology,
Xidian University, Xi’an, China, in 2019. He is
currently pursuing M.E. degree with the School
of Computer Science and Engineering, Sun Yat-
sen University, Guangzhou, China. His current
research areas include cloud computing and AI-
driven operations.

Zilong He received his BE degree and MS de-
gree from Sun Yat-sen University, China, in 2019
and 2021. He is now a phd student at School
of Computer Science and Engineering of Sun
Yat-sen University, China. His current research
areas include anomaly detection algorithms, AI
driven operations.

Guangba Yu received his master degree from
Sun Yat-Sen University, China, in 2020. He is
now a phd student at School of Computer Sci-
ence and Engineering with Sun Yat-Sen Uni-
versity, China. His current research areas in-
clude distributed system, cloud computing, and
AI driven operations.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 03,2022 at 06:18:14 UTC from IEEE Xplore. Restrictions apply.

Pengfei Chen is currently an associated profes-
sor in the School of Computer Science and En-
gineering of Sun Yat-sen University. Meanwhile,
he is a Ph.D. advisor. Dr. Chen graduated from
the department of computer science of Xi’an
Jiaotong University with a Ph.D. degree in 2016.
Now, he is interested in distributed systems,
AIOps, cloud computing, Microservice and net-
work systems. Especially, he has strong skills in
cloud computing. So far, Dr. Chen has published

more than 80 papers in some international conferences including ACM
ASE/ICSE/FSE, IEEE INFOCOM, WWW, ACM/IEEE CCGRID,IEEE IS-
SRE, IEEE ICWS, IEEE DSN, ICPP and journals including IEEE TDSC,
IEEE TNNLS, IEEE TR, IEEE TSC, IEEE TETC, IEEE TCC. He serves
as of program committee member of multiple conferences and reviewers
of some internal journals such as IEEE TDSC, IEEE TC, and Information
Science.

Guangba Yu received his master degree from
Sun Yat-Sen University, China, in 2020. He is
now a phd student at School of Computer Sci-
ence and Engineering with Sun Yat-Sen Uni-
versity, China. His current research areas in-
clude distributed system, cloud computing, and
AI driven operations.

Xiaoyun Li is currently pursuing the Ph.D. de-
gree in the School of Computer Science and En-
gineering, Sun Yat-sen University, Guangzhou,
China. She received her B.Eng. from Sun Yat-
sen University, in 2019. Her current research ar-
eas focus on ensuring cloud system reliability by
applying AI techniques, especially in log analysis
and mutli-modal fault diagnosis.

Zilong He received his BE degree and MS de-
gree from Sun Yat-sen University, China, in 2019
and 2021. He is now a phd student at School
of Computer Science and Engineering of Sun
Yat-sen University, China. His current research
areas include anomaly detection algorithms, AI
driven operations.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3363902

