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ABSTRACT
With the advantages of flexible scalability and fast delivery, mi-
croservice has become a popular software architecture in the mod-
ern IT industry. However, the explosion in the number of service
instances and complex dependencies make the troubleshooting
extremely challenging in microservice environments. To help un-
derstand and troubleshoot a microservice system, the end-to-end
tracing technology has been widely applied to capture the execu-
tion path of each request. Nevertheless, the tracing data are not
fully leveraged by cloud and application providers when conducting
latency issue localization in the microservice environment.

This paper proposes a novel system, named MicroRank, which
analyzes clues provided by normal and abnormal traces to locate
root causes of latency issues. Once a latency issue is detected by the
Anomaly Detector in MicroRank, the cause localization procedure is
triggered. MicroRank first distinguishs which traces are abnormal.
Then, MicroRank’s PageRank Scorer module uses the abnormal and
normal trace information as its input and differentials the impor-
tance of different traces to extended spectrum techniques . Finally,
the spectrum techniques can calculate the ranking list based on
the weighted spectrum information from PageRank Scorer to lo-
cate root causes more effectively. The experimental evaluations
on a widely-used open-source system and a production system
show that MicroRank achieves excellent results not only in one
root cause situation but also in two issues that happen at the same

* Pengfei Chen is the corresponding author.
† Work was done while the author was a master student at Sun Yat-sen University .

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3449905

time. Moreover, MicroRank makes 6% to 22% improvement in re-
call in localizing root causes compared to current state-of-the-art
methods.
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1 INTRODUCTION
By adopting microservice architectures, modern enterprises reap
many benefits, from better scalability of components, higher devel-
oper productivity and smaller programming language restrictions
[8, 19, 37, 40]. Each service in the microservice system runs as a set
of instances on one or multiple machines and communicates with
other microservices through message passing [40]. This leads to
an explosion in the number of processes that application providers
need to manage and a larger challenge of root cause localization.
The application providers have to handle the complex distributed
environment tomeet availability constraints and strict Service Level
Objective (SLO).

Peng et.al. [41] has divided microservice faults into four cat-
egories such as configuration faults and resource faults. Most of
them manifest themselves in terms of service latency increase or
request time-out , thus latency is the main consideration of SLO
[3, 23, 30]. Naturally, it is necessary to quickly detect and diagnose
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latency issues to keep the systems running in high performance.
Nowadays, some of the monitoring tools (e.g., Prometheus1) can
observe what generally happens in a microservice instance (e.g.,
the mean latency per minute). These metrics of a single instance
are definitely helpful, but they tell us very little about the relations
among different instances. For example, the application operators
do see a latency spike when there was a latency issue in microser-
vice system, but they do not have enough fine-grained context to
explain the problem.

Therefore, the application operators wish to have a detailed view
of what exactly happened in microservice systems. The end-to-
end tracing takes a request-centric view [31] in the microservice
environment. It captures the detailed execution of causally-related
operations performed by the service instances of a microservice
system, and reports them to tracing collector (e.g., Jaeger2). Then,
the tracing collector constructs the whole paths of request as a
graph of events and causal edges between them, which we call a
"trace". When a latency issue emerged, application providers can
reason about how the microservice system processed the requests
by extracting information from the tracing data.

The information provided by the tracing data is rich, which
allows application operators to detect latency issues at request level
and locate root causes at service instance level. However, analyzing
tracing data manually is inefficient and depends heavily on expert
knowledge due to the following challenges.

• Complex tracing paths. With the microservice architec-
ture, an application is decoupled into multiple loosely dis-
tributed fine-grained services with complex interactions [19].
Furthermore, each microservice may have multiple instances
to serve requests, which further increases the complexity of
trace paths. The complex structure of a microservice system
makes it difficult to track the process of fault propagation at
service instance level.

• Multiple cause candidates. Because upstream services’
performance is always dependent on downstream services,
a downstream service anomaly may result in multiple anom-
alies in other upstream services. It means that we need to
find root causes in a huge potential cause set.

• Dynamic runtime environment. A microservice system
usually has a rapid update. New features may be continu-
ously integrated and deployed into each of microservice over
time. In addition, microservices usually run in the dynamic
container-based environment where their states change fre-
quently, i.e., from running to stop. The anomaly detection
and root cause diagnosis methods should adapt to these dy-
namic environments with a low cost.

Over the years, many approaches have been proposed to locate
root causes in large distributed systems [5, 9, 19, 25, 30, 33]. CauseIn-
fer [5] and Sieve [33] build causality graphs of system components,
then they pinpoint root causes with these graphs, but their methods
cannot get the exact direction of dependency between two service
instances. Roots [9] automatically identifies the root causes of per-
formance anomalies in web applications deployed in PaaS clouds,
but it is not natively designed for microservice systems. MicroScope

1Prometheus, https://prometheus.io/
2Jaeger, https://www.jaegertracing.io/

[19] maintains a service dependency graph via PC-algorithm. How-
ever, MicroScope only considers abnormal traces and leaves out
the information provided by normal traces.

To address the drawbacks of existing work and new challenges
in microservice systems, this paper introduces a novel approach,
namedMicroRank, which is based on extended spectrum analysis to
identify the latency issues inmicroservice systems. It primarily com-
prises four procedures including Anomaly Detector, Data Preparator,
PageRank Scorer and Weighted Spectrum Ranker. Our method is
compatible with traces of multiple widely-used microservice trace
standards (e.g., OpenTracing 3, OpenCensus 4 and OpenTeleme-
try 5). Once a latency issue is detected by the Anomaly Detector
in MicroRank, the cause localization procedure is triggered. Data
Preparator first distinguishes which traces are abnormal and mind
the relations of service instances and traces. Then, MicroRank’s
PageRank Scorer module uses the abnormal and normal trace infor-
mation as its input and differentiates the importance of different
traces to extended spectrum techniques. Finally, the Wighted Spec-
trum Ranker outputs a ranked list of potential root causes based
on the weighted spectrum information from PageRank Scorer. This
ranked list can decrease the overall search space for the application
operators significantly. The results in a widely-used open-source
system and a production system show that MicroRank can locate
the root causes effectively and efficiently. Compared to previous
cause localization methods such as CauseInfer [5] and Sieve [33],
our approach is more effective.

Overall, the contributions of this paper are four-fold:
• To the best of our knowledge,MicroRank is the first approach
to weave the clues provided by normal and anomalous traces
to conduct root cause localization for microservice applica-
tions.

• We propose a novel root cause location approach in microser-
vice environments based on the extended spectrum analysis.
PageRank is introduced to strengthen the effectiveness of
spectrum analysis by considering the importance of different
traces.

• We instrument the OpenTelemetry tracing API into Hipster-
Shop6 microservice benchmark provided by Google Cloud.
Our modifications give this benchmark7 the ability of end-
to-end tracing that it did not have before.

• We design and implement a prototype, namelyMicroRank, to
locate root causes of latency issues in microservice systems.
We conduct extensive experiments based on a widely-used
open-source microservice system and a production microser-
vice system with 157 faults in total. Experimental results
demonstrate the effectiveness of MicroRank over state-of-
the-art methods.

2 BACKGROUND
2.1 Microservice End-to-end Tracing
As stated in the Dapper[32], modern Internet services are often im-
plemented as complex, large-scale distributed systems, for example,
3OpenTracing, https://opentracing.io/
4OpenCensus, https://opencensus.io/
5OpenTelemetry, https://opentelemetry.io
6Hipster-Shop, https://github.com/GoogleCloudPlatform/microservices-demo
7Hipster-shop with OpenTelemetry, https://github.com/yuxiaoba/Hipster-Shop
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Instance: front-vbtdx    Operation: Recv

TraceID:  1   SpanID: 121  Parent Span: [none]
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Instance: cart-fsff7    Operation: AddItem
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trace

span

time

15.87 ms

Figure 1: An example of trace in Hipster-Shop
using the popular microservice architectural style. Unlike the tradi-
tional host-level tracing tools, such as DTrace8, end-to-end tracing
is primarily focused on profiling requests as they move across many
service instances, usually running on many different hosts. The
tracing data provides lots of invaluable information in understand-
ing system behavior, helping with debugging and reasoning about
root causes in such complex systems.

In the microservice scenario, programmers usually need to in-
strument the trace interfaces into each microservice code. The trace
interfaces record causality and profiling information about the re-
quest with an unique identifier (i.e., trace ID) and report them to
the tracing collector (e.g., Jaeger) through calls to a Tracing API
like OpenTelemetry. The tracing collector receives the tracing data,
normalizes it to a common trace model representation and puts it
to the persistent storage (e.g., Elasticsearch 9).

Before the birth of OpenTelemetry, two incompatible open-source
projects OpenTracing and OpenCensus, each with its own standard,
have dominated the microservice end-to-end tracing landscape.
OpenTelemetry converges best features of both OpenTracing and
OpenCensus into a single standard and provides a complete solu-
tion to solve the problem of end-to-end tracing in microservice
systems. This brings maturity to the OpenTelemetry standard as
both previous projects were already mature and production tested.
Therefore, we instrument the OpenTelemetry tracing codes into
Hipster-Shop to provide a complete tracing view. To the best of
our knowledge, it is the first complete microservice benchmark
equipped with OpenTelemetry.

Fig. 1 shows a series of spans and their relationships within a
trace in Hipster-Shop. As shown in Fig. 1, each span is a named
and timed operation and they share a unique traceID in the same
trace. The root span (like front-vbdtx/Recv. in Fig. 1) is the first span
in a trace, while the other spans are related through parent-child
relationships. In addition, we attach additional information like the
service instance name for each span. Therefore, we can locate root
causes at service instance level based on the tracing information.

3 LATENCY ISSUE LOCALIZATION
In this section, we formally describe the problem of latency issue
localization at service instance level in a microservice system. Then,
we introduce the motivation of applying spectrum-based method
to find root causes and its limitations.

3.1 Problem formulation
Before formulating the latency issue localization problem, we sum-
marize the information that we can extract from tracing data.
8DTrace, http://dtrace.org/
9Elasticsearch, https://www.elastic.co/
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Figure 2: The trace coverage tree of Fig. 1

• Latency and Handling Time. As shown in Fig. 1, the trac-
ing data comprise the end-to-end latency of each trace and
the processing time of each operation in one trace.

• Trace Coverage Graph. Because each span in one trace
comprises the parent-child relationship information and ser-
vice instance information, we can construct the coverage tree
for each trace (e.g., Fig. 2 shows the coverage tree of Fig. 1
). A coverage tree is a tree where each node represents a
service instance operation, and an edge from node 𝑣𝑖 to node
𝑣 𝑗 indicates the calling relation. We can get the complete
trace coverage graph (i.e., the connections between service
instances operations and the traces) when we aggregate all
the coverage trees together.

• Call Graph. If we remove the duplicate edges in a trace
coverage graph and shift the attention to nodes, we can get
the call graph among different service operations.

Based on the above information, the formal description of the
latency issue locating problem in microservice systems is as fol-
lows. Given a collection of traces in a time window, namely T =

{𝑇1, · · · ,𝑇𝑛}, where 𝑇𝑖 = {𝑂𝑖
1, · · · ,𝑂

𝑖
𝑚}, and 𝑂𝑖

𝑗
demotes one op-

eration in trace 𝑖 , we get the end-to-end latency of these traces,
namely L = {𝐿1, · · · , 𝐿𝑛} and the coverage graph 𝐺 = (𝑉 , 𝐸),
where 𝑉 is the collection of service instance operations, namely
𝑂𝑖
𝑗
∈ 𝑉 and 𝐸 is the collection of calling relations. The problem is

to find out normal traces T𝑛 = {𝑇𝑛
1 , · · · ,𝑇

𝑛
𝑘
} and abnormal traces

T𝑎 = {𝑇𝑎
1 , · · · ,𝑇

𝑎
𝑛−𝑘 }. Moreover, based on T𝑛 , T𝑎 , and 𝐺 , finding

the root cause service instances related to 𝑂𝑖
𝑗
. Our target is to rank

service instances directly relevant to the root cause higher than
those unrelated to it.

3.2 Motivation
The Spectrum-based fault localization (SBFL) technique is one of
the most popular approaches used in program debugging because
of its simplicity and efficiency [1, 11, 13, 24]. When given a faulty
program 𝑃 and a set of test cases in which at least one test failed, a
typical SBFL approach collects test coverage information for each
program element 𝑂 ∈ 𝑃 while running test cases firstly. Next
various statistics, e.g., tuple (𝑂𝑒 𝑓 ,𝑂𝑒𝑝 ,𝑂𝑛𝑓 ,𝑂𝑛𝑝 ) , can be extracted
based on the test coverage information. Here, 𝑂𝑒 𝑓 denotes the
number of failed test cases that cover program element 𝑂 , 𝑂𝑒𝑝

denotes the number of passed test cases that cover program element
𝑂 . 𝑂𝑛𝑓 denotes the number of failed test cases that do not cover
program element 𝑂 , 𝑂𝑛𝑝 denotes the number of passed test cases
that do not cover program element 𝑂 . Based on the above tuples,
several risk evaluation formulae, e.g. Tarantula, have been proposed
to compute suspicious score that indicates how likely it is to be
faulty for each program element.
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Figure 3: First limitation in spectrum-based method
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Figure 4: Second limitation in spectrum-based method

Given the problem of analyzing end-to-end tracing data, this
problem is similar as the software debugging. A request visits sev-
eral service instances inmicroservice systemwhile a test case covers
several program entities in software testing. The service instances
executed by more anomalous requests and less normal requests
is more likely to be root cause. Hence we believe it is possible to
apply the spectrum-based method to locate the root causes in mi-
croservice system. However, when we apply the spectrum-based
method directly to find how likely the service instance is the root
cause, we find some limitations of this approach.

The first limitation of spectrum-based method. The basic
spectrum-based method only focuses on how many normal and
anomalous requests cover the service instances but ignores the
differences among different requests. To simplify the examples, we
consider themicroservices as themicroservice instance’s operations
in this section. Figure. 3 shows part of the service dependency
graph of Hipster-Shop. The red lines in Fig. 3 denote the anomalous
requests in systems and the green line denotes the normal request.
The ellipses in Fig. 3 represent the different microservices and the
edges show dependencies between services. In this example, we
inject 100 ms latency for product service to simulate network jam.
Due to the fault propagation, the anomaly of product propagates to
recommend, checkout and front, while payment is normal because it
does not call product. In other words, even if there is only a single
anomalous service instance, the anomalous instance may lead to
many other instances perform anomalously, which generates a
huge potential cause set. Owing to the unpredictability of fault
propagation, it is non-trivial to exclude anomalous instances that
are caused by fault propagation manually.

When we apply the Tarantula spectrum formula [13] to Fig. 3,
we can find that recommend and product share the same result
(details shown in the left half of Table 1). Actually from the operator
perspective, the anomalous request Req-1 in Fig. 3 only covers front
and product. In other words, the anomalous instances are either
front or product and the recommend would not be considered first.
In addition, because the normal request Req-4 passes through the
front, the product seems more like the anomalous instance. This
example inspires us that if the requests can be weighted based on
their ability in localizing root causes, the spectrum-based method
in localizing microservice root causes will be more precise.

Table 1: Original Spectrum andMicroRank score in Fig. 3
Initial Spectrum(Tarantula) MicroRank (Tarantula)

Service 𝑂𝑒 𝑓 𝑂𝑒𝑝 𝑂𝑛𝑓 𝑂𝑛𝑝 score 𝑂𝑒 𝑓 𝑂𝑒𝑝 𝑂𝑛𝑓 𝑂𝑛𝑝 score
front 3 1 0 0 0.5 2.97 0.990 0.0 0.0 0.5
checkout 1 1 2 0 0.25 0.328 0.328 0.656 0.198 0.25
recommend 1 0 2 1 1 0.328 0.0 0.686 0.0 0.4
product 3 0 0 1 1 3.0 0.0 0.0 0.0 0.666
payment 0 1 3 0 0 0.0 1.32 0.0 0.0 0.333

The second limitation of spectrum-based method. Unlike
test cases which are well-designed by testing engineers, the traces’
coverage is relatively unbalanced. In other words, some kinds of re-
quests that cover the same service instances may appear frequently
(like Req-3, Req-4 and Req-5 in Fig. 4 ) because the user preference
(e.g., view products many times). While some kinds of requests
(like Req-1 in Fig. 4 ) may emerge a few times because users access
them less often (e.g., only checkout the selected products once). In
Fig. 4, we have injected network jam for both product and currency
to stimulate the scenario where two errors occur at the same time.
When we apply the Jaccard spectrum formula (shown in Table 1) to
Fig. 4, we can find that recommend get higher score result than the
root cause 𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦. The season is that the spectrum-based meth-
ods assume that the test cases are well-designed and they would
not cover the same instances many times. This example inspires
us that we should give more consideration to the kinds of requests,
which appear fewer times to balance the occurrence number of
different kinds of requests.

4 SYSTEM DESIGN
4.1 System overview
In this paper, we proposed an extended spectrum method with
PageRank, named MicroRank, to find service instances that poten-
tially contribute to the latency issues. To rank the service instance
autonomously,MicroRank, illustrated in Fig. 5, consists of four mod-
ules, namely Anomaly Detector, Data Preparator, PageRank Scorer
andWeighted Spectrum Ranker. We briefly introduce each module
in this subsection and later explain them in detail in the following
subsections.

First, Anomaly Detector module which is presented in Section 4.2
continually monitors the system by comparing the expected latency
and real latency of each trace within a sliding time window (30
seconds in this paper). If the real latency of one trace is larger than
its expected latency, Anomaly Detector determines that the system
is at an abnormal state and triggers the root causes localization
procedure. Second, Data Preparator presented in Section 4.3 dis-
tinguishes whether the traces in that time window is abnormal or
not and construct both the call graph and operation-trace graph
for the PageRank Scorer . Third, the PageRank Scorer presented in
Section 4.4 can generate anomalous scores and normal scores for
each operations in parallel based on the anomalous and normal
tracing information from Data Preparator . In the final Weighted
Spectrum Ranker presented in Section 4.5 takes the scores from
PageRank Scorer as input to update weighted spectra and applies
ranking formulae to output an ordered list for operators to examine.
In the best case, the first service instance presented in the ranked
output of MicroRank is the exact root cause of that anomaly.
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Figure 5: The framework ofMicroRank

4.2 Anomaly Detector
Before localizing root causes, we need to distinguish whether the
target microservice system has latency issues first. Previous ap-
proaches (e.g., [9, 19, 34, 37]) on anomaly detection only detect SLO
(Service Level Objective, e.g., average latency per minute) devia-
tions of the front-end service under the condition of the mixture
of all kinds of traces. However, traces contain a variable number
of operations and each operation has different handing time as
shown in Section 2.1. For example, trace1 covers 7 service instance
operations and it has low latency 20 ms, trace2 covers 40 service
instance operations and it has high latency 100 ms because it has
handled more tasks. Actually both trace1 and trace2 are normal
traces. But the trace2 may be determined as abnormal trace by the
methods that mix all kinds of requests because these methods do
not consider trace-level details.

In this study, we propose an unsupervised and lightweight trace-
level anomaly detection method, which utilizes relations between
the operation handling time and the number of operations covered
by traces. First Anomaly Detector calculates the average handling
time 𝜇𝑜 and its standard deviation 𝜎𝑜 of each operation from a pe-
riod time (e.g., one hour) of normal tracing data offline. For example,
{”𝑐ℎ𝑒𝑐𝑘𝑜𝑢𝑡/𝑃𝑙𝑎𝑐𝑒𝑂𝑟𝑑𝑒𝑟” : {”𝜇𝑜 ” : 50𝑚𝑠, ”𝜎𝑜 ” : 20𝑚𝑠}} shows that
the mean handling time of chekout’s PlaceOrder operation is 50ms.
To be specific, we do not need to update the average handling time
and its variation unless a series of false positives have occurred.

When Anomaly Detector monitors traces in one short sliding
time windows, it only needs to mine which operations and how
many times these operations covered by one trace. This approach
is more lightweight than the methods [41] that encode traces into
fixed-length vectors. Inspired by the setting of SLO in Roots[9], the
excepted latency 𝐿𝑒𝑥𝑐𝑒𝑝𝑡𝑒𝑑 of one trace can be calculated as:

𝐿𝑒𝑥𝑐𝑒𝑝𝑡𝑒𝑑 =
∑

𝑐𝑜𝑢𝑛𝑡𝑜 ∗ (𝜇𝑜 + 𝑛 ∗ 𝜎𝑜 ), (1)

where 𝑐𝑜𝑢𝑛𝑡𝑜 denotes the number of times which operation 𝑜 has
been covered by that trace. 𝑛 is used to adjust upper bound values,
we set 𝑛 = 1.5 in this paper. If the excepted latency 𝐿𝑒𝑥𝑐𝑒𝑝𝑡𝑒𝑑 is less
than the real latency of that trace, the trace would be determined
as anomalous trace. Once Anomaly Detector detects one anomalous
trace, it triggers the root cause localization phase. To avoid detecting
the same anomalous state multiple times, we flush the detection
window (5 minutes in this paper) after each trigger.

4.3 Data Preparator
In anomaly detection phase, MicroRank makes a rough analysis of
the tracing data to reduce the cost . For example, Anomaly Detector

Req-4

front

checkout

productReq-1

Req-2 recommend

Figure 6: The anomalous operation-trace graph of Fig. 3

only determines whether the operations occur but ignores the rela-
tionships among operations. Only when the root cause localization
phase is triggered, the Data Preparator module in MicroRank will
extract detailed trace information about the operations’ relation-
ships.

Because the anomalous and normal traces may cover different
sets of service instances, Data Preparator first divides the traces in
the last time windows into anomalous trace list and normal trace
list based an the Equation 1. For the traceID in anomalous trace list
or normal trace list, Data Preparator queries its trace information
through the unique traceID from persistent storage. Each trace in-
formation records the parent-child relation and the service instance
operations that the trace has covered. Data Preparator can utilize
the above information to construct coverage tree of each trace. In
this paper, we identify the traces that have the same coverage tree
as the same kind of trace. Data Preparator also records the number
of occurrences of each kind of trace.

In addition, we can get the complete anomalous or normal trace
coverage graph when we aggregate the coverage trees together.
Then, we can construct the operation-trace graph based on trace
coverage graph when we regard traces as part of nodes. For exam-
ple, Fig. 3 shows the anomalous request-operation graph of Fig. 1.
Finally, if we remove duplicate edges in the coverage graph and put
the attention to nodes, we can get the real-time call graph among
different service instance operations. The anomalous and normal
clues serve as the input of Anomalous PageRank Scorer and Normal
PageRank Scorer, respectively.

4.4 PageRank Scorer
As discussed in section 3.2, if all traces are treated equally, using
the spectrum-based method to microservice root cause localization
directly may lead to inferior performance. Therefore, we add an
additional module, named PageRank Scorer, before the Weighted
Spectrum Ranker. PageRank Scorer is composed of Normal Scorer
and Anomalous Scorer to deal with the anomalous and normal clues
in parallel. PageRank Scorer can calculate the weighted spectrum
information forWeighted Spectrum Ranker.

The PageRank method is used to give each page a relative score
of importance by evaluating the quality and quantity of its links. If
one webpage contains a hyperlink pointing to another webpage,
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there is a link between them. Each link from onewebpage to another
casts a so-called vote, the weight of which depends on the weight
of the webpages that link to it.

The basic idea of our approach is to give each operation a weight
by evaluating the importance of traces that cover it based on the
operation-trace graph(e.g., Fig 6). The importance of traces is based
on traces’ ability in finding root causes. The key insights of PageR-
ank Scorer are that ① if an operation covered by more anomalous
traces, it should also be more likely the root cause, and ② if an
anomalous trace covers fewer operations the trace should be con-
sidered more important because it has a smaller scope to infer real
cause, and ③ if a kind of trace appears fewer times the kind of trace
should be given more consider to prevent the diversion from the
kinds of trace that occur many times.

4.4.1 Personalised PageRankAlgorithm. The standard PageR-
ank is applied to the graph whose nodes are all homogeneous[26,
36]. Therefore, we chose Personalised PageRank [10] because it is
a method to analyse the graph of heterogeneous nodes (operations
and traces in this paper). Given a digraph 𝐺 = ⟨𝑉 , 𝐸⟩ that contains
𝑛 nodes and𝑚 edges, and 𝐸 contains a directed edge ⟨𝑠, 𝑡⟩ if node
𝑠 to node 𝑡 . Let 𝐴 be the transition matrix of 𝑛 by 𝑛 elements, all
of the 𝐴𝑠𝑡 will combine into the complete 𝐴. The 𝐴𝑠𝑡 is defined as
the probability that a random walk starting from 𝑠 terminates at 𝑡 ,
which reflects the importance of 𝑡 with respect to 𝑠 . The value of
𝐴𝑠𝑡 can be calculated by:

𝐴𝑠𝑡 =

{ 1
|𝑂 (𝑠) | , 𝑡 ∈ 𝑂 (𝑠)
0, otherwise

(2)

where 𝑂 (𝑠) denotes the out-neighbors of 𝑠 . For a given preference
vector 𝒖, the personalized PageRank equation can be written as
[10]:

𝒗 = (1 − 𝑑)𝑨𝒗 + 𝑑 · 𝒖, (3)
where 𝑑 is the damping factor (0 ≤ 𝑑 < 1), the solution 𝒗 is the
personalized PageRank vector (PPV) for preference vector 𝒖. If 𝒖
is the uniform distribution vector 𝒖 = [ 1𝑛 , . . . ,

1
𝑛 ], it means that

PageRank gives no preference to any pages.
The work in [26] introduced an iterative algorithm to get the ap-

proximate solution of Equation(3). The equation of the 𝑞th iteration
is defined as:

𝒗 (𝑞) = 𝑑 · 𝑨𝒗 (𝑞−1) + (1 − 𝑑) · 𝒖 . (4)

Each time we run the calculation, we are getting a closer estimate
of the final value. The outcome vector denotes the ranked scores of
all nodes.

4.4.2 Transition Matrix . Given the operation-trace graph and
call graph information, the transition matrices in our approach can
be partitioned as:

𝑨 =


𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠︷︸︸︷

𝑨𝑜𝑜

𝑡𝑟𝑎𝑐𝑒𝑠︷︸︸︷
𝑨𝑜𝑡

𝑨𝑡𝑜 0

, (5)

where 𝑨𝑜𝑜 denotes the transition matrix among operations based
on the call graph, 𝑨𝑜𝑡 and 𝑨𝑡𝑜 denote the transition matrices be-
tween operations and traces based on the operation-trace graph.
PageRank Scorer can utilize the 𝑨𝑜𝑜 to differentiate the service op-
erations covered by the same anomalous and normal traces. For

example, after calculating the anomalous trace Req-1, Req-2, Req-3
in Fig. 3, we can get the anomalous transitionmatrix𝑨with a vector
[𝑓 𝑟𝑜𝑛𝑡, 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑, 𝑐ℎ𝑒𝑐𝑘𝑜𝑢𝑡, 𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑟𝑒𝑞1, 𝑟𝑒𝑞2, 𝑟𝑒𝑞3] below:

𝐴 =



0 0 0 0 1/2 1/3 1/3
1/3 0 0 0 0 1/3 0
1/3 0 0 0 0 0 1/3
1/3 1 1 0 1/2 1/3 1/3
1/3 0 0 1/3 0 0 0
1/3 0 1 1/3 0 0 0
1/3 1 0 1/3 0 0 0


.

Compared with the continuously changing trace coverage graph,
the call graph is relatively stable unless a program change occurs.
Therefore, we believe that the operation-trace graph is more impor-
tant than the call graph in root cause localization. Our approach
uses parameter 𝜔 (0 ≤ 𝜔 ≤ 1) to tune the weight of call graph as
below:

𝑨 =

[
𝜔 𝑨𝑜𝑜 𝑨𝑜𝑡

𝑨𝑡𝑜 0

]
. (6)

The matrix 𝑨 can present the difference among operations and
meet the key insight ①.

4.4.3 Preference Vector . MicroRank uses the preference vector
𝒖 to demonstrate the impact of trace scope and kind of traces.
Preference vector 𝒖 consists of two sub-vectors: 𝒖 =

[
𝒖𝑇𝑜 , 𝒖

𝑇
𝑡

]𝑇 ,
where 𝒖𝑜 and 𝒖𝑡 denote the preference vector of operations and
traces, respectively. Our approach sets the 𝒖𝑜 as ®0 because we do
not consider preference of operations in this module.

For the Anomalous Scorer, 𝒖𝑡 is set as [𝜃1, 𝜃2, . . . , 𝜃𝑚]𝑇 . Here,

𝜃𝑖 = 𝜑 · 𝑛−1
𝑖∑
𝑛−1
𝑗

+ (1 − 𝜑) · 𝑘−1
𝑖∑
𝑘−1
𝑗

, (7)

where 𝑛𝑖 denotes the number of operations covered by anoma-
lous trace 𝑖 , 𝑘𝑖 denotes the number of anomalous traces of trace
𝑖’s kind, and 𝜑 (0 ≤ 𝜑 ≤ 1, default 𝜑 = 0.5 in this paper ) presents
the tradeoff between trace scope and trace kind. The 𝑛𝑖 considers
the anomalous trace scope based on key insight ② and 𝑘𝑖 puts at-
tention to the kind of anomalous traces based on key insight ③.
For anomalous traces in Fig. 3, we obtain the preference vector
𝒖 =

[
0, 0, 0, 0, 8

21 ,
13
42 ,

13
42
]
.

For the Normal Scorer, we only consider the kind of traces for
the preference vector because the trace scope does not reflect the
importance of normal traces. Therefore, the 𝜃𝑖 is

𝑛−1
𝑖∑
𝑛−1
𝑗

, where 𝑛𝑖
denotes the number of normal traces belong to the kind of trace 𝑖 .

4.4.4 PageRank Score. Once we determine the transition ma-
trix 𝑨 and the preference vector 𝒖, we set the initial PPV 𝒗 (0) =[
𝒗𝑇𝑜 , 𝒗

𝑇
𝑡

]𝑇 . In this paper, 𝒗𝑜 =

[
1
𝑁𝑜

, 1
𝑁𝑜

, . . . , 1
𝑁𝑜

]
, where 𝑁𝑜 is the

number of operations in the operation-trace graph. And 𝒗𝑡 =[
1
𝑁𝑡

, 1
𝑁𝑡

, . . . , 1
𝑁𝑡

]
, where 𝑁𝑡 denotes the number of traces in the

operation-trace graph. Normal Scorer and Anomalous Scorer obtain
the normal PPV and anomalous PPV by following the work [39]
and the Equation(4). For the tracing data in Fig. 3, we can get the
anomalous PPV:

𝐹 [𝑓 𝑟𝑜𝑛𝑡, 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑, 𝑐ℎ𝑒𝑐𝑘𝑜𝑢𝑡, 𝑝𝑟𝑜𝑑𝑢𝑐𝑡] = [0.990, 0.328, 0.328, 1] .
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Table 2: Experiment datasets overview

DataSet Microservice
Benchmark Fault Injection Faults

Number
Trace

Number
A Hipster-Shop Inject one fault each time 50 8,384K
B Hipster-Shop Injection two faults each time 100 8,244K
C Production System Injection one fault each time 7 168k

The result of the anomalous scores indicates that product has the
highest anomalous score in our example . Actually, product is indeed
the root cause, which proves the feasibility of our algorithm.

4.5 Weighted Spectrum Ranker
Weighted Spectrum Ranker takes the scores of both normal and
anomalous traces generated by PageRank Scorer and the number of
anomalous and normal traces to construct the spectrum information.
The spectrum information of operation 𝑂 can be computed as:

𝑂𝑒 𝑓 = 𝐹 ∗ 𝑁𝑒 𝑓 , 𝑂𝑛𝑓 = 𝐹 ∗ (𝑁𝑓 − 𝑁𝑒 𝑓 )
𝑂𝑒𝑝 = 𝑃 ∗ 𝑁𝑒𝑝 , 𝑂𝑛𝑝 = 𝑃 ∗ (𝑁𝑝 − 𝑁𝑒𝑝 )

, (8)

where 𝐹 and 𝑃 represent the anomalous and normal PageRank score
of operation 𝑂 , 𝑁𝑒 𝑓 and 𝑁𝑒𝑝 denote the number of anomalous and
normal traces covered the operation𝑂 , 𝑁𝑓 and 𝑁𝑝 denote the total
number of anomalous and normal traces in the current sliding win-
dow, respectively. Notice that there are some operations that do not
have anomalous scores or some do not have normal scores. If the
operation 𝑗 has not a score, the 𝐹 or 𝑃 is set as 0.0001. MicroRank
then applies spectrum ranking formulae to compute suspiciousness
scores for each operation. The operation name (e.g., front-1/Recv.)
contains the information about which service instance it belongs to.
Therefore,MicroRank can give a ranking list of service instances for
application operators. The right half of Table 1 shows the weighted
spectrum information and updated Tarantula scores for each service
instance in Fig. 3. According to the Table 1, MicroRank boosts the
Tarantula spectrum method and ranks 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 as the first, demon-
strating the effectiveness of PageRank in locating microservice root
causes.

5 EXPERIMENTAL EVALUATIONS
5.1 Datasets
In the study, we used three datasets, namely A, B and C. A and
B are based on a widely-used open-source microservice system
Hipster-Shop. The major difference between A and B is that we
inject one fault each time in A while two faults each time in B. C
is based on a production microservice system in China Mobile, the
largest telecommunication company in China. Table 2 shows an
overview of our experimental datasets.

5.1.1 Hipster-Shop Microservice System. Hipster-Shop is a
web-based e-commerce app where users can browse products, add
them to the cart, and purchase them. The application is a widely-
used microservice benchmark designed to aid demonstration and
testing of microservices and cloud-native technologies [18, 37, 38].
It contains 10 microservices that are implemented in different pro-
gramming languages and intercommunicate using gRPC. In ad-
dition, Hipster-Shop is equipped with a workload generator that
simulates concurrent users of that application. The workload law
conforms to the real user behavior (more requests are sent to the

service frontend and product, and fewer requests to the service
checkout and payment). To be specific, the initial microservice ap-
plication open-sourced by Google Cloud does not have complete
end-to-end tracing ability. We have given the ability to Hipster-
Shop by instrumenting Opentelemetry API for each service. We
will open-source the source code of our instrument to GitHub after
double-bline review.

Experimental Platform. We construct a distributed testbed
that contains 8 virtual machines (VMs) and a ElasticSearch Cluster.
Each VM has a 4-core 2.40GHz CPU, 16GB memory and runs with
Ubuntu 18.04 OS. We guarantee that all the VMs are in the same
local area network to reduce network jitters. We set up a Kuber-
netes 10 cluster that consists two master nodes and 6 worker nodes
based on VMs. The microservice benchmark and Jaeger collector
are deployed in that Kubernetes. The service instances first send
trace information to Jaeger collector, then Jaeger collector puts ag-
gregated tracing data to a ElasticSearch cluster to persistent tracing
data.

Fault Injection.MicroRank is applicable to detect and diagnose
anomalies that manifest themselves as latency deviations. To mimic
latency issues, we inject four types of faults to Hipster-Shop. We
use Chaosblade 11, a chaos engineering models, to delay service
instance’s network packets to stimulate Network Jam and consume
CPU heavily to stimulate CPU exhaustion. We utilize Strace 12,
which is a diagnostic, debugging and instructional userspace utility
for Linux, to delay write or read system call of the corresponding
service instance to stimulate the IO read or write busy. Each fault
injection in our experiment lasts for 3 minutes. In order to reduce
the mutual influence of different injection operations, we make
the interval between injection operations greater than 6 minutes.
According to Occam’s razor theory 13, a complex situation that
has more that two root causes simultaneously is of low probability.
Therefore, we inject faults with two simultaneous root causes at
most. Fig. 7 shows some fault injection examples and MicroRank’s
results in our experiment. We did 100 injection operations in all
experiments and injected 150 faults to Hipster-shop. Fig. 8(a) and
Fig. 8(b) show the distribution of the four types of faults among
different services on A and B respectively.

5.1.2 Real-world Microservice System. Dataset C is released
by 2020 AIOps Challenge Event 14. C is based on a real-world
production microservice system in China Mobile Zhejiang. In par-
ticular, the workload of the system in C is a replica of the real-world
workload. Note that since this event does not only focus on mi-
croservice application, in this paper we only selected those faults
related to microservices on May 31st, 2020. Because C does not
have the information about operations, we assume each service
instance has only an operation.

5.2 Spectrum formulae and definitions
To compare the difference of effectiveness among spectrum for-
mulae, we selected eight formulae in total. Table 3 presents the

10Kubernetes, https://kubernetes.io
11Chaosblade, https://github.com/chaosblade-io/chaosblade
12Strace, https://strace.io
13Occam’s razor, https://en.wikipedia.org/wiki/Occam%27s_razor
14C dataset, http://iops.ai/competition_detail/?competition_id=15&flag=1
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Figure 7: Examples of fault injection and root causes localization on Hipster-Shop
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Figure 8: The distribution of faults on A and B

Table 3: Spectrum formulae employed in the experiment

Formula Definition Formula Definition

Dstar2
𝑂2

𝑒𝑓

𝑂𝑒𝑝+𝑂𝑛𝑓
Ochiai 𝑂𝑒𝑓√

(𝑂𝑒𝑓 +𝑂𝑒𝑝 ) (𝑂𝑒𝑓 +𝑂𝑛𝑓 )

Goodman
2𝑂2

𝑒𝑓
−𝑂𝑛𝑓 −𝑂𝑒𝑝

2𝑂𝑒𝑓 +𝑂𝑛𝑓 +𝑂𝑒𝑝
Sørensen 2𝑂𝑒𝑓

2𝑂𝑒𝑓 +𝑂𝑛𝑓 +𝑂𝑒𝑝

Jaccard 𝑂𝑒𝑓

𝑂𝑒𝑓 +𝑂𝑛𝑓 +𝑂𝑒𝑝
RussellRao 𝑂𝑒𝑓

𝑂𝑒𝑓 +𝑂𝑛𝑓 +𝑂𝑒𝑝+𝑂𝑛𝑝

M2 𝑂𝑒𝑓

𝑂𝑒𝑓 +𝑂𝑛𝑝+2𝑂𝑒𝑝+2𝑂𝑛𝑓
Dice 2𝑂𝑒𝑓

𝑂𝑒𝑓 +𝑂𝑒𝑝+𝑂𝑛𝑓

definitions of all formulae used in our evaluation. To be specific,
we use the Ochiai, commonly used in recent studies on fault local-
ization [27], as the default spectrum formula in our experiments.

5.3 Evaluation Metric
To evaluate the effectiveness of MicroRank, we employed two met-
rics that are usually employed by exiting studies.

Recall of Top-k (𝑹@𝒌) refers to the probability that root causes
can be located within the top 𝑘 service instances among all can-
didates [12, 19, 41].Higher 𝑅@𝑘 denotes more effective root cause
localization. In a survey conducted by Kochhar et.al.[16], more than
73% developers only consider Top-5 ranked elements. Therefore, in
this paper we split the overall results into 𝑅@𝑘 (𝑘 = 1, 3, 5) in single
cause experiments and 𝑅@𝑘 (𝑘 = 2, 3, 5) in two-causes experiments.
Note that for 𝑅@𝑘 , the higher the better.

EXAM Score refers to measure the mean count of false-positive
candidates that have to be excluded manually by operators before
locating all the root causes [12, 27, 35]. If the root cause is out of
Top-5, we set a default false-positive candidates of 10 for it. Note
that for 𝐸𝑆 , the smaller the better.

5.4 Experiments and Results Analysis

5.4.1 MicroRank’s overall effectiveness . We present the ex-
perimental results of MicroRank on three datasets A, B and C.

Table 4, Table 5 and Table 6 present the overall results of A, B and
C ,respectively. In those tables, different columns present different
effectiveness metrics, namely Column PR represents the PageRank
Anomalous Scorer in MicroRank, Column SP represents the tradi-
tional spectrum-based techniques and Column MR represents our
MicroRank. Different rows present the spectrum formulae used.

From these tables, we have the following observations. First,
MicroRank can significantly raise the operators’ efficiency of finding
root causes no matter in single fault or two faults situation. Overall
𝑅@1 results on single fault datasets A and C are larger than 88%.
𝑅@3 results on the two faults dataset B are larger than 60%. The
decline of recall in B because MicroRank should include both two
faults in the top ranking list. We also find that the probability that
MicroRank locates one of the two faults on dataset B exceeds 90%.

Second, despite the fact that various techniques perform differ-
ently in situations with different number of root causes. In most
cases, MicroRank is able to boost the initial spectrum-based tech-
niques on three datasets. For instance, MicroRank that employs
RussellRao spectrum measurement enhances the 𝑅@3 from 50% to
74% on the dataset B and the 𝑅@1 from 86% to 92% on the dataset
A.

Third, from the perspective of the spectrum formulae, Ochiai
(marked in gray) is the most effective formulae in our experiments.
In addition, we discover that MicroRank is less affected by different
formulae. For instance, on A, the difference between the best 𝑅@1
and the worst 𝑅@1 is less than 6%.

Finally, we find that both the MicroRank and initial spectrum-
based method outperform the PageRank techniques. It means that
the root causes not always get the highest anomalous score in PageR-
ank Anomalous Scorer. The reason is that the microservice system
may have some normal service instances covered by each trace.
To be specific, we find that the PageRank Anomalous Scorer hardly
ranks the root cause at Top-1 on C. When we visualize the traces
of C, we find that it only has a simple service dependency graph,
which contains 13 service instances and it has only one kind of trace.
Such simple topology and a single kind of trace limit the capability
of PageRank. However MicroRank still performs excellently and
not worse than the initial spectrum-based techniques even when
in a simple microservice system. For instance, on the dataset C,
each request needs to query data from 𝑑𝑏_003, 𝑑𝑏_007 and 𝑑𝑏_009.
Hence, when injecting a fault to service instance 𝑑𝑜𝑐𝑘𝑒𝑟_008, each
anomalous trace covers 𝑑𝑏_003, 𝑑𝑏_007, 𝑑𝑏_009 and 𝑑𝑜𝑐𝑘𝑒𝑟_008.
The output of Top-4 anomalous ranking list of PageRank Anoma-
lous Scorer is {𝑑𝑏_003, 𝑑𝑏_007, 𝑑𝑏_009, 𝑑𝑜𝑐𝑘𝑒𝑟_008}. While the Top-
3 normal ranking list is {𝑑𝑏_003, 𝑑𝑏_007, 𝑑𝑏_009} because every
normal trace covers them too. Therefore, the anomalous score of
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Table 4: Latency issues localization results on dataset A

R@1 R@3 R@5 Exam Score
DataSet Formula PR SP MR PR SP MR PR SP MR PR SP MR IMP ∗ IMP †

Dstar2 78 88 94 78 94 96 92 96 96 1.16 0.56 0.42 63.79% 25.00%
Goodman 78 86 88 86 92 92 92 92 92 1.16 0.88 0.84 27.59% 4.45%
Jaccard 78 86 88 86 92 92 90 92 92 1.28 0.88 0.84 34.38% 4.45%
M2 78 90 94 86 94 96 92 94 96 1.16 0.60 0.42 63.79% 30.00%

Ochiai 78 88 94 86 94 96 92 96 96 1.16 0.56 0.42 63.79% 25.00%
Sørensen 78 86 88 86 90 92 92 92 92 1.16 0.88 0.84 34.38% 4.45%
RussellRao 78 86 92 86 92 96 92 96 96 1.28 0.64 0.44 65.63% 31.25%

A

Dice 78 86 88 86 92 92 90 92 92 1.32 0.88 0.84 36.36% 4.45%
∗ denotes the improvement between PR and MR † denotes the improvement between SP and MR

Table 5: Latency issues localization results on dataset B

R@2 R@3 R@5 Exam Score
DataSet Formula PR SP MR PR SP MR PR SP MR PR SP MR IMP ∗ IMP †

Dstar2 30 52 54 36 62 68 46 70 72 2.46 1.50 1.38 43.90% 8.00%
Goodman 32 56 58 38 62 66 48 76 84 2.4 1.46 1.18 39.17% 19.18%
Jaccard 28 54 56 34 58 64 44 74 76 2.54 1.54 1.28 39.37% 16.88%
M2 28 50 64 34 56 72 44 64 82 2.56 1.68 1.04 59.36% 38.10%

Ochiai 30 60 66 36 68 76 46 82 84 2.48 1.14 0.94 62.10% 17.54%
Sørensen 30 56 58 36 62 66 46 78 84 2.48 1.38 1.20 51.61% 13.04%
RussellRao 30 42 64 36 50 74 46 56 84 2.48 1.96 1.00 59.68% 48.98%

B

Dice 26 56 58 32 62 66 44 76 84 2.6 1.40 1.16 55.38% 17.14%
∗ denotes the improvement between PR and MR † denotes the improvement between SP and MR

Table 6: Latency issues localization results on dataset C

R@1 R@3 R@5 Exam Score
DataSet Formula PR SP MR PR SP MR PR SP MR PR SP MR IMP∗ IMP†

Dstar2 0 85 100 0 100 100 100 100 100 3.42 0.14 0.00 100.00% 100.00%
Goodman 0 85 100 0 100 100 100 100 100 3.42 0.14 0.00 100.00% 100.00%
Jaccard 0 85 100 0 100 100 100 100 100 3.42 0.14 0.00 100.00% 100.00%
M2 0 100 100 0 100 100 100 100 100 3.42 0.00 0.00 100.00% 0.00%

Ochiai 0 85 100 0 100 100 100 100 100 3.42 0.14 0.00 100.00% 100.00%
Sørensen 0 85 100 0 100 100 100 100 100 3.42 0.14 0.00 100.00% 100.00%
RussellRao 0 71 100 0 85 100 100 100 100 3.42 0.71 0.00 100.00% 100.00%

C

Dice 0 85 100 0 100 100 100 100 100 3.42 0.14 0.00 100.00% 100.00%
∗ denotes the improvement between PR and MR † denotes the improvement between SP and MR

𝑑𝑏_003, 𝑑𝑏_007 and 𝑑𝑏_009 can be balanced by their normal scores
in Equation(8) and the anomalous score of 𝑑𝑜𝑐𝑘𝑒𝑟_008 remains its
effect. Thus, MicroRank can still rank 𝑑𝑜𝑐𝑘𝑒𝑟_008 at first. In other
words, our method can eliminate the interference of the service
instances that are covered by requests every time.

5.4.2 MicroRank’s Anomaly Detectormodule effectiveness.
Figure. 9 presents the anomaly detection results of Anomaly Detec-
tor in MicroRank on dataset A and B. We do not apply Anomaly
Detector to C because we do not have the complete fault list in
that production system. The results show that Anomaly Detector
performs better on the dataset B than A. This is because injecting
two faults at the same time can make the anomaly more obvious.
The Precision results of two datasets are slightly lower than the
Recall. It means that the number of misreport (i.e., the normal trace
was determined as abnormal trace) is larger than underreport (i.e.,
anomaly was not detected). It is acceptable for application operators
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Figure 9: The anomaly detection results on A and B
because missing an anomaly has more serious consequences than
false positives.

5.4.3 Impacts of configuration. In this section, we extend our
experiments with different configurations to investigate the in-
fluence of damping factors 𝑑 in Equation(4), call graph weight 𝜔
in Equation(6), and preference vector weight 𝜑 in Equation(7) on
datasetA. Because the Exam Score reflects the overall performance
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of MicroRank, we select the Exam Score to show the effectiveness
of MicroRank in this subsection.

Damping factor 𝑑 in Equation(4). Figure. 10 presents the im-
pacts of different 𝑑 on the effectiveness of MicroRank. In this figure,
the x axis presents various 𝑑 values, while the y axis presents the
Exam Score. From the figure, we can find that the 𝑑 does not impact
the MicroRank effectiveness much. For example, for all the formu-
lae, the largest improvement difference among different damping
factors is only 0.2. In addition, for the majority cases, when the
𝑑 increases, the Exam Score slightly increase. The reason is that
when 𝑑 increases, the trace scope and trace kind would make fewer
contributions in localizing the faults.

Call graph weight 𝜔 in Equation(6). Figure. 11 presents the
impacts of different 𝜔 on the effectiveness of MicroRank. The x
axis presents various 𝜔 values, while the y axis presents the Exam
Score. In this study, 𝜔 is used to introduce call graph to differenti-
ate operations covered by the same anomalous and normal traces.
The figure shows that the Exam Score of MicroRank dramatically
decrease at the very beginning, but then remain stable later. We
think the reason to be that when 𝜔 is 0, MicroRank only use only
the trace coverage information and cannot differentiate operations
with the same trace coverage, hence the Exam Score is relatively
low.

Preference vectorweight𝜑 in Equation(7). Figure. 12 presents
the impacts of different 𝜑 on the effectiveness of MicroRank. The x
axis presents various 𝜑 values, while the y axis presents the Exam
Score. In this study, 𝜑 is used to balance the importance between
trace scope and trace kind. The figure shows that the lines of Exam
Score are concave. They dramatically decrease at the very begin-
ning, and gradually increase in the end. We found the reason to
be that when 𝜑 is 1, the preference vector only considers the trace
scope. However, when 𝜑 equals 0, the preference vector only takes
account of the information about trace kind. Considering only the
trace scope or kind of trace can result in a lower accuracy.

5.4.4 Impact of trace number. Figure. 13 shows how the num-
ber of traces in one sliding window impacts the effectiveness of
MicroRank. The x axis presents various the number of traces in the
sliding window, while the y axis presents the Exam Score. From
the Fig. 13, we can see that Exam Score dramatically decrease at
the very beginning, but then slowly decrease after the number of
traces is larger than 100. This observation says, our approach does
not require lot of traces to localize root causes. Our system is able
to locate the root causes in the case of losing partial tracing data.

5.4.5 Comparisonswith state-of-artmethods. To validate the
effectiveness of MicroRank, we compare it with several state-of-
the-art root cause analysis (RCA) methods including FChain [25],
NetMedic [15], Sieve [33], CauseInfer [5], Roots [9], Microscope[19]
and AutoMap[22]. To compare with FChain, we first identify the
abnormal changes in the latency data of each service, then infer
root causes along the service dependency graph with the meth-
ods proposed by FChain. To compare with NetMedic, we leverage
NetMedic’s state correlation approach to estimate service depen-
dencies. Then we use the method presented by NetMedic to locate
root causes. To compare with Sieve, we adopt Sysdig 15 to obtain

15Sysdig, https://sysdig.com/opensource/

the static service call graph, namely a bi-directed graph then lever-
age Granger Causality to obtain the dynamic service dependencies
with response time metrics. Based on this graph, we identify ser-
vices that contribute the most changes in the dependency graph
when an anomaly occurs. To compare with Roots, we implement
the four root cause identification approaches mentioned in Roots.
To compare with Microscope, we leverage the method presented
in Microscope to locate root causes. To compare with CauseInfer,
we capture network packets and leverage lag correlation to find
service dependencies. Then, we leverage a Depth First Search based
traversal approach to infer root causes. To compare with AutoMap,
we build causality graphs under normal and abnormal cases and
locate root causes with a random walk approach on the graphs.

Figure. 14 shows the comparison result of 𝑅@1 among different
RCA methods based on dataset A. From this figure, we observe
that MicroRank achieves a better result than other RCA methods.
MicroRank achieves 94% in 𝑅@1, which is at least 6% higher than
other methods. MicroRank outperforms the latest work, AutoMap,
by 6% higher in 𝑅@1 with a lower cost. Compared with NetMedic,
we have over 16% improvement in 𝑅@1. Fig. 15 compares the per-
formance of different RCA algorithms based on dataset B. We can
observe that MicroRank outperforms other algorithms on dataset
B. We argue that the reasons why MicroRank achieves the best
performance are two-fold.

• MicroRank leverages the detailed end-to-end tracing data to
construct the service call graph which is muchmore accurate
than statistic-based approaches like Fchain [25], NetMedic
[15], Sieve [33], CauseInfer [5], and AutoMap[22].

• MicroRank weave the clues provided by normal and abnor-
mal traces to pinpoint root cause service instances, which is
better than those approaches using abnormal traces exclu-
sively like Roots [9] and Microscope[19].

5.5 Discussion
Table 7: Overhead statistics on benchmark experiment.

System Module Overhead
Instrumented client 2% ± 1% CPU utilization(Single core)
Anomaly Detector 8% ± 4% CPU utilization(Single core)
Data Preparator 60% ± 5% CPU utilization(Single core)
PageRank Scorer 20% ± 5% CPU utilization(Single core)
Spectrum Scorer 2% ± 1% CPU utilization(Single core)
Anomaly Detector 0.8 second (Single physical node)
Data Preparator 1.5 second (Single physical node)
PageRank Scorer 5.5 second (Single physical node)
Spectrum Scorer 0.1 seconds (Single physical node)

Overhead. Table 7 shows the overhead ofMicroRank. The Anomaly
Detctor takes about 8% CPU utilization and 0.8 second to count the
operation number and distinguish whether the traces are abnormal.
When the root cause analysis is triggered, Data Preparator needs
about 60% CPU utilization and 1.5 seconds to mine the detailed trace
information. Given the large volume of tracing data in production
systems, the Data Preparator module can be accelerated by the
MapReduce paradigm. Then,MicroRank computes PageRank scores
and a spectrum score, which consumes 20% CPU utilization in
total. The process consumes approximately 5.5 seconds to calculate
PageRank scores and 0.1 second to compute the final score.

Limitation. First, MicroRank focuses on the latency issues lo-
calization, so it cannot localize faults that would not cause request
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Figure 10: Impact of 𝑑 on Exam Score
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Figure 11: Impact of 𝜔 on Exam Score
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Figure 12: Impact of 𝜑 on Exam Score
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Figure 13: Impact of trace number on Exam Score

latency deviations. Second, MicroRank relies on the quality of trac-
ing data. Our system is able to locate root causes in the case of
losing some tracing data, but for the platform that losing too many
tracing data, the accuracy will be affected inescapably. Moreover,
instrumenting tracing codes causes additional overhead, but the
tracing data can be utilized not only by MicroRank but also other
auxiliary procedures like the predictive anomaly module. In ad-
dition, our approach is a reactive approach. That means it takes
actions only after a latency issue occurs, which is later than the
proactive methods.

6 RELATEDWORK
Tracing Based Work. Some existing studies provided various so-
lutions on end-to-end tracing [2, 4, 7, 14]. They proposed tracing
systems to instruct the source code, collect tracing data, and find
out the requests with the long response time. As it is described in
Section 3.2, these systems did not fully leverage the tracing data to
locate the root causes. Efforts on analyzing tracing data mainly fell
into pinpointing performance problems by comparing request flows
[6, 29]. Pip [28] leverages developer-provided, component-based
expectation of the architecture and latency behavior to compare
with actual behavior observed in end-to-end traces. However, Pip
excessively relies on developers’ specification, which does not work
well in a dynamic micorservice environment.

DependencyGraphBasedWork.Approaches in this category
always build a dependency graph of nodes in distributed systems
indicating the relationship of each node before diagnosing or ana-
lyzing. Besides, these works commonly utilize monitoring metrics
to detect the anomaly and build causality graphs with different
approaches, then diagnosing problems with the combination of
metrics and dependency graph. CauseInfer [5] constructs a two-
layered hierarchical causality graph of the distributed system and
infers the root causes of performance problems along the graph
by statistical methods. Sieve [33] infers performance metric de-
pendencies between distributed components in the system with
the Granger Causality test. Microscope [19] intercepts system calls

network sockets to obtain network dependency and builds the de-
pendency graph with network information. For RCA, Microscope
finds root cause candidates by comparing the similarity between
SLOmetrics and the abnormal services. This category of work enjoy
the benefit that the source code doesn’t need to be instrumented, yet
they are not able to provide fine-grained data for analysis compared
to trace based work.

Machine Learning Based Work. The machine learning based
methods including classification, relevancy analysis and etc. Liu
et.al., [20] proposed an approach with a spatial-temporal feature
extraction scheme built on the concept of symbolic dynamics to
discover causal interactions. Then a Restricted Boltzmann Machine
(RBM) is used to detect anomalies and the root causes are obtained
by analyzing anomaly propagation. Liu et.al., [21] also introduced
a sequential state switching model based on RBM and artificial
anomaly association based on deep neural networks to pinpoint the
root causes. Li et.al., [17] applied a dynamic latent variable model
and dynamic time warping based causality analysis to locate root
causes. Compared to our work, the machine learning basedmethods
need more data to adapt to the dynamic microservice systems.

7 CONCLUSION AND FUTUREWORK
This paper designs and implements, MicroRank, a novel system
to locate root causes that lead to latency issues in microservice
environments.MicroRank extracts service latency from tracing data
then conducts the anomaly detection procedure. By combining
PageRank and spectrum analysis, the service instances that lead
to latency issues are ranked with high scores. The experimental
evaluations in a widely-used open-source system and a production
system show that MicroRank can localize root causes accurately,
which outperforms some state-of-the-art approaches. Moreover,
MicroRank is relatively lightweight and can scale out readily in
large-scale microservice systems. As part of future works, we plan
to conduct experiments in benchmarks with more services and
more complex dependencies.
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