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Abstract—Recently, the microservice becomes a popular ar-
chitecture to construct cloud native systems due to its agility. In
cloud native systems, autoscaling is a core enabling technique to
adapt to workload changes by scaling out/in. However, it becomes
a challenging problem in a microservice system, since such a
system usually comprises a large number of different micro ser-
vices with complex interactions. When bursty and unpredictable
workloads arrive, it is difficult to pinpoint the scaling-needed
services which need to scale and evaluate how much resource they
need. In this paper, we present a novel system named Microscaler
to automatically identify the scaling-needed services and scale
them to meet the service level agreement (SLA) with an optimal
cost for micro-service systems. Microscaler collects the quality of
service metrics (QoS) with the help of the service mesh enabled
infrastructure. Then, it determines the under-provisioning or
over-provisioning services with a novel criterion named service
power. By combining an online learning approach and a step-by-
step heuristic approach, Microscaler could achieve the optimal
service scale satisfying the SLA requirements. The experimental
evaluations in a micro-service benchmark show that Microscaler
converges to the optimal service scale faster than several state-
of-the-art methods.

Index Terms—Auto-scaling, Micro service, Service Mesh,
Bayesian Optimization, Cloud computing

I. INTRODUCTION

Driven by the promising features of cloud computing such
as pay-as-you-go, elasticity, and on-demand, many cloud na-
tive systems are emerging. In order to take advantage of
cloud resources more efficiently, those enterprises build or
reconstruct their application architectures from monolithic
to microservice. With the micro-service architecture, an ap-
plication is decoupled into many loosely distributed fine-
grained services [1]. Each service has simple and independent
functions following the SRP (Single Responsibility Principle)
[2]. The micro-service architecture allows applications scale
out/in for partial services in a fine granularity (e.g., container),
which reduces the scaling cost compared with the conventional
virtual machine scaling.

As the workload of one application in the Cloud is un-
predictable, it is crucial to automatically scale out/in with
resource as few as possible on condition that meeting the
SLA requirements, in the face of workload changes . The
under-provisioning should be avoided during the scaling phase.
On the other side, the over-provisioning leads to resource
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wasting and extra cost [3], the application provider needs a
cost-optimal scaling without SLA violations.

Cloud computing provides a flexible resource allocation
mechanism. But it is up to the application owner to leverage
the flexible infrastructure [4]. However, an automatic scaling
approach in micro-service environments is notoriously difficult
due to the following challenges:

o Service metric collection. Most mainstream cloud plat-
forms today do not provide sufficient means to monitor
application in a fine granularity [5]. Therefore, it is
difficult to obtain service-level performance metrics in
the wild. Although the application-level instrumentation
can achieve that, application developers must be familiar
how to expose such performance metrics.

o Scaling-needed service determination. A large num-
ber of services co-exit in a micro-service system and
the interactions among them are complex. Hence, a
performance anomaly may result in multiple anomalies
in many services simultaneously. Therefore, it it non-
trivial to determine the scaling-needed services when a
performance anomaly occurs.

o Performance and cost optimization. An auto-scaler
should automatically scale the right amount of re-
source for services which are under-provisioning or over-
provisioning to optimize the performance and cost of the
application [6]. But there is not an explicit regulation
model between resource of each services and the request
volume. The auto-scaler needs to determine how many
resources are required to scale effectively and efficiently.

Extensive methods have been proposed to solve auto-scaling
problems for virtual machines in cloud environment [7], [6].
However, very few methods can auto-scale quantitatively in
the dynamic micro-service environment. Moreover, most of
existing methods need to modify the application source code
to expose the performance metrics required by auto-scaling.
To resolve the aforementioned problems and shortcomings of
previous work, this paper proposes Microscaler to determine
the scaling-needed services, and scale out/in quickly and
optimally. It primarily comprises three procedures, namely
service metric collection, scaling-needed service determina-
tion and auto-scale decision. Microscaler collects the service
metrics exposed by the service mesh driven infrastructure
continuously. In this paper, we first find all abnormal services.



Then we trigger the scaling process to meet SLA requirements.
Microscaler leverages the service power to determine the
scaling-needed services and decides the service size by com-
bining a Bayesian Optimization based model and a step-by-
step heuristic model. In addition, Microscaler works in a real-
time mode to adapt to the dynamic workload. Moreover, we
validate Microscaler’s effectiveness and efficiency in a micro-
service benchmark, namely Hipster-shop [8], managed by Istio
[9] (i.e., a popular service mesh) enabled Kubernetes [10]. The
experimental evaluations show that Microscaler converges to
the optimal service scale faster than several state-of-the-art
methods.

Generally speaking, the contributions of this paper are four-
fold:

« We leverage the advantages of service mesh infrastructure
to resolve the challenging problems of autoscaling in
micro-service systems.

« We propose a novel criterion named service power to
determine the scaling-needed services in micro-service
systems, which reduces unnecessary scaling processes.

« We combine an online learning approach and a step-by-
step heuristic approach to build a model for auto-scaling.
The model can obtain the optimal service scale with only
a few iterations.

e We design and implement a prototype, namely Mi-
croscaler, to evaluate the proposed autoscaling approach
in a micro-service benchmarking system.

The rest of this paper is organized as follows. The back-
ground and motivation are introduced in Section 2. Section
3 shows the basic idea and detailed design of Microscaler.
In Section 4, we present our experimental results. Finally, we
discuss the related work in Section 5 and conclude this paper
in Section 6.

II. BACKGROUND AND MOTIVATION
A. Service Mesh

Recently, the microservice architecture becomes a surge
and a necessary element for cloud native systems. In such
a system, a single application might consist of hundreds of
micro services. Each micro service might have thousands
of instances. And each instance might be in a constantly-
changing state as it is dynamically scheduled by an cloud
orchestrator like Kubernetes. To make the development, de-
ployment, and orchestration of micro-service systems easy, the
concept of service mesh is proposed recently. Service mesh is
a dedicated infrastructure layer for handling service-to-service
communication. It is responsible for the reliable distribution of
requests through the complex topology of micro services. In
practice, a service mesh is typically implemented as an array
of lightweight network proxies that are deployed alongside
application code without the awareness of applications.

Istio [9] is a completely open source service mesh that sits
transparently on existing distributed applications and offers
a complete solution to satisfy the diverse requirements (e.g.,
metrics collecting, request tracing) of micro-service applica-
tions [9]. Istio provides a high-performance proxy to mediate
all inbound and outbound traffic for all services. The service
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metrics provided by Istio will help us determine when to scale
and how to scale.

B. Motivation

Although some cloud platforms like Amazon EC2, Kuber-
netes have been equipped with an autoscaling mechanism, they
are mainly triggered by the exceeding of resource limits (e.g.,
higher than 90% CPU utilization). However, when a service
has a higher resource utilization, it does not mean that the
service needs to scale. It may be caused by a software bug
such as an infinite loop. Moreover, the existing tools do not
determine which services need to scale before scaling. There-
fore, they do not work well in micro-service systems. With the
ever growing scale and complexity of modern micro-service
applications, it is difficult to locate the micro service which
is under-provisioning or over-provisioning. Making effective
scale decision to utilize resources exactly is challenging as
well. Following this motivation, we propose Microscaler to
conduct a cost-optimal autoscaling.

III. SYSTEM DESIGN

A. System Overview
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Fig. 1. System architecture of Microscaler

Fig. 1. shows the system architecture of Microscaler. Micro-
service applications are deployed in a service mesh enabled
cloud platform. A service mesh infrastructure mainly com-
prises a data plane and a control plane. At the data plane,
a network proxy is deployed as a sidecar to each relevant
service instance (i.e., container). The issued request will go
through the ingress before visiting the front-end of application.
At the control plane, a telemetry component (e.g., Mixer [9])
collects all network communication from proxy and stores
them in a time series database (e.g., Prometheus). Microscaler



continually monitors the performance metrics of the front-end
service within a sliding window. The scaling-needed service
determination process will be triggered when an SLA violation
is detected. After that, Microscaler will scale out/in services
according to the result generated by the auto-scale decision
module. Finally, Microscaler issues a command to Cloud
Controller to perform scaling.

B. Service Metrics Collection

In the service metrics collection module, Microscaler
mainly collects Quality of Service (QoS) metrics (i.e., service
latency) of each service with the help of service mesh. Micro-
service applications run in a service mesh-enabled cloud envi-
ronment, with proxy sidecars injected along side each service.
These sidecars mediate and control all network communication
between micro services along with a control plane component
like Mixer in Istio. Moreover, we can integrate a customized
metric collection template [9] to get metrics at different
levels such as container level, pod level, and service level. A
time series database is leveraged to store the service metrics
exposed by the service mesh.

QoS Metrics. SLA provides information on the scope, the
quality and the responsibilities of each micro service and
its provider [11]. They involve QoS metrics that define the
detailed, measurable conditions. The service mesh infrastruc-
ture provides metrics about requests and responses and gives
metrics about client and service workloads for each individual
service within the mesh. Hence, Microscaler can easily obtain
QoS metrics from service mesh for monitoring services and
determining scaling-needed services.

C. SLA violation Detection

Micro services are monitored periodically (e.g., per 10
seconds) to keep consistent with the SLA in the face of
fluctuated request volumes. The SLA of a service is specified
by its providers when the service is deployed. A performance
anomaly is an event or a collection of events that cause
SLA violations. In this paper, Microscaler selects the service
request latency to denote the application performance rather
than the resource utilization (e.g., CPU) or the request volume
as this metric directly expresses end users’ experience.

CPU Utilization Line of Payment Service
T T T

;\;1 00
=
K]
K]
2 501 1
5
=]
o
© T { . .
0 1 2 3 4 Time(min)
100 Latency Line of Payment Service
T T T
g
@« ——P90
E
>
2 50 - bt
2
=1 ‘/\//_/
-

0 7 . \ \
4 Time(min)

Fig. 2. An example of high CPU utilization but low service latency
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In microservice applications, the correlation between re-
source utilization and service request latency might be not so
strong. As Fig. 2. shows, a high CPU load only means that the
microservice instance is fully utilized. But it can still provide
an acceptable service request latency with no need to scale.
Therefore, making the resource utilization as the trigger for
autoscaling may be insufficient. As for the request workload, if
taking the request workload as a trigger, it is unsure to conduct
autoscaling as the requests will be dispatched to different
down-streaming services. Considering that a small request
volume congests on the same micro service, even though the
workload at that time do not trigger scaling, the request latency
may exceed the SLA. On the contrary, if a huge workload
volume could be distributed to different service instances in
an appropriate manner, it may still provide an acceptable SLA.
In short, Microscaler chooses the service request latency of the
front-end service to trigger autoscaling since it can avoid to
trigger unnecessary scaling [6].

The SLA-based anomaly detector of Microscaler allows
service owners to specify SLA for deployed applications.
An SLA comprises both an upper bound 7},,, and a lower
bound 7,,;, of the service request latency. If the request
latency measurements are higher than 7),,, or lower than
Trin, the SLA has been violated. And to avoid the detector
from detecting the similar anomaly multiple times, we set the
detection window as 5 minutes for each SLA violation. A side
effect of this method is that the detector is unable to detect
another violation until the window is filled again [5].

Specially, this paper assumes that the instantaneous and
minuscule requests which are abnormal may not be caused
by the application itself. Those extreme cases should not
trigger scaling. In order to address this problem, Microscaler
uses P90, i.e., the average latency for the slowest 10 percent
of requests over the last 30 seconds, to trigger scaling.
Microscaler can filter those extreme requests efficiently and
avoid unnecessary autoscaling meanwhile.

D. Scaling-needed Service Determination

Service Power. In this paper, we propose a novel criterion
to determine whether it is necessary to scale. Define Ps as the
average latency for the slowest 50 percent of requests to one
micro-service over the last 30 seconds and P90 is the average
latency for the slowest 10 percent of requests. Microscaler
leverages the ratio between P5p and FPyo to represent the
service power denoted by P, namely P = %. Here, we
choose P90 rather than P99 or P95 to calculate PP since this
percentage can mitigate the impact of jitters brought by normal
changes. If Py exceeds Psy too much (e.g., Pog > Psg * 2
in this paper), it means that the micro service could only
handle part of requests but about 10 percent of request to the
micro service could not be processed in time. In other words,
there have been many requests in the processing queue, which
exceeds the normal service power at that moment. Therefore,
the service power is low and the micro-service needs to scale.
If Psg is close to Py (e.g., Psg * 1.2 > Pyq in this paper), it
means that the micro service could handle most of requests.
Therefore, the service power is strong and the micro service
does not need to scale at all. Fig.3 and Fig. 4 show the



latency changes along with different percentages at normal
and abnormal state respectively. From these two figures, we
observe that P is close to 1 at normal state while PP is higher
than 2 at abnormal state.
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Fig. 4. An example of service power at abnormal state

We assume that all abnormal services that are experiencing
SLA violations in a micro-service application could been
found. After getting the list of abnormal services, Microscaler
uses the service power to determine scaling-needed services
in order to decrease unnecessary scaling.

Algorithm 1 The Service Determination Algorithm
Input: A list of abnormal services, A
Output: A list of scale out services, S,, A list of scale in
services, S;,
: for all service € A do
if service.Psq *x 2 < service.Pyy then
S,.append(service)
else if service.Psg x 1.2 > service.Pyg then
S;.append(service)
else
continue
end if
end for
return S,,5;

R e AN A T ol
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E. Auto-scale Decision

After determining the services which need to scale, it is
equally important to determine how many instances should be
scaled out / in precisely and quickly. Microscaler combines
Bayesian Optimization (BO) [12] and a step-by-step heuristic
approach to solve the above problem. Microscaler leverages
BO to find a near-optimal result with only a few iterations
and then uses the step-by-step approach to reach the optimal
result.
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Algorithm 2 The Auto-scale Decision Algorithm
1: N = BO(Service, Latency)
2: while Latency < SLA ;4. do
33 N=N-1

4:  Update Latency

5

6

. end while
creturn N +1

1) Bayesian Optimization Approach: BO is a method for
optimizing expensive functions in a black-box way. Since it is
non-parametric, it does not have any pre-defined assumptions
for the performance model [7]. Mathematically, BO aims
to find a global minimizer (or maximizer) of an unknown
objective function f: x* = argmingex f(x), where X is
the decision space of interest and is often a compact subset
of R?. In this paper, d = 1 and X represents the space of
service number. Compared to state-of-the-art methods, BO can
dynamically adapt its searching scheme based on the current
understanding and confidence interval of the performance
model to find the optimal or sub-optimal service replicas
number. Furthermore, BO typically needs a small number of
samples to find a optimal or sub-optimal solution because
BO focus its search on areas that have the largest expected
improvements [7]. While Deep Neural Network [13] can also
be used for black-box optimization, it requires lots of training
samples which are very difficult to work in real-world systems.

For given scaling-needed services and workload, our goal is
to find the optimal service scale to minimizes the cost of each
visit under the condition that satisfying the SLA. The latency
of front-end depends on the number of service instances vector
Z. Since the number of services which are not necessary to
scale will not be updated in BO, the performance model only
considers the service in the plann list. Let Price(¥) be the
price for services in the list. We formulate the performance
model as follows:

minimize Cost(Z) = Price(Z) * Latency(¥)
x

(H
subject to SLApin < Latency(Z) < SLAmax

where T),,, is the SLA upper bound and 7;,;, is the
SLA nether bound. And Cost(Z) is the total cost of one
request, furthermore, C'ost(Z) is unknown beforehand but can
be observed through experiments.

The target function shown in Eqn(l) is designed to mini-
mize Cost(Z) without further constraints. However, Ty, <
T(Z) < Timar must need to consider. It means that when
selecting the next number of instance to evaluate, Microscaler
should have a bias towards one that is likely to satisfy the SLA
constraint. To achieve this goal, we modify the cost model as:

minimize Cost(Z) = Price(Z) « T(Z) + w*T(Z) (2)
x

where if Ty < T(Z) < Thnaz, w is set as —10, else w is set
as +10. w could be tuned according to different applications.

There are two major choices that must be made when
performing BO. First, one must select a prior over func-
tions that will express assumptions about the function being
optimized. Microscaler chooses the Gaussian process prior,



due to its flexibility and tractability [14]. Then Microscaler
must select an acquisition function next. This paper chooses
Gaussian Process Upper Confidence Bound (GP-UCB) since it
is an intuitive upper-confidence based algorithm and bounds
its cumulative regret in terms of maximal information gain.
Therefore, the strategy to update points follows as

xy = argmin p;—q () — kor—1 () 3)
z€D

where D denotes the search space, () is a mean function,

o (z) is the standard deviation function and k is a tunable

parameter to balance between exploitation and exploration.
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Fig. 5. The workflow of Bayesian Optimization

Fig. 5. shows the process of service scale searching. Search-
ing starts an SLA violation. Then a list of scaling-need services
are determined. BO then dynamically picks the next service
replicas number to run based on the cost model and feed the
result to the cost model. The model will stop and output the
optimal number which has been found when it exceeds the
maximum iterations.

By modeling the target function as a stochastic process (e.g.,
a Gaussian Process [15]), BO can compute the confidence
interval of target according to one or more observations. A
confidence interval is an area that the curve of target function
is most likely (e.g., with 95% probability) passing through
[7]. For example, in Fig. 6.(a), the blue solid line is the target
function and the black dashed line shows the prediction value.
With some observations, BO computes the confidence interval
that is marked with a cyan shadowed area. The confidence
interval is updated (i.e., the posterior distribution in Bayes
Theorem) after new observations are taken and the prediction
improves as the area of the confidence interval decreases.
BO can decide the next point to sample using a pre-defined
acquisition function that also gets updated with the confidence
interval. As shown in Fig. 6., the yellow star is chosen
because the acquisition function indicates that it has the most
potential gain. There is no doubt that the more iterations, the
better result in BO. We will discuss how to select appropriate
maximum iterations in part I'V.

2) The Step-by-Step Approach: BO model can not always
find the optimal service scale with only a few iterations.
But it can narrow down the search space efficiently. Based
on the result obtained by BO, Microscaler leverages a step-
by-step heuristic approach to achieve the optimal service
scale exactly. In this approach Microscaler only modifies one
service instance each time until the latency of front-end is
lower than the SLA.
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Fig. 6. An example of BO working process

F Scale Action

This paper has built a Docker [16] image for each micro
service in application and stored them in a private Docker
Hub. By including all necessary dependencies in the image,
a micro service can be executed on any platform running a
container engines quickly. Microscaler modifies the micro ser-
vice’s processing capacity by adding containers or removing
containers horizontally. Therefore Microscaler can call the
cloud Replicate Controller API to keep the service replicas
number in cloud with the output of auto-scale decision.

IV. EXPERIMENTAL EVALUATION

Experiment Settings. Microscaler is evaluated in a self-
constructed distributed system. The test system contains 10
virtual machines (VMs) that host a micro-service benchmark.
Each VM has a 2-core 2.40GHz CPU, 6GB of memory and
runs with Ubuntu OS. All the services are managed by an
Istio-enabled Kubernetes [10] platform. Kubernetes is an open-
source system for automating deployment and management
of containerized application, which is one of best platform
for deploying and running micro services. In our experiment,
Envoy is deployed as a sidecar to the relevant service in
Kubernetes. Since Envoy provides load balancing for micro-
services, we only need to consider the performance of the
whole service rather than each fine-grained service instance.

Benchmark. Hipster-Shop [8] is a micro-service demo that
simulates the sale of hipster goods of an e-commerce web-
site. Google uses this application to demonstrate Kubernetes,
Istio, gRPC and similar cloud-native technologies nowadays.
Hipster-Shop is composed of 10 micro services written in dif-
ferent languages that talk to each other over gRPC. In addition,
Hipster-Shop contains a load generator, which defines user be-
havior, to simulate the visits to the website with simultaneous
users. We can change the performance of Hipster-Shop by
adjusting the number of micro-services instance and change
the request volume by adjusting the concurrent users.

Limited by the hardware resources of our testbed, we have
a maximum of 15 microservice instances for each service in
Hipster-Shop. And we focus only on the violation of upper



bound T,,,,, because the process of scale in is very similar to
the the process of scale out. We set the upper bound of the
front-end’s service request latency 15,4, as 2s.

A. Effectiveness Evaluation

After finding the scaling-needed services, Microscaler will
scale them serially. Fig. 7. shows the BO search process
in different services and different iterations. First, we can
conclude that BO can find an optimal or sub-optimal replica
number just after a few iterations. In addition, the number of
iteration affects the result of replica number. Each iteration
needs to wait some time for starting containers and obtaining
latency, it means that the searching process will cost a lot of
time. So selecting an appropriate iteration number is important
not only in generating a good result but also in reducing
search time. From Fig. 7., we can observe that the result
of 3 iterations outperforms the ones with 4 iterations or 5
iterations. But the result of 4 iterations has small difference
with 5 iterations. It means that the suitable iteration number is
4 for Microscaler because BO can obtain an optimal or sub-
optimal result in 4 iterations with the maximum limit of 15
microservice instances.

B. Comparisons

Fig. 8. shows the process to reach the desired service scale
in some auto-scalers which adopt different scaling policies.
The Amazon Emulated auto-scaler is a copied version of the
AWS auto-scaling policy. We deliberately use a modifying
step of one and two replicas to show the difference of each
auto-scalers. And the fuzzy auto-scaler emulates the model
proposed by [6]. In order to meet the SLA requirements
as quickly as possible, we scale the replicas number to the
maximum 15 first, and then wind-down the replicas until
finding the minimal number that satisfies the SLA. For the
white-box auto-scaler, it will calculate the model between
workload and service scale explicitly in advance. Therefore,
the white-box auto-scaler can reach the optimal service scale
by calculating models directly when the workload changes.

The left graphs of Fig. 8. show the auto-scalers specific
updating actions to reach the target replicas number. There
is no doubt that the Amazon emulated auto-scaler which
modifying one replicas each time will accurately find the
optimal minimal number that meets the SLA. It is also obvious
that it needs more steps to find the optimal replicas number
than other three methods. Hence, in Fig. 8., the optimal
replicas number is 5, the result of BO auto-scaler is 6. This
means that BO auto-scaler may cause the unnecessary cost
to serve the same workload because they may find the sub-
optimal replica number. Microscaler searches continuously
after BO until finding the optimal service scale. Therefore,
it also reaches 5 service instances. With regard to the time
of finding optimal service scale, White-box auto-scaler can
reach its ideal scale in only 1 step, and Microscaler needs 5
steps. Amazon auto-scaler(l replicas), Amazon auto-scaler(2
replicas) and fuzzy auto-scaler needs 12 steps, 6 steps, 6 steps
respectively. In short, Microscaler can reach optimal service
scale with a very few iterations.

From Fig. 9, we can observe that Microscaler and Amazon
auto-scaler(1 replicas) can reach optimal service scale every
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time. BO auto-scaler and fuzzy auto-scaler can provide an
acceptable service performance, but the results are not always
optimal. As for the white-box auto-scaler, it can reach op-
timal service scale if current workload had been measured.
However, for the workload which is not measured, it may
provide insufficient replicas(e.g., optimal-1). In addition, this
phenomenon is more obvious at cold-start. So the white-box
auto-scaler needs many tests to get a consistent result. And
when the service updates, the white-box auto-scaler needs to
update models accordingly.

C. Discussion

TABLE I
THE OVERHEAD OF Microscaler

Cost
5% £ 1% Single CPU Utilization
about 0.2 second
about 1 seconds
about 2 minutes

System Module
Data Collection
SLA Violation Detection
Scaling-needed Comfirmation
Autoscaling Decision

Overhead. TABLE 1 shows the overhead of Mi-
croscaler. The data collection module takes about 5% utiliza-
tion when collecting service invocation and service latency
with the help of Service Mesh. In auto-scale decision mod-
ule, Microscaler consumes about 2 minutes because creating
containers needs some time after changing service’s replica
number. From the aforementioned conclusion, the state-of-
the-art methods need more time than Microscaler. Overall,
Microscaler is a light-weight and flexible auto-scaler which
can be deployed in a large-scale micro-service system readily.

Limitation. Firstly, nowadays, almost all the products of
Service Mesh are only suitable for the container-based Cloud
and they lack of support for VM-based Cloud, so Microscaler
is not appropriate for VM autoscaling. In addition, since
BO is a method for optimizing black-box functions, it may
reach the sub-optimal but not the optimal service scale which
will cause some unnecessary cost. The last but not the least,
Microscaler reactively scales out the application only when an
SLA violation occurs. Hence, Microscaler may take actions
later than the proactive scaling approaches.

V. RELATED WORK

Resource estimation is the core of auto-scaling as it de-
termines the efficiency of resource provisioning. Recently,
Various approaches have been proposed to conduct auto-
scaling based on resource estimation.

Rule-Based Approach. Rule-based approaches define a set
of rules consisting of triggering conditions and corresponding
actions, such as “If CPU utilization exceeds 80%, add one in-
stances”. Theoretically, simple rule-based approaches involve
no accurate resource estimation but empirical estimation. As
the simplest version of auto-scaling, it commonly serves as
a baseline for comparison and is used as the basic scaling
framework for works that focus on other aspects of auto-
scaling, such as the work done by Dawound et al. [17], which
aims to compare vertical scaling and horizontal scaling.

Fuzzy-Based Approach. The core of Fuzzy-based ap-
proaches is a set of predefined “If-Else” rules. The major
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Fig. 9. The probability of reaching optimal service scale by different autoscalers

advantage of fuzzy inference compared to simple rule-based  then the fuzzified inputs are used to trigger the action parts
reasoning is that it allows users to use linguistic terms like ~ in all the rules in parallel; the results of rules are then
“high, medium, low” instead of accurate numbers to define combined and finally defuzzied as the output for scaling
the conditions and actions [3]. Fuzzy-based approaches work operation. Representative approaches of this kind include the
as follows: the inputs are first fuzzified by defined functions; ~ one proposed by Frey et al. [18].
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Application Profiling-Based Approach. The application
profiling based approach tests the saturation point of resources
for one specific application using a synthetic or recorded real
workloads. An application can precisely obtain the knowledge
of how many resources are just enough to handle the given
workload intensity concurrently. Offline profiling can produce
the complete spectrum of resource consumption under differ-
ent levels of workload [19]. Jiang et al. [20] proposed a quick
online profiling for multi-layer applications by studying the
correlation of resource requirements that different tiers pose
on the same type of VM. But when the application updates,
the profiling needs to update accordingly.

Machine Learning Approach. Machine learning ap-
proaches are applied to dynamically build the resource model
under different workloads. In this way, service providers can
use the auto-scalers without customized settings and prepara-
tions. Online machine-learning algorithms(e.g. Reinforcement
learning [21] [22], Regression [23] [24]) are more robust
to changes during production as the learning algorithm can
adaptively adjust the model on the fly regarding any notable
events. Though offline learning can also be used to fulfill the
task, it inevitably involves human interventions and thus loses
the benefit of using machine learning [3].

VI. CONCLUSION AND FUTURE WORK

This paper designs and implements Microscaler, a system to
help application providers pinpoint the scaling-needed services
and scale them automatically in service-mesh-enabled micro-
service environments. A novel criterion i.e., service power is
proposed to determine the scaling-needed services. Moreover,
a black-box optimization approach is presented to optimize the
scaling cost. The experimental evaluations in a micro-service
benchmark environment show that Microscaler converges to
the optimal service scale faster than several state-of-the-art
methods. we will try to adjust multiple scaling-need services
simultaneously with the help of BO in microservice environ-
ment.
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