
MicroSketch : Lightweight and Adaptive
Sketch Based Performance Issue

Detection and Localization
in Microservice Systems

Yufeng Li1, Guangba Yu2, Pengfei Chen2(B), Chuanfu Zhang1,
and Zibin Zheng2

1 School of Systems Science and Engineering, Sun Yat-Sen University,
Guangzhou, China

liyf323@mail2.sysu.edu.cn, zhangchf9@mail.sysu.edu.cn
2 School of Computer Science and Engineering, Sun Yat-Sen University,

Guangzhou, China
yugb5@mail2.sysu.edu.cn, {chenpf7,zhzibin}@mail.sysu.edu.cn

Abstract. With the rapid growth of microservice systems in cloud-native
environments, end-to-end traces have become essential data to help diag-
nose performance issues. However, existing trace-based anomaly detec-
tion and root cause analysis (RCA) still suffer from practical issues due
to either the massive volume or frequent system changes. In this study,
we propose a lightweight and adaptive trace-based anomaly detection and
RCA approach, named MicroSketch, which leverages Sketch based fea-
tures and Robust Random Cut Forest (RRCForest) to render trace analy-
sis more effective and efficient. In addition,MicroSketch is an unsupervised
approach that is able to adapt to changes in microservice systems with-
out any human intervention. We evaluated MicroSketch on a widely-used
open-source system and a production system. The results demonstrate the
efficiency and effectiveness of MicroSketch. MicroSketch significantly out-
performs start-of-the-art approaches, with an average of 40.9% improve-
ment in F1 score on anomaly detection and 25.0% improvement in Recall
of Top-1 on RCA. In particular, MicroSketch is at least 60x faster than
other methods in terms of diagnosis time.

Keywords: Microservice · Anomaly detection · Root cause analysis ·
Sketch

1 Introduction

Over the years, more and more enterprises (e.g., Amazon, Netflix, and Twit-
ter) have gradually replaced monolithic applications with loosely-coupled and
lightweight microservices [2,16]. The loosely-coupled paradigm of microservice
applications enables independent refactoring and dynamic scaling for each ser-
vice [19,20]. Despite various resilience strategies in modern microservice architec-
ture (e.g., load balancing and circuit breaking), system-wide issues of microservice
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 219–236, 2022.
https://doi.org/10.1007/978-3-031-20984-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_15&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_15

220 Y. Li et al.

applications are still pervasive due to resource exhaustion, network jam, etc. Per-
formance issues that manifest themselves as high latency are easier to happen but
more difficult to diagnose than availability issues [4].

Distributed tracing [14] becomes a mainstream tool for troubleshooting in
microservice systems. Distributed tracing records the detailed executions of com-
pleting a user request, including the invocation paths of service instances and
latency information of these invocations between service instances. Because dis-
tributed tracing has an irreplaceable advantage in capturing interactions between
service instances, it is becoming an indispensable infrastructure for monitor-
ing, profiling, analyzing and diagnosing in modern distributed software systems,
especially in large microservice applications. However, current tracing tools (e.g.,
Jaeger1 and Zipkin2 are primarily designed to collect and present traces rather
than automatically diagnose performance issues.

It is an error-prone and labor-intensive process to manually detect perfor-
mance issues and localize root causes based on current tracing tools. Therefore,
some automated trace analysis approaches have been proposed in microservice
systems [6,10,18]. However, state-of-the-art studies with traces for performance
analysis encounter practical issues due to the massive volume of traces or frequent
system changes. As shown in Table 1, tprof [6] takes over 600 s and MicroRank [18]
needs over 100 s to infer root causes by analyzing 10,000 traces when one fault
occurs. This is because tprof [6] hierarchically groups traces by request types and
trace structures, and calculates increasingly detailed aggregated statistics, which
consumes a great deal of time. MicroRank introduces PageRank to calculate the
weights of traces, which needs a long time to get the converged results when meet-
ing a larger scale of traces. The inference time will be further exacerbated when
a larger-scale microservice system is encountered. TraceAnomaly [10] takes less
time to infer root causes than MicroRank, but it needs to retrain the deep Bayesian
network after microservice updates. In addition, this training process is extremely
time-consuming, resulting in poor adaptability.

Table 1. Resource overhead and inference time for some state-of-the-art trace analysis
systems. (The experiment platform is shown in Subsect. 4.1)

System Method CPU utilization (%) Memory usage (MB) Time(s)

tprof [6] Hierarchical analysis 12 ± 2 single core 800 ± 50 600 ± 30

TraceAnomaly [10] Deep Bayesian network 75 ± 5 single core 550 ± 50 65 ± 10

MicroRank [18] PageRank+Spectrum 12 ± 2 single core 430 ± 50 105 ± 10

To address the above drawbacks of existing work, we propose MicroSketch,
which leverages Sketch [11] based features and Robust Random Cut Forest
(RRCForest) [5] to detect performance issues and localize root causes using dis-
tributed traces in a lightweight and adaptive way, with a low time and space com-
1 Jaeger, https://jaegertracing.io/.
2 Zipkin, https://zipkin.io/.

https://jaegertracing.io/
https://zipkin.io/

MicroSketch: Performance Issue Detection and Localization 221

plexity. It consists of three main procedures including Status Encoder, Anomaly
Detector, and Fault Locator. Status Encoder collects trace data and encodes
these data into a status vector in order to conduct Anomaly Detector. Then
Anomaly Detector determines whether it is an anomaly. Once an anomaly is
detected, Fault Locator is triggered and generates a ranking list containing pos-
sible root causes for the anomaly. We evaluated MicroSketch on a widely-used
open-source system and a production system. The results demonstrate the effi-
ciency and effectiveness of MicroSketch. Moreover, MicroSketch significantly out-
performs start-of-the-art approaches, with an average of 40.9% improvement in
F1 score on anomaly detection and 25.0% improvement in Recall of Top-1 on
root cause analysis (RCA). In particular, MicroSketch is at least 60x faster than
other methods in terms of diagnosis time. Besides, MicroSketch has the ability
to automatically adapt to the changes of microservice systems and continually
work without any manual intervention.

Overall, the contribution of this paper is three-fold summarized as follows.

– We improve the DDSketch, state-of-the-art sketch technology, so that it keeps
all the original features while reducing storage space to calculate the quantiles
with sublinear space and linear time complexity.

– We propose a novel anomaly detection and RCA approach in microser-
vice environments based on the adaptive RRCForest, which automatically
adapts to variable-length input vector and renders our model appropriate for
dynamic microservice systems.

– We implement MicroSketch to detect performance issues and localize root
causes in a lightweight and adaptive way. We conduct extensive experiments
based on a widely-used microservice benchmark and a production microser-
vice system. Experimental results demonstrate that MicroSketch achieves
good results both on anomaly detection and RCA. In addition, MicroSketch
is at least 60x faster than other methods in terms of diagnosis time.

2 Background

Distributed tracing is an important technique for gaining insight and observabil-
ity into microservice systems [15]. In large-scale microservice systems, a request
is typically handled by multiple services deployed in different nodes or even data
centers. Distributed tracing provides a method to track the complete execution
path of each request. A span represents a logical unit of execution, handled by
an operation of a service instance in a microservice system. All spans that serve
for the same request collectively form a trace, as illustrated in the left part of
Fig. 1. Spans generated by the same request have the same trace ID. For each
span, it records some attributes (i.e., Trace ID, Span ID, and Start time), as
shown on the right part of Fig. 1.

As shown in Fig. 1, the duration of a span is the accumulated time spent by
this operation and all downstream operations. Therefore, when the duration of
span E increases due to a fault, all upstream spans of E (i.e., span A and D) will
increase as well due to fault propagation, making it difficult to determine which

222 Y. Li et al.

span is the root cause. To overcome this problem, we transform duration into a
more directional metric. For each span, we subtract the duration of its all child
spans from its duration to get its real handling time. In Fig. 1, the non-shaded
part is called the span’s handling time.

Fig. 1. An example of trace with five spans in Hipster-Shop (Hipster-Shop, https://
github.com/GoogleCloudPlatform/microservices-demo).

3 System Design

3.1 System Overview

Figure 2 demonstrates the framework of MicroSketch. It consists of three mod-
ules, including Status Encoder, Anomaly Detector and Fault Locator. We use
time interval to denote the trace analysis frequency (1 min default in this study).
Firstly, given the traces in a time interval, Status Encoder leverages the extended
DDSketch to calculate the quantile of the handling time for each invocation group
and encodes them as status vector x = (x1, x2, ..., xm) (Subsect. 3.2). Secondly,
Anomaly Detector analyzes the status vector based on adaptive Robust Random
Cut Forest (RRCForest) and outputs the anomaly score of x (Subsect. 3.3). If
the score of x is over the predefined threshold τ , Fault Locator is triggered to
determine the root cause (Subsect. 3.4).

Fig. 2. The framework of MicroSketch

https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo

MicroSketch: Performance Issue Detection and Localization 223

3.2 Status Encoder

At each time interval, MicroSketch queries all traces in the time interval and
inputs them into Status Encoder.

Status Vector. Quantile is a splendid statistic for profiling data, especially for
latency data. The quantile of the handling time, such as the 50th or the 90th
percentiles, reflects the quality of service instance. As shown in Fig. 3, p90 of
the operation (product-1.sql-query) rises when issue occurs. Quantile [11] can be
formalized as follows. Given a multiset S of size n, the q-quantile item xq ∈ S is
the item x whose index R(x) in sorted multiset S is �1+ q(n−1)� for 0 ≤ q ≤ 1.

After all spans are collected, we group them by the type of invocation. The
invocation owning the same upstream service instance, same downstream service
instance and same operation belongs to the same type. We calculate the quantile
(p90 in this paper) of the handling time for each group and manage these quan-
tiles as a vector x = [x1, x2, ..., xm], where xi means the quantile of the handling
time that belongs to the invocation group i. Status vector x largely reflects the
performance status of the global microservice system in this time interval.

Sketch Technology. Commonly, we sort the multi-set S first and then query
by index �1+q(n−1)� to generate an exact q-quantile, but it requires huge com-
puting resources and time for sort. Nevertheless, it is not so necessary to get the
exact quantile value in our scenarios. An estimated quantile that does not devi-
ate too far from the exact value can also be enough to conduct anomaly detec-
tion. Therefore, we introduce Distributed Distribution Sketch (DDSketch) [11],
which is able to calculate the quantile much faster and more economically with
relative-error guarantees and sublinear space and linear time complexity. DDS-
ketch keeps rigorously relative-error guarantees by dividing the data stream into
fixed buckets. It means that, given a parameter α, each estimated q-quantile x̃q

and the exact q-quantile xq are satisfied to |x̃q − xq| ≤ αxq.
However, we do not need to satisfy the rigorous relative-error guarantees.

Because we hardly focus on the head latency data (i.e., the main-body distribu-
tion of latency data). We use an equi-width histogram to extend the DDSketch,
which allows us to reduce memory usage without losing the relative-error guar-
antees in the tail data, compared to DDSketch. To elaborate on how extended
DDSketch works, the three phases, namely initialization, insertion and query
are summarized.

In the phase of initialization, we define the tail relative-error rate α, boundary
L and head granularity factor β to keep the error guarantees. Given a quantile
percentage q, if xq < L, the estimated quantile x̃q will be satisfied to |x̃q−xq| ≤ β
and if xq ≥ L, the estimated quantile x̃q will be satisfied to |x̃q − xq| ≤ αxq.
Thus, we keep the relative-error guarantees in the tail data (the numbers are
greater than L), and reduce the memory usage at the cost of losing the relative-
error guarantees in the head data (the numbers are less than L). In this paper,
α is set as 1%, L is set as p50 estimated by the last or 0 and β is set as L

100 or
other reasonable values.

224 Y. Li et al.

Algorithm 1. extended DDSketch Insert Algorithm
Input: the number x ∈ R> 0
1: if x < L then

2: i ←
⌈

x
β

⌉
//Find bucket index i if x belongs to the head data

3: Hi ← Hi + 1 //Bucket H[i] adds 1
4: else
5: i ← ⌈

logγ(x)
⌉
//Find bucket index i if x belongs to the tail data

6: Bi ← Bi + 1 //Bucket B[i] adds 1
7: end if

In the phase of insertion, let γ := (1+α)
(1−α) . If the input number x is less than

L, bucket H[
⌈

x
β

⌉
] adds 1. Otherwise, bucket B[

⌈
logγ(x)

⌉
] adds 1. This is shown

in Algorithm 1.
In the phase of query, given a quantile percentage q, extended DDSketch

try to find the minimum index i which makes
∑i

j=0 Hj > q(n − 1). If we suc-
ceed in finding the index i, extended DDSketch returns the estimated quantile
2i−1
2 β. Otherwise, extended DDSketch finds the minimum index i which makes∑
j=0 Hj +

∑i
j=0 Bj > q(n − 1) and returns the estimated quantile 2γi

γ+1 . The
detail is described in Algorithm 2. Finally, we update L to the estimated p50.

Algorithm 2. extended DDSketch Query Algorithm
Input: 0 ≤ q ≤ 1
Output: the estimated q-quantile
1: count ← 0 i ← −1
2: while i < len(H) && count ≤ q(n − 1) do
3: i ← i + 1
4: count ← count +Hi //Accumulate bucket H[i] in order
5: end while
6: if count > q(n − 1) then

7: return 2i−1
2 β //The q-quantile falls in bucket H[i]

8: end if
9: while count ≤ q(n − 1) do
10: i ← min ({j : Bj > 0 ∧ j > i}) //Accumulate non-empty bucket B[j] in order
11: count ← count +Bi;
12: end while

13: return 2γi

γ+1 //The q-quantile falls in bucket B[i]

3.3 Anomaly Detector

After encoding, traces in time interval are transformed into status vector x =
[x1, x2, ..., xm]. Anomaly detection is converted to outlier detection based on the
time series of status vector x. Robust Random Cut Forest (RRCForest) [5] is
a streaming model and follows the mechanism of isolation forest [9]. In detail,
the point set is distributed in a multidimensional space S ⊂ R

m, for each case,

MicroSketch: Performance Issue Detection and Localization 225

RRCForest randomly chooses a dimension and randomly chooses a value in this
dimension to cut. This process is called dimension cut. After one dimension
cut, the whole space is divided into two subspaces. Subsequently, two subspaces
are recursively cut in the same way. A point is determined to be isolated if it
occupies a subspace exclusively. The scatter chart in Fig. 3 shows an isolated
point occupying the shaded left upper corner exclusively.

Fig. 3. The distribution of status vectors and the mechanism of RRCForest. The first
and second line charts in the left part are p90 handling time of operation front-1.Recv
and product-1.sql-query, respectively. The third line chart is the anomaly score given
by adaptive RRCForest. The scatter chart is the distribution of status vectors and an
example of the dimension cut of a two-dimensional space S ⊂ R

2.

Taking two operations (front-1.Recv and product-1.sql-query) in Hipster-
Shop (Subsect. 4.1) as an example, we use Status Encoder to transform traces
in each time interval into status vector x = [x1, x2]. Both the distribution of
each dimension and the distribution of the vectors are shown in Fig. 3. We inter-
mittently injected four anomalies into service instance product-1. There are four
peaks in the handling time of product-1 because of fault injection. The scat-
ter chart in Fig. 3 presents that several vectors corresponding to the peaks are
labeled as red forks. The red forks can be isolated by two or three dimension
cuts and those dense normal blue dots require more cuts to be isolated.

Next, we describe how RRCForest detects anomalies. The process of dimen-
sion cut mentioned above is described by a binary tree structure, called Robust
Random Cut Tree (RRCTree). As shown in Fig. 4, RRCTree owns two kinds
of nodes. One is leaf , represented as a square rectangle, the other is branch ,
represented as a rounded rectangle. We also summarize three phases for the
construction of RRCTree, namely initialization, insertion and query.

226 Y. Li et al.

Fig. 4. The construction of RRCTree. U and L keeps the maximum and minimum of
each dimension of the leaves to avoid repeatedly calculating them for Eq. 1. d and v
denote the cut dimension and cut value, respectively. Each leaf is assigned to a status
vector and each branch records how the vectors are isolated.

In the phase of initialization, we create an empty tree, given in Fig. 4-I.

wi =
maxx∈Sxi − minx∈Sxi∑
i (maxx∈Sxi − minx∈Sxi)

. (1)

In the phase of insertion, given a RRCTree T ′, we insert a vector x. Let S′

as all vectors in RRCTree T ′ and S = S′ ∪ x. If RRCTree is empty (case 1), we
directly create a leaf, assigned to this vector. Figure 4-➊ shows the case 1.

If RRCTree is non-empty (case 2), we move on to the following discussion.
The case 2 is further divided into three sub-cases. We randomly select the cut
dimension d according to the weight wi which is calculated in the Eq. 1. After
selecting cut dimension d, we randomly and uniformly choose a cut value v ∈
[minx∈Sxd,maxx∈Sxd]. If v ≤ minx′∈S′x′

d (case 2–1), we create a branch and
a leaf that is assigned to the vector x. Then, we set the created leaf as the
left subtree of the created branch and the RRCTree T ′ as the right subtree. If
v > maxx′∈S′x′

d (case 2–2), we set the RRCTree T ′ as the left subtree of the
created branch and the created leaf as the right subtree. If neither is the case
(case 2–3), we consider inserting the vector x into the left subtree of RRCTree
T ′ or right subtree. In detail, for the cut dimension d′ and cut value v′ of the
root branch, if xd′ ≤ v′, we insert the vector x into the left subtree of RRCTree
T ′. Otherwise, we insert the vector x into the right subtree. Since the subtree is
also a RRCTree, the insertion can run recursively until it goes back to the case
2–1 or case 2–2. In sum, Fig. 4-➋ shows the case 2–1. The case 2–2 is similar to
the case 2–1. Figure 4-➌-1 shows the case 2–3.

The last case (case 3) is to insert a variable-length vector x and len(x) >
maxx′∈S′ len(x′). We create a branch, named dimension branch, which repre-
sents that a new dimension occurs. Then, we set RRCTree T ′ as the left subtree
of the created dimension branch and the inserted vector as the right subtree.
Figure 4-➌-2 shows the case 3.

Further, in order to prevent the tree from excessively expanding, we set
tree size (128 in this paper) in advance and delete the earliest point from the
tree when the number of leaves exceeds tree size. Deletion is similar to insertion.

MicroSketch: Performance Issue Detection and Localization 227

Fig. 5. An example of calculating the anomaly score. (a) The cut rates of red leaf are
22
1

, 45
23

and 78
68

. The score of the leaf is 22. (b) The cut rates of red leaf are 3
1

and 16
4

and the score of the leave is 4. The higher the score, the more anomalous the vector.

In the phase of query, we obtain an anomaly score for the inserted vector. As
soon as the insertion of a vector is complete, we query its score. We define the
cut rate of a branch as r = max(nleft,nright)

min(nleft,nright)
, where nleft is the number of leaves

that belong to the left subtree of the branch and nright is the number of leaves
that belong to the right subtree of the branch. We find all ancestor branches in
the path from the leaf corresponding to the vector to the root branch except
dimension branch and calculate these branches’ cut rates. Logically, the score
of the vector is equal to the maximum in these cut rates. Figure 5 presents two
examples of how to calculate the anomaly score of a leaf.

Therefore, anomaly score is closely related to tree size. Practically, we give
a threshold τ = mean × log(tree size), where mean denotes the average history
score. If one’s score exceeds the threshold τ , we regard it as an anomaly.

The above section illustrates how a RRCTree is constructed and queried. As
listed in Eq. 1, the selection of cut dimension is random and probabilistic. To
make this random construction more convergent to its expectation, we generally
build multiple RRCTrees simultaneously and independently. The final score is
the average of all RRCTrees’ scores. Therefore, in practice, we have to define
a parameter tree number (50 in this paper by default), which determines how
many RRCTrees Anomaly Detector maintains.

Fig. 6. The details of Fault Locator. Each RRCTree independently points out an
anomalous invocation. The instance C is viewed as the root cause because there are
four RRCTrees voting for C.

228 Y. Li et al.

3.4 Fault Locator

Once Anomaly Detector finds an outlier, Fault Locator will be triggered.
For a RRCTree, the dimension of the branch corresponding to the largest
cut rate is considered an anomalous dimension. Each RRCTree points out
an anomalous dimension of the outlier. An anomalous dimension repre-
sents that one type of invocation is anomalous. If the invocation is anoma-
lous, we conclude that the upstream service instance or downstream service
instance may be anomalous. RRCForest gives a set of anomalous invoca-
tions [I(u1, d1), I(u2, d2), ..., I(uk, dk)], where u and d denote upstream service
instance and downstream service instance, respectively. To further determine
the most likely root cause, we propose a voting mechanism. Each anomalous
invocation I(u, d) votes for service instance u and service instance d. The service
instance with the most votes is regarded as the root cause. Figure 6 presents that
instance C is determined as the root cause after the vote of four RRCTrees.

4 Experiment Setup

4.1 Datasets

We use two datasets to validate our approach. One, named A, is based on one
of the most widely-used open-source microservice systems, Hipster-Shop. The
other, named B, is based on a production microservice system in China Mobile,
the largest telecommunication company in China. Table 2 shows some details
of our experimental datasets. We implement MicroSketch with Python 3.7. All
experiments are conducted on a workstation with 4-core 2 GHz Intel Core i5-
1038NG7 CPU and 16 GB memory.

Table 2. Experimental datasets

Dataset Benchmark Fault number Fault type Trace number

A Hipster-shop 50 Network, CPU, IO read, IO write 2,902 K

B Production system 8 Network, CPU 168 K

Hipster-Shop Microservice System. This system is an e-commerce website
with 10 microservices that are implemented in different programming languages
and intercommunicate using gRPC. We continuously run a workload generator,
which can simulate real-world users. The microservice benchmark is deployed in
a Kubernetes cluster that consists of 1 master node and 5 worker nodes based on
virtual machines, which singly run with Ubuntu 18.04 OS. To mimic performance
issues, we use two tools, Chaosblade3 and Strace4 to inject four types of faults
into Hipster-Shop. We injected 50 faults to Hipster-shop in total. Each fault
injection lasts for 30 to 60 s.
3 Chaosblade, https://github.com/chaosblade-io/chaosblade.
4 Strace, https://strace.io.

https://github.com/chaosblade-io/chaosblade
https://strace.io

MicroSketch: Performance Issue Detection and Localization 229

Real-World Microservice System. Dataset B, released by the 2020 AIOps
Challenge Event, is based on a real-world production microservice system in
China Mobile. In particular, the workload of the system in B is a replica of the
real-world workload. The types of faults include network fault and CPU fault.
Note that since this event does not only focus on microservice applications, we
only selected those faults related to microservices on May 31st, 2020.

4.2 Evaluation Metric

We use Precision (P), Recall (R) and F1 score (F1) to compare the per-
formance of anomaly detection. Precision is computed by TP

TP+FP , while Recall
is computed by TP

TP+FN , where TP, FP and FN refer to the number of anoma-
lous time intervals that are correctly predicted to be anomalous, the number of
normal time intervals that are incorrectly predicted to be anomalous, and the
number of anomalous time intervals that are incorrectly predicted to be normal,
respectively. F1 score is calculated by 2 × P×R

P+R .
We employ the following two widely-used metrics by previous work [18], to

evaluate the effectiveness of Fault Locator. Recall of Top-k (R@k) refers to
the probability that root causes can be included in the top k results. Higher
R@k denotes more effective root cause localization. We choose R@k (k = 1, 2, 5)
in the experiment. EXAM Score (ES) refers to the average count of incorrect
candidates that have to be excluded manually by operators before localizing the
correct root cause. If ES is larger than 10, we set ES as 10.

5 Experimental Evaluation

5.1 Effectiveness Comparison

We use some state-of-the-art trace-based unsupervised approaches to validate the
performance of MicroSketch on anomaly detection and RCA, including Micro-
Rank [18], tprof [6] and TraceAnomaly [10]. Note that we assume that all the
anomalies have been detected before RCA.

Anomaly Detection. Table 3 compares the overall performance of anomaly
detection and lists the obtained result with the best F1 score. MicroSketch,

Table 3. Comparisons of MicroSketch’s anomaly detector and baselines.

Dataset Approach F1 score F1 score impr. Precision Precision impr. Recall Recall impr.

A MicroSketch 0.925 – 0.93 – 0.92 -

MicroRank 0.834 ↑ 10.9% 0.84 ↑ 10.7% 0.829 ↑ 11.0%

tprof 0.413 ↑ 124.0% 0.327 ↑ 184.4% 0.493 ↑ 86.6%

TraceAnomaly 0.804 ↑ 15.0% 0.823 ↑ 13.0% 0.786 ↑ 17.0%

B MicroSketch 0.934 – 0.877 – 1.0 –

MicroRank 0.865 ↑ 8.0% 0.90 ↓ –2.6% 0.833 ↑ 20.0%

tprof 0.545 ↑ 71.4% 0.48 ↑ 82.7% 0.631 ↑ 58.5%

TraceAnomaly 0.804 ↑ 16.2% 0.70 ↑ 25.3% 0.946 ↑ 5.7%

230 Y. Li et al.

Table 4. Comparisons of MicroSketch’s fault locator and baselines

Dataset Approach R@1 R@1 Impr. R@2 R@2 Impr. R@5 R@5 Impr. Exam Score

A MicroSketch 0.96 – 0.96 – 1.0 – 0.16

MicroRank 0.98 ↓ –2.0% 0.98 ↓ –2.0% 0.98 ↑ 2.0% 0.2

tprof 0.64 ↑50.0% 0 .64 ↑ 50.0% 0.70 ↑ 42.9% 3.12

TraceAnomaly 0.62 ↑ 54.8% 0.70 ↑ 37.1% 0.86 ↑ 16.3% 1.98

B MicroSketch 1.0 – 1.0 – 1.0 – 0.0

MicroRank 1.0 0.0% 1.0 0.0% 1.0 0.0% 0.0

tprof 0.75 ↑ 33.3% 0.75 ↑ 33.3% 1.0 0.0% 1.0

TraceAnomaly 0.875 ↑ 14.3% 0.875 ↑ 14.3% 0.875 ↑ 14.3% 1.125

MicroRank and TraceAnomaly achieve over 0.8 in F1 score. However, MicroS-
ketch achieves the best result on both A and B with an average of 40.9% improve-
ment in F1 score. The F1 score of MicroSketch outperforms the compared unsu-
pervised approaches by 10.9%∼124% on A and by 8.0%∼71.4% on B. tprof per-
forms poorly because tprof detects anomalies using simple ratio relationships.

Root Cause Localization. Table 4 compares the overall effectiveness of RCA.
The R@1 results of MicroSketch on A and B are 0.96 and 1, respectively. MicroS-
ketch achieves an average of 25.0% improvement in R@1. The ES of MicroSketch
achieves 0.16. MicroRank works better in RCA since MicroRank fully leverages
PageRank and Spectrum technology and takes a lot of time to get a convergent
result. tprof intuitively believes that the more times an operation is called and
the longer time it takes, the more anomalous it is. In the operation and main-
tenance phase, the uncommon pattern should be more concerned rather than
the time-consuming pattern. TraceAnomaly analyzes root causes by one specific
anomalous trace rather than combining all available traces.

5.2 Adaption

Fig. 7. The anomaly score varies from 19:00 to 22:00 about three hours in Hipster-
Shop. At 20:17, product service instances increase from 2 to 3. This is shown in blue
slash shadow. At 21:14, we inject product-2 instance with 120 ms latency and this is
shown in the red grid shadow. (Color figure online)

MicroSketch: Performance Issue Detection and Localization 231

Figure 7 demonstrates the adaptability of MicroSketch to changes in system
topology. In Fig. 7, the topology of Hipster-Shop changes due to the product
service’s auto-scaling at 20:17. MicroSketch perceives that the pattern of trace
data is out of the way and gives the system a high anomaly score at 20:18. Since
the topology change is stable, MicroSketch adapts to the new pattern and the
anomaly score gradually returns to normal again. At 21:14, we actively inject
a latency fault to product-2, one of the instances of product service. At 21:15,
MicroSketch successfully detects anomaly and localizes the root cause (product-
2). MicroSketch also owns the ability to adapt to other forms of service changes,
such as service update.

Table 5. The overhead of the entire MicroSketch and single modules of MicroSketch.

Module CPU utilization (%) Memory usage (MB) Time(s) Note

MicroSketch 12 ± 2 200 ± 20 1.1 ± 0.3 10000 traces

Status encoder 12 ± 2 170 ± 10 0.9 ± 0.2 10000 traces

Anomaly detector 12 ± 2 180 ± 10 0.2 ± 0.1 1 time interval

Fault locator 12 ± 2 120 ± 10 0.001 1 anomaly

5.3 Overhead

Table 5 shows the overhead of various modules of MicroSketch. Status Encoder
consumes about 12% CPU utilization, 170 MB memory and 0.9 s to encode 10000
traces as status vector. Anomaly Detector takes about 12% CPU utilization, 180
MB memory and 0.2 s to detect whether a vector is anomalous or not. Fault Loca-
tor spends very little time which is smaller than 0.001 s and consumes 12% CPU
utilization and 120 MB memory. The whole MicroSketch costs about 12% CPU
utilization, 200 MB memory and 1.1 s to analyze 10000 traces. Compared to the
overhead of other baselines in Table 1, MicroSketch reduces the memory usage
by about 50% and is at least 60x faster. MicroSketch is more lightweight because
MicroSketch exploits two efficient data structure DDSketch and RRCForest with
a low complexity.

Status Encoder ’ space complexity is sublinearly related to the number of
traces in the time interval, and the time complexity is linearly related to the
number of traces in the time interval. Anomaly Detector ’s space complexity
is linearly related to the product of tree size and tree number, and the time
complexity is sublinearly related to the product of tree size and tree number.

232 Y. Li et al.

Fig. 8. Comparisons of exact quantile, DDSketch and extended DDSketch. (a) The
exact quantiles vs. the values estimated by DDSketch and extended DDSketch. (b)
The exact p90 vs. the estimated p90 of a data stream (20 batches of 100,000 values).
(c) The consuming time of exact quantile and extended DDSketch.

Fig. 9. Comparisons of exact quantile and sketch technology. (a) The time using exact
quantile and the time using sketch. (b) The memory usage using exact quantile and
the memory usage using sketch. (c) The improvements that sketch brings.

5.4 Sketch Technology

Efficiency and Error. Figure 8-a shows that extended DDSketch has the same
relative-error guarantees as DDSketch on the tail data. However, extended DDS-
ketch reduces bucket usage at the cost of losing the relative-error guarantees on
the head data which we barely focus on. We employ extended DDSketch on 20
batches of 100000 values to calculate the p90 and the result is shown in Fig. 8-
b. The estimated p90 always keeps relative-error guarantees. The relative-error
guarantees ensure that the estimated quantiles can be used for the following
modules. We implement quicksort to calculate exact quantiles. Figure 8-c shows
the consuming time of exact quantile and extended DDSketch. The time of cal-
culating the estimated value is much less than the exact value when the number
of data increases.

Ablation. For MicroSketch, sketch technology is not indispensable. We remove
the sketch technology from Status Encoder and use exact quantile instead of
it. We analyze various numbers of traces in the time interval. Figure 9-a and
9-b show that the overhead of exact quantile rises dramatically as the number
of traces increases, but the rise of sketch technology is relatively flat. Figure 9-
c presents that the sketch technology achieves 170% improvement on time and
25.0% improvement on memory usage by analyzing 100000 traces. Thus, MicroS-
ketch can scale up readily in large microservice systems.

MicroSketch: Performance Issue Detection and Localization 233

Fig. 10. F1 score using various
parameters.

Fig. 11. R@1 using various parameters.

5.5 Sensitivity

Tree Size and Tree Number. Tree size, which determines how many vectors
RRCTree maintains, is a key parameter for our model. Tree number means how
many RRCTrees MicroSketch creates and also is significant. We set the different
values for these two parameters and conduct experiments on A. Figure 10 shows
that the difference between the maximum and minimum values of F1 score is
3%. Figure 11 shows that larger parameters can achieve a better result on RCA.
However, non-optimal parameters also work well and achieve 91%-95% in R@1.
In conclusion, MicroSketch is not sensitive to these two parameters.

Fig. 12. The performance of our model using various statistics.

Statistical Magnitude. We replace the p90 in the status vector with other
statistics. Figure 12 presents that different statistics have different effects. The
maximum and minimum values do not work well because of the system jitter.
Other simple statistics, such as mean, standard deviation and variance, are easily
influenced by a few extremums and lack the ability to perceive issues that slightly
affect only part of the requests. Therefore, quantile is a splendid statistic for
profiling data. Specific quantile forms specific feature. In practice, it is essential
to apply various key quantiles simultaneously in MicroSketch.

6 Discussion

MicroSketch forms sketch-based features for anomaly detection and combines the
information provided by all anomalous invocations for root cause localization.

234 Y. Li et al.

Therefore, MicroSketch keeps its effectiveness. However, there are some limita-
tions. Firstly, MicroSketch focus on the detection and localization of performance
issue, so it is helpless over the faults which manifest in other forms. Secondly,
MicroSketch relies on trace data. The credible trace architecture of microservice
systems is an important part to ensure the effectiveness of the method.

7 Related Work

Anomaly Detection. Both TraceAnomaly [10] and Nedelkoski [12], use deep
learning method to learn normal patterns of traces offline and detect anomalous
traces online. They are useful to detect trace anomalies. However, they require
a long time to train the model. Further, when the microservice system changes,
they have to retrain the model. Compared to them, MicroSketch does not need
training and owns the ability to adapt to the system without any human inter-
vention. Seer [3] leverages deep learning to learn spatial and temporal patterns
with the KPIs of each service. Hora [13], based on monitored time series met-
rics, combines architectural knowledge with Bayesian networks to determine the
occurrence of performance issues. Microscope [8] detects anomalies by compar-
ing the KPIs with the SLOs of the application. Fully leveraging various types of
KPIs, these methods can detect more comprehensive anomaly types. Instead,
MicroSketch focuses on detecting performance anomalies and localizing root
causes more efficiently and effectively.

Root Cause Localization. Zhou [21] designs a trace visualization tool, which
allows application operators manually analyze anomalous traces. This tool is very
practical but labor-intensive because of the large scale of traces. While MicroS-
ketch provides automatic anomaly diagnosis and RCA. MicroRank [18] analyzes
clues provided by normal and abnormal traces and utilizes spectrum techniques
to localize root causes. tprof [6] hierarchically groups traces by request type and
trace structure and calculates increasingly detailed aggregated statistics. These
two methods spend a lot of time on obtaining fine-grained and convergent local-
ization results. Compared to them, MicroSketch is at least 60x faster and more
suitable for large-scale systems. As the number of traces grows, MicroSketch will
be more advantageous. Many RCA methods are based on KPI, such as Monitor-
Rank [7], Sieve [17] and CauseInfer [1]. MonitorRank [7] forms a system topology
graph and uses the personalized PageRank algorithm to determine possible root
causes. Sieve [17] reconstructs the system topology and infers possible root causes
by representative KPIs. CauseInfer [1] builds a two-layered hierarchical causal-
ity graph and uses statistical methods to infer root causes. MicroSketch utilizes
traces, which carry request information about invocation paths and latency of
these invocations, to acquire an API-level system topology that helps to precisely
localize root causes.

8 Conclusion

This paper presents MicroSketch, an unsupervised lightweight approach to
detect performance issues and localize root causes in microservice environments

MicroSketch: Performance Issue Detection and Localization 235

via Sketch-based features and adaptive RRCForest. MicroSketch can adapt to
changes in microservice systems. The experimental evaluation demonstrates the
efficiency and effectiveness of MicroSketch. Moreover, MicroSketch is at least 60x
faster than other methods in terms of diagnosis time. In practice, MicroSketch
overcomes the challenges imposed by the large scale of traces and the dynamic
of microservices, and can scale up readily in large microservice systems.

Acknowledgements. The research is supported by the National Key Research and
Development Program of China (2019YFB1804002), the National Natural Science
Foundation of China (No. 62272495, 61902440), the Basic and Applied Basic Research
of Guangzhou (No. 202002030328), and the Natural Science Foundation of Guangdong
Province (No. 2019A1515012229). The corresponding author is Pengfei Chen.

References

1. Chen, P., Qi, Y., et al.: Causeinfer: automatic and distributed performance diag-
nosis with hierarchical causality graph in large distributed systems. In: INFOCOM
2014, pp. 1887–1895. IEEE (2014)

2. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Present and
Ulterior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67425-4 12

3. Gan, Y., Zhang, Y., et al.: Seer: leveraging big data to navigate the complexity of
performance debugging in cloud microservices. In: ASPLOS, pp. 19–33 (2019)

4. Gao, K., Sun, C., et al., S.W.: Buffer-based end-to-end request event monitoring
in the cloud. In: NSDI 22, pp. 829–843. USENIX Association (2022)

5. Guha, S., Mishra, N., et al.: Robust random cut forest based anomaly detection
on streams. In: ICML, pp. 2712–2721. PMLR (2016)

6. Huang, L., Zhu, T.: tprof: performance profiling via structural aggregation and
automated analysis of distributed systems traces. In: SoCC 2021, pp. 76–91. ACM
(2021)

7. Kim, M., Sumbaly, R., et al.: Root cause detection in a service-oriented architec-
ture. ACM SIGMETRICS Perform. Eval. Rev. 41(1), 93–104 (2013)

8. Lin, J., Chen, P., Zheng, Z.: Microscope: pinpoint performance issues with causal
graphs in micro-service environments. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q.
(eds.) ICSOC 2018. LNCS, vol. 11236, pp. 3–20. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03596-9 1

9. Liu, F.T., Ting, K.M., et al.: Isolation-based anomaly detection. TKDD 6(1), 1–39
(2012)

10. Liu, P., Xu, H., et al.: Unsupervised detection of microservice trace anomalies
through service-level deep bayesian networks. In: ISSRE 2020, pp. 48–58. IEEE
(2020)

11. Masson, C., Rim, J.E., et al.: DDSketch: a fast and fully-mergeable quantile sketch
with relative-error guarantees. Proc. VLDB Endow. 12(12), 2195–2205 (2019)

12. Nedelkoski, S., Cardoso, J., Kao, O.: Anomaly detection from system tracing data
using multimodal deep learning. In: CLOUD 2019, pp. 179–186. IEEE (2019)

13. Pitakrat, T., Okanović, D., et al.: Hora: architecture-aware online failure predic-
tion. JSE 137, 669–685 (2018)

14. Shkuro, Y.: Mastering Distributed Tracing: Analyzing performance in Microser-
vices and Complex Systems. Packt Publishing Ltd, Birmingham (2019)

https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1007/978-3-030-03596-9_1

236 Y. Li et al.

15. Sigelman, B.H., Barroso, L.A., et al.: Dapper, a large-scale distributed systems
tracing infrastructure. Google, Inc, Technical Report (2010)

16. Soldani, J., Tamburriand, et al.: The pains and gains of microservices: a systematic
grey literature review. J. Syst. Softw. 146, 215–232 (2018)

17. Thalheim, J., Bhatotia, P., et al.: Cntr: Lightweight {OS} containers. In: 2018
USENIX, pp. 199–212 (2018)

18. Yu, G., Chen, P., et al.: Microrank: end-to-end latency issue localization with
extended spectrum analysis in microservice environments. In: WWW 2021, pp.
3087–3098. ACM / IW3C2 (2021)

19. Yu, G., Chen, P., Zheng, Z.: Microscaler: automatic scaling for microservices with
an online learning approach. In: ICWS 2019, pp. 68–75. IEEE (2019)

20. Yu, G., Chen, P., Zheng, Z.: Microscaler: cost-effective scaling for microservice
applications in the cloud with an online learning approach. IEEE TCC 10(2),
1100–1116 (2022)

21. Zhou, X., Peng, X., et al.: Fault analysis and debugging of microservice systems:
industrial survey, benchmark system, and empirical study. TSE 47(2), 243–260
(2018)

	MicroSketch: Lightweight and Adaptive Sketch Based Performance Issue Detection and Localization in Microservice Systems
	1 Introduction
	2 Background
	3 System Design
	3.1 System Overview
	3.2 Status Encoder
	3.3 Anomaly Detector
	3.4 Fault Locator

	4 Experiment Setup
	4.1 Datasets
	4.2 Evaluation Metric

	5 Experimental Evaluation
	5.1 Effectiveness Comparison
	5.2 Adaption
	5.3 Overhead
	5.4 Sketch Technology
	5.5 Sensitivity

	6 Discussion
	7 Related Work
	8 Conclusion
	References

