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ABSTRACT

Root cause analysis (RCA) in large-scale microservice systems is

a critical and challenging task. To understand and localize root

causes of unexpected faults, modern observability tools collect and

preserve multi-modal observability data, including metrics, traces,

and logs. Since system faults may manifest as anomalies in di�erent

data sources, existing RCA approaches that rely on single-modal

data are constrained in the granularity and interpretability of root

causes. In this study, we present Nezha, an interpretable and �ne-

grained RCA approach that pinpoints root causes at the code region

and resource type level by incorporative analysis of multi-modal

data. Nezha transforms heterogeneous multi-modal data into a

homogeneous event representation and extracts event patterns by

constructing and mining event graphs. The core idea of Nezha is

to compare event patterns in the fault-free phase with those in

the fault-su�ering phase to localize root causes in an interpretable

way. Practical implementation and experimental evaluations on

two microservice applications show that Nezha achieves a high

top1 accuracy (89.77%) on average at the code region and resource

type level and outperforms state-of-the-art approaches by a large

margin. Two ablation studies further con�rm the contributions of

incorporating multi-modal data.
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Figure 1: Multi-modal observability data (i.e., metrics, traces,

and logs) are used to localize �ne-grained root causes (e.g.,

regions of code defects or resource types).

1 INTRODUCTION

Microservice architecture decomposes an application into many

small pieces of services, allowing developers to modify and redeploy

speci�c services rather than the entire application [23, 70]. However,

interconnected services are deployed across multiple hosts and the

number of services in production increases rapidly as the business

develops. Many factors (e.g., dynamic container environment and

complex service invocations) can a�ect the performance and avail-

ability of microservice applications, leading to more performance

and availability issues [67, 71].

To help Site Reliability Engineers (SREs) better understand the

performance and availability of applications, observability is pro-

posed with a capability of comprehensive visibility into distributed

applications [58]. The primary data used in observability are met-

rics, logs, and traces, which are referred to as “multi-modal observ-

ability data” [58]. As shown in Fig. 1, when a fault occurs, SREs

typically need to combine clues extracted from multi-modal observ-

ability data to localize the root cause, which is themost fundamental

reason for the fault [62].

Manually troubleshooting root causes based on multi-modal data

is time-consuming and error-prone in complex microservice appli-

cations due to the explosion and heterogeneity of the observability

data. Over the years, many metrics-based approaches [6, 26, 35,

61, 63, 64], trace-based approaches [8, 9, 13, 22, 32, 66, 67, 71], and

log-based approaches [3, 20, 36, 45, 51, 55] have been devoted to au-

tomatically localize root causes. However, we identify three primary

limitations of existing root cause analysis (RCA) approaches.

(1) Insu�cient exploitation on multi-modal data. Most of the

state-of-the-art RCA approaches [3, 32, 35, 55, 64, 67] only use

single-modal data to pinpoint root causes. Since system failures

may manifest as anomalies in di�erent modal data, adopting

single modal data could lose key RCA clues and thus impact

the accuracy of RCA approaches (details in § 2.2).

(2) Coarse-grained root causes. Existing single-modal studies

mainly localize the root causes of microservice applications
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at the service level [3, 6, 35, 51, 64, 66]. Such coarse-grained

root causes require SREs to manually troubleshoot the true root

causes (e.g., speci�c code region or resource type) of the faulty

services, which delays the failure recovery process.

(3) Weak interpretability of root causes. Existing RCA tech-

niques place insu�cient emphasis on the interpretability of root

causes, which is crucial for SREs to fully understand the under-

lying issues. For example, PDiagnose [21] takes multi-modal

data as input by transforming heterogeneous logs and traces

into time series. However, this approach sacri�ces the detailed

execution context of requests (e.g., log contents and trace paths).

As a result, it fails to provide detailed explanations regarding

where and why the faulty requests occurred.

Nezha Approach. To overcome the above limitations, we pro-

pose Nezha, which is a protection deity with multiple arms in Chi-

nese mythology, an interpretable and �ne-grained RCA framework

by incorporative analysis of multi-modal data. When Anomaly De-

tector (§ 4.1) detects an anomaly on front-end service requests,

Data Integrator (§ 4.2) takes heterogeneous metrics, traces, and

logs from the fault-free construction and fault-su�ering produc-

tion phase as inputs and transforms them into the homogeneous

event representation. Events in the same service instance are then

ordered according to their timestamps and event groups across

service instances are connected according to span IDs to construct

event graphs while overcoming clock synchronization problems.

Pattern Miner (§ 4.3) then extracts the common execution patterns

of the application from the event graphs.

After transforming multi-modal data into events (i.e., excluding

speci�c request parameters), the event patterns in the construction

phase are similar to those in the production phase. During the fault-

su�ering phase, faults manifest themselves in one or more data

sources, which causes some event patterns to deviate from their

expected execution paths. Therefore, the critical problem of Nezha

is to identify (1) which event patterns deviate from expected execution

paths, and (2) how these patterns change in the actual fault-su�ering

phase. To localize such faulty event patterns, Expected Pattern

Ranker (§ 4.4.1) is proposed to solve the problem (1) by pinpointing

excepted patterns that frequently occur in the fault-free phase but

rarely happen in the fault-su�ering phase. The faulty event patterns

re�ect which code regions or resources type are culprits, which is

more �ne-grained than the existing RCA approaches of pinpointing

faults at the service level (solution of limitation 2).

Actual Pattern Ranker (§ 4.4.2) is used to solve problem (2) by lo-

cating the actual patterns that frequently occur in the fault-su�ering

phase but rarely happen in the fault-free phase. Such newly emerg-

ing patterns in the fault-su�ering phase facilitate SREs to under-

stand faults. Eventually, Pattern Aggregator (§ 4.5) correlates ex-

pected patterns with actual patterns and takes pattern pairs as

root cause candidates. Nezha outputs actionable root causes with

high interpretability by comparing expected patterns with actual

patterns (solution of limitation 3).

We conducted extensive studies to evaluate Nezha on two pop-

ular microservice applications, namely TrainTicket [12] and On-

lineBoutique [14]. Bene�ting from the use of multi-modal observ-

ability data, Nezha achieves a high top-1 accuracy (89.77%) and sur-

passes all compared approaches by a largemargin (61.45% ∼ 74.63%)

when identifying root causes at the service level. When identifying

root causes at the inner-service level (i.e., code region or resource

type), Nezha outperforms advanced baselines by 67.47% ∼ 74.85%

in a high top-1 accuracy. Moreover, two ablation studies further

con�rm the contribution of incorporating multi-modal data.

Contributions. This study makes the following contributions,

• We introduce a novel approach to represent heterogeneous multi-

modal observability data (i.e., metrics, traces, and logs) in a uni-

�ed homogeneous event format. This representation enables the

construction of event graphs and facilitates the future integrated

analysis across multi-modal observability data.

• We presentNezha, an interpretable and �ne-grained microservice

RCA approach. Nezha is a statistical method to localize more

granular and actionable root causes (i.e., code region or resource

type) with high interpretability, which facilitates SREs to take

mitigation actions in con�dence.

• We implement the prototype of Nezha [69] and conduct extensive

experiments on two widely-used microservice applications to val-

idate the e�ectiveness and e�ciency of Nezha. The results show

that Nezha outperforms the state-of-the-art RCA approaches at

both service and inner-service level.

• We enhance the observability of two widely-used microservice

applications OnlineBoutique and Trainticket, and open source

them at [46] and [47], which will facilitate the future anomaly

detection and RCA research on multi-modal data.

2 BACKGROUND AND MOTIVATION

2.1 Background

Observability. Observability is a measure of how well the internal

states of a system can be inferred from knowledge of its external

outputs [58]. It has been increasingly applied to microservices be-

cause cloud-native environments become more and more complex,

and the potential root causes of faults become more challenging

to pinpoint. Observability typically uses three types of telemetry

data — metrics, traces, and logs — to provide deep visibility into

distributed systems. Observability allows SREs to monitor systems

more e�ectively, helping them identify and connect the e�ects in

complex chains and trace them back to their causes.

Metric. Metrics are numerical values that describe the status of

the microservices and infrastructure over a period of time. Metrics

can be further classi�ed as system-level metrics and application-

level metrics [27]. System-level metrics such as memory and CPU

usage are immediate concerns whenever SREs identify a perfor-

mance degradation. SREs can identify issues caused by insu�cient

resources by analyzing system-level metrics. However, system-level

metrics cannot help solve problems caused by code defects.

Application-level metrics (e.g., request latency or success ratio)

are derived from monitoring requests to describe the application

status. Such metrics typically re�ect the faults’ surface rather than

root causes of faults. For example, a decrease in success rate re�ects

a decrease in availability, and SREs need to further analyze system-

level metrics, traces, and logs to identify the root cause. Therefore,

we analyze application-level metrics when performing anomaly

detection and focus on system-level metrics in RCA.

Log. Logs are textual records of what operations are performed

during program runtime. A log consists of a timestamp that tells
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Figure 2: An example of integration with traces and logs. (a) SREs cannot distinguish which request the failed logs belong to. (b)

The contents of the logs after integration. (c) SREs can track logs belonging to each request after integration.

when it occurred, with a static structure and free-form text. The

log template is the constant part of a log statement in the code [68].

Although logs provide valuable information about the individual

service instance, this localized knowledge lacks associations of logs

for the same request across di�erent services. Analysis logs on

di�erent services independently cannot characterize the behavior

of the overall system.

Trace. Traces represent the end-to-end paths of requests through

a distributed system. As a request moves through a system, every

operation performed is called a “span”, which records the caller

service, the callee service, and the operation time. Each trace corre-

sponds to a request and has a unique identi�er (e.g., trace ID). A

span is a named and timed operation that shares the same trace

ID within the same trace. Each span also has a unique span ID to

signify it. The root span (e.g., Front/Recv. in Fig. 2 (b)) is the �rst

span in a trace, while the other spans are correlated by parent-child

relationships based on the parent span ID properties (e.g., Fron-

t/Recv. is the parent of Recommend/ListRecommend in Fig. 2 (b)). The

contribution of traces is limited in RCA because they only record

the coarse-grained service operation-level information.

2.2 Motivation

This section presents four motivations with examples from awidely-

used microservice application, OnlineBoutique [14]. Details on the

application and data collection will be described in § 5.1.

Motivation 1: Enhancing RCA through Log and Trace Inte-

gration. Logs serve as a valuable resource to capture the internal

states and behaviors of individual microservices. However, analyz-

ing logs for each microservice in isolation may result in a loss of

global context, leading to ine�ective RCA [72]. For an e�cient RCA

approach, it is essential to combine logs from di�erent microser-

vices. Nonetheless, as illustrated in Fig. 2(a), logs generated by a

single microservice can interleave, as the microservice may concur-

rently serve multiple requests associated with distinct log entries.

For a failed request, existent RCA approaches cannot determine

which logs spreading across multiple services are associated with

the failed request to deduce the root cause.

Traces capture global service interactions across various servers

but o�er limited insight into local behaviors within individual spans.

To capitalize on the bene�ts of both logs and traces, we propose an

integration of traces, representing a coarse-grained global view, and

logs, providing a �ne-grained local view, to furnish a detailed global

perspective for each request. As depicted in Fig. 2(b), we accomplish

this integration by inserting trace IDs into log messages, leveraging

distributed tracing frameworks such as Opentelemetry [48] and

SkyWalking [57]. Inserting trace IDs in log messages is a preva-

lent practice in numerous industrial systems (e.g., WeChat) and

Normal	

Phase

CPU

Contention

Error

Return

Network

Jam

trace	anomalylog	anomalysystem-level	metric	anomaly

time

Figure 3: The occurrences of related system-level metrics,

traces and logs that can re�ect anomaly.

widely adopted frameworks (e.g., Spring Cloud). By employing this

approach, when a request encounters a fault (e.g., the red line in

Fig. 2(c)), RCA approaches can track the request-level descriptive

information (e.g., logs) to e�ectively identify the root cause.

Motivation 2: Enhancing RCA through the Integration of

Metrics, Logs, and Traces.While logs and traces o�er abundant

clues for RCA, certain anomalies may not be apparent in these

sources, leading to a potential loss of critical information pertaining

to root causes. Fig. 3 shows three examples of the occurrences of

system-level metrics, traces, and logs that can re�ect anomalies

when CPU contention, error return, and network jam faults were

injected into the OnlineBoutique product service. The anomalies in

metrics were identi�ed using the :-f rules, with further details to

be presented in § 4.1. Logs and trace spans that exclusively occur

during the fault-su�ering phase, but not in the fault-free phase, are

considered abnormal.

As demonstrated in Fig. 3, log and trace anomalies are absent

when CPU contention and network jam faults are injected, because

these faults do not alter the execution paths of OnlineBoutique.

In these cases, the log-based or trace-based RCA approaches may

miss the root causes. Fortunately, system-level metrics can provide

valuable insights to locate faults that remain undetected in logs and

traces. For instance, anomalies in CPU usage were detected when

CPU contention faults were introduced. However, solely relying on

metrics-based RCA approaches may not identify faults that are not

re�ected in metrics (e.g., error return fault in Fig. 3). The examples

in Fig. 3 underscore the necessity of integrating metrics with logs

and traces to e�ectively identify root causes.

Motivation 3: Enhancing RCA through the Integration of

Multi-modal Data in a Uni�ed Representation. As highlighted

in Table 1, a signi�cant portion of existing studies primarily fo-

cuses on single-modal data for root cause identi�cation. SREs are

naturally inclined to merge the results of metrics-based, traces-

based, and logs-based methods to accurately pinpoint true root

causes. However, this integration process can be labor-intensive

and ine�ective due to several reasons. (1) When individually ana-

lyzing logs, correlation between logs on di�erent machines is not

achievable, and a similar issue arises with metrics. Consequently,

single-modal techniques are likely to produce less accurate results

compared to multi-modal approaches. (2) In situations where SREs
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Table 1: Comparison of state-of-the-art RCA approaches.

Approach Metrics Logs Traces RCA Level

MicroScope [35] " % % Service

MicroRCA [64] " % % Service

SBLD [55] % " % Error Log

LogFaultFlagger [1] % " % Error Log

MicroRank [67] % % " Service Operation

TraceAnomaly [37] % % " Service Operation

Dejavu [33] " % " Fault Type

CloudRCA [74] " " % Service

PDiagnose [21] " " " Resource Type or Error Log

Nezha (ours) " " "
Code Region or

Resource Type

employ metrics-based, traces-based, and logs-based approaches to

determine root causes, each method may propose a distinct root

cause. There is currently no e�ective strategy to consolidate these

outcomes or distinguish the true root cause among them. As a

result, SREs are compelled to manually verify each result one by

one, which is a labor-intensive task. (3) Independently managing

multiple single-modal RCA approaches necessitates increased ef-

fort. In light of these challenges, we advocate for the integration of

multi-modal data into a uni�ed representation, which will enhance

the e�ciency and accuracy of RCA.

Motivation 4: Facilitating Fault Mitigation through Unsu-

pervised Fine-grained RCA with Enhanced Interpretability.

Dejavu [33] and CloudRCA [74] are two supervised multi-modal

RCA approaches that necessitate a substantial training dataset with

labels. However, acquiring such a dataset can be costly and imprac-

tical for each application. The multi-modal method PDiagnose [21]

converts heterogeneous multi-modal data into time series and iden-

ti�es root causes by evaluating abnormal time series. Although this

transformation can yield e�ective results, the process may result

in a loss of execution context, which is essential for developers

to comprehend the underlying root cause. Preserving the original

execution context enhances interpretability in root cause identi�-

cation, subsequently increasing SREs’ con�dence in the obtained

results. Moreover, localizing root causes at the service level requires

a more coarse-grained approach. SREs must expend considerable

e�ort to determine the speci�c code region or resource accountable

for faults. From the SREs’ perspective, a �ne-grained root cause

identi�cation can alleviate their workload and reduce the mean

time to mitigation. Therefore, we try to propose an unsupervised

�ne-grained RCA apparoach with improved interpretability, which

facilitates more e�ective fault mitigation.

2.3 Problem Formulation

We formalize the problem of �ne-grained root cause localization

using multi-modal observability data. Suppose that a large-scale

microservice system with # microservices, metrics, traces, and logs

are aggregated individually at each microservice. In a sliding time

window (e.g., 1 minute), we have multi-modal observability data

de�ned asΘ =

{(

\M= , \ T= , \L=

)}#

==1
, where at the =-th microservice,

\M= = {M1, ...,M<} indicates< metrics, \ T= = {T1, ...,TC } denotes

C traces, and \L= = {L1, ...,Lℓ } represents ℓ logs.

Given the data ΘC collected from fault-free construction phase

C and ΘP collected from fault-su�ering production phase P, we

�rst unify the multi-modal data in ΘC and ΘP as events and

extract event patterns P = {?1, ..., ?: } via constructing and min-

ing event graphs. We attempt to identify �ne-grained root causes

through three phases: 1) we identify which event patterns do not

follow expected execution paths and rank them into expected pat-

tern list !8BCE , where !8BCE = {..., (?8 , (2>A4E (?8 )), ..., }; 2) we pin-

point how expected patterns change in the actual fault-su�ering

phase and rank them into actual pattern list !8BCA , where !8BCA =

{..., (? 9 , (2>A4E (? 9 )), ..., }; 3) we correlate expected patterns with

actual patterns and takes pattern pairs as �nal root cause list

!8BCR = {..., (?8 , ? 9 , (2>A4E (?8 )), ...}. SREs can check why ?8 turn

into ? 9 to determine the �nal solution to recover applications.

3 OVERVIEW

In this study, we present Nezha, an unsupervised �ne-grained RCA

approach by incorporative analysis of multi-modal data in an inter-

pretable manner. Figure 4 shows the overall structure of Nezha. The

activities of Nezha can be divided into the fault-free construction

phase and the fault-su�ering production phase. In the construction

phase, Nezha takes the fault-free observability data as input, which

contains all request types of the application within a time window.

Obtaining a short window of fault-free data is trivial for SREs be-

cause most of the time is in normal status and faults are scarce in

production environment [30]. We recommend setting the window

size to the same interval as the metric collection (1 minute by de-

fault in this study). Nezha integrates these observability data and

mines their patterns o�ine. Data integration and pattern mining

in the construction phase are the same as in the production phase.

In the production phase, 1○ Anomaly Detector (§4.1) detects

whether the performance and availability of the system are abnor-

mal in real time. If an anomaly occurs, 2○ Data Integrator (§4.2)

uni�es the multi-modal data in the abnormal time window into

events and consolidates the events into event graphs. 3○ Pattern

Miner (§4.3) extracts common patterns and calculates support for

them from the event graphs in parallel. 4○ Expected Ranker in Pat-

tern Ranker (§4.4) ranks the patterns that frequently occur in the

fault-free phase but rarely in the fault-su�ering phase as the ex-

pected patterns. Actual Ranker ranks the patterns that frequently

occur in the fault-su�ering phase but rarely in the fault-free phase

as the actual patterns. 5○ Pattern Aggregator (§4.5) aggregates the

expected patterns and actual patterns to determine the ranked list

of root cause candidates with interpretability. Compared with ex-

istent RCA approaches, Nezha provides �ne-grained root cause

candidates (i.e., region of code defect or resource type) and tells

SREs why candidates are anomalous.

4 DETAILED DESIGN

4.1 Anomaly Detector

As described in § 2.1, Nezha keeps monitoring application-level

metrics of systems to detect anomalies. Guaranteeing the user expe-

rience, which is typically re�ected in availability and performance,

is a critical requirement for cloud applications. The availability of

systems can be re�ected by the request success ratio, which is the

fraction of the number of successful requests to total requests over
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Figure 4: The overview of Nezha. Nezha uses the multi-modal observability data as input and outputs the ranked list of

suspicious �ne-grained root causes.

a period of time. The performance issues manifest themselves as

long-time request duration. To capture the tail latency, we use P90

latency, which is the average latency for the slowest 10% of requests

over a period of time. Compared to the average latency, P90 can

show the tail latency explicitly. As aforementioned, the success

ratio and P90 latency delineate the system’s health status. We use

time interval to denote how often the metrics are collected. The

time interval value is set for one minute in this study.

Anomaly Detector uses :-f rules [35] to determine whether the

target application is in an abnormal status. We calculate the mean

` and standard deviation f of success ratio and P90 latency in the

construction phase. In the production phase, Anomaly Detector

continually monitors the success ratio and P90 latency of front-end

service in a sliding time window. If the success ratio is less than ` −

:f or P90 latency is greater than ` +:f (: = 3 by default), Anomaly

Detector declares the current time window is abnormal and triggers

a root cause analysis. :-f rule is a simple but e�ective approach

and is widely used in academia and industry [35, 67, 75]. In Nezha,

this module can be easily replaced with other anomaly detection

approaches (e.g., USAD [2], RRCF [31] and JumpStarter [43]).

4.2 Data Integrator

After Anomaly Detector determines whether the application is

under abnormal status, Data Integrator �rst queries ΘP of the

application in the abnormal time window. Considering the het-

erogeneity of observability data, Data Integrator transforms the

observability data in the time windows into events, which is the

basic unit of Nezha. These events in the same service instance are

then ordered according to their timestamps and span IDs while

overcoming clock synchronization problems. Each request in the

time window corresponds to an event graph.

4.2.1 Unique Event Generation.

Definition 1 (Event 4). An event 4 records the execution status

of a system at a point in time. We use event set �8 = {40, ..., 4=} to

denote the set of all events for request 8 .

Metric. In each time window, a service has many logs but only

one metric sample. To overcome the heterogeneity between nu-

merical metrics and text-structured logs, Data Integrator replaces

the set of metrics with suspicious metric alerts. This is reasonable

because anomalous metrics that cause alerts provide more informa-

tion to RCA than normal metrics. Metrics alerts are generated when

metric values violate the :-f rule or static thresholds. Nezha is also

compatible with alarm systems such as Prometheus Alertmanager.

Front/Recv

Product/GetProduct

Front/Recv_Start

Raw	Trace Trace	Event

Product/GetProduct_Start

Product/GetProduct_End

Front/Recv_End

Transform

Figure 5: Transformation from a raw trace to trace events.

Front/Recv_start

Request	failed

Product/ListProd_start

Product/ParseCa_start

Parse	catalog	failed

Group	A:	Front Group	E:	Product

Front/GetCart_end

Cart/GetCart_asyn

GetCart	with	user

Start	list	product

Group	F:	Product

Group	C:	Front

Group	D:	Cart

Front/GetProd_start

Group	B:	Front

Server	Span	Event

Client	Span	Event

	Alert	EventLog	Event
CPU_Alert

Front/Recv_end

Front/GetCart_start

Front/GetProd_end

Product/ListProd_end

Product/ParseCa_end

Mem_Alert

Figure 6: An example of event graph in OnlineBoutique. All

trace events and log events have the same trace ID.

The time between the start and end of an alert is called alert time.

We treat alerts as events that repeatedly occur within the alert time.

As discussed in § 2.1, application-level metrics typically re�ect

faults’ symptoms rather than the root causes of faults. Therefore,

we only consider the system-level metrics in RCA. In addition, we

found that some alerts frequently occur no matter whether there

is a fault or not. Such regular alerts are not helpful to RCA and

sometimes even mislead SREs. To �lter out these irrelevant metric

alerts, Nezha excludes the alerts in the production phase that also

occur in the construction phase.

Log. Nezha �rst extracts and records the trace IDs, span IDs

(detail shown in § 2.2), and timestamps from raw log messages. Data

Integrator adopts a state-of-the-art log parsing approach Drain [19]

to extract the static log templates and dynamic log parameters from

the raw log messages in a streaming manner. After log parsing,

we treat the static log templates as log events. To distinguish the

log events associated with di�erent requests, each log event is

accompanied by its corresponding trace ID, span ID, and timestamp.

Trace. The relation between parent and child span can be di-

vided into synchronous and asynchronous calls. With regard to

synchronous calls, we consider the start and end of a span as two

trace events. These two event messages can be represented as a con-

catenation of the span name with “start” or “end” string. Figure 5
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shows an example of transforming traces with the synchronous

call to trace events. In terms of asynchronous calls, Data Integrator

represents them as events consisting of span name and the “asyn”

string, e.g., 4 =“Cart/GetCart_asyn”. Each trace event is accompa-

nied by its trace ID, span ID, and timestamp from span records.

4.2.2 Event Graph Construction.

Definition 2 (Event Graph 6). An event graph 68 = (�8 , !8=:)

is a directed graph of events in the event set �8 . A directed link between

4 9 and 4 9+1 (i.e., 4 9 → 4 9+1) denotes that 4 9 is followed by 4 9+1 during

the execution. We use �C and �P to denote the set of event graphs

for the construction and production phase, respectively.

For each request in a time window, Data Integrator constructs

an event graph in the following three steps.

(1) Order events in the same span. For each span, Data Integrator

obtains all log and trace events which occurred within that span.

Data Integrator then chronologically orders the log and trace

events into an event group based on their timestamps and adds

a sequence relationship from an event to its next event in the

group. Fig. 6 shows some examples of event groups.

(2) Insert metric events to event groups. Data Integrator inserts

the alert events after the �rst event of the event group if the

corresponding service has alert events without loss of generality.

It can also be inserted in other �xed locations as agreed. If

multiple alert events of the same service are detected, all alarm

events will be sequentially inserted after the �rst event. For

instance, Data Integrator inserts Mem_Alert and CPU_Alert of

cart service into its event group in Fig. 6.

(3) Insert child groups to parent groups. If the child span is

in the same service instance as the parent span (i.e., internal

function calls), Data Integrator inserts child groups after the

last event in parent groups whose timestamp is less than the

�rst event in the child group (e.g., the relation between Group E

and F in Fig. 6). We use timestamps directly because these two

groups are on the same service instance and on the same node,

so they do not have the problem of clock drift. For RPC call

spans across services, Data Integrator inserts the child group

after the �rst event of its parent group based on the parent span

ID to overcome the clock drift (e.g., the relation between Group

B and E in Fig. 6).

After these steps, we represent the heterogeneous multi-modal

data as homogeneous events and construct the relationships among

events as graphs. Though DeepTraLog [72], which focuses on anom-

aly detection rather than RCA, integrates logs and traces into

graphs, it does not consider metric clues. Nezha overcomes the

shortcoming of DeepTraLog by innovatively transforming metrics

into events and incorporating them into the event graph. The reason

why we use graphs rather than sequences like Minesweeper [44]

to represent the relationships between events is that microservice

applications may contain asynchronous calls. The event location

of asynchronous calls may change uncertainly in the sequential

sequences, making it di�cult for Nezha to mine for stable patterns.

Compared with PDiagnose [18] that transforms heterogeneous

multi-modal data as time series,Nezha retains the execution context

of requests when transforming multi-modal data as homogeneous

events, which allows for improved interpretability in RCA.

e1 e2 e3 e5

e1 e2 e3 e5

e1 e2
e3 e5

e4

Req1

Req2

Req1

Construction	Phase	GC

e1 e2 e6

e1 e2 e3 e5

e1 e2
e6

e4

Req1

Req2

Req1

Production	Phase	GP

Figure 7: Examples of event graphs in construction and pro-

duction phase. '4@8 denotes the 8th kind of request (e.g., login

or query product). The pattern 42 → 43 in �C turned into

42 → 46 in �P when a fault occurred.

Table 2: Example of Nezha to perform RCA from Fig. 7.

Pattern
Support Score

Deepth Rank((2>A4E )(C (P (2>A4E (2>A4A

41 → 42 3 3 0.5 0.5 1 2

42 → 43 3 1 0.75 0.25 2 1

42 → 44 1 1 0.5 0.5 2 -

43 → 45 3 1 0.75 0.25 3 -

42 → 46 0 2 0.0 1 2 3

“-” means that the pattern is aggregated by Nezha.

4.3 Pattern Miner

Definition 3 (Pattern p). A pattern p is a subgraph of contigu-

ous events in the set of event graphs � .

After integrating multi-modal data into event graphs, Nezha

extracts the fault-free and fault-su�ering patterns from�C and�P

by traversing all event graphs in parallel. The patterns in the event

graphs are �nite because logs have been parsed into templates and

only the directly connected events are considered. As an example

in the left part of Fig. 7, a pattern 41 → 42 → 43 matches the event

graph of the �rst request because the graph has 41 followed by 42
and 42 followed by 43 without other events involved.

Definition 4 (Support B). Given a pattern p’s count set �p =

{21, ..., 2: }, where 28 denotes p occurs 28 times in the event graph 68 ,

the support B (p) of pattern p is the sum of the counts in all graphs,

i.e., B (p) =
∑:
8=0 28 . BC (p) and BP (p) denote the support of p in �C

and�P , respectively. We use SC and SP to denote the support set of

all patterns in the �C and �P , respectively.

After extracting patterns, Pattern Miner counts the occurrences

of each pattern to calculate the support of each pattern. Table 2

shows an example of Pattern Miner mining patterns and calculating

supports in Fig. 7. In terms of pattern 42 → 43, it occurs in all three

graphs in the construction phase. Therefore, BC (42 → 43) = 3 in

the construction phase. To prevent repeated calculations of SC ,

we persist the results of SC into Pattern Storer. When diagnosing

faults, we are interested in identifying the root causes that result in

a large portion of overall abnormal behavior. Therefore, we discard

those pattern that rarely occurs by �ltering patterns whose support

less than B<8= (B<8= = 5 by default).

4.4 Pattern Ranker

After transforming multi-modal data as generalized events (i.e.,

excluding speci�c request parameters), the event patterns in the
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construction phase are similar to those in the production phase.

During the fault-su�ering phase, faults manifest themselves in one

or more data sources, which causes some event patterns to change.

In other words, some event patterns do not follow their expected

execution paths in the fault-free phase. Such patterns are likely to

reveal insights into events associated with root causes. For example,

when a fault occurs between the code region of 42 and 43 in Fig. 7,

SREs can check the event graphs one by one and identify that the

pattern 42 → 43 in �C turns into 42 → 46 in �P . SREs then take

the code region between 42 and 43 as the root cause candidate and

inspect the reason why 42 → 43 turns into 42 → 46 to determine

the �nal solution. We designed two rankers: Expected Ranker and

Actual Ranker to automate the above RCA process.

4.4.1 Expected Pa�ern Ranker. Expected Pattern Ranker aims to

identify which event patterns do not follow expected execution paths

and take them as expected patterns. Then SREs can check why these

patterns do not follow expected execution paths to solve faults.

The core idea of Expected Ranker is to rank event patterns that

occur multiple times in the fault-free phase but rarely in the fault-

su�ering phase above other event patterns. A ranking score (2>A4E
is de�ned to measure how much utility each pattern contributes

to root cause diagnosis. For each pattern p in C, Expected Pattern

Ranker computes its ranking score (2>A4E (p) as follows,

(2>A4E (p) = Pr(6 ∈ �C | p ⊑ 6)

=

BC (p)

BP (p) + BC (p)
.

(1)

The (2>A4E (p) of the pattern p quanti�es how distinctive p is to

the �C as opposed to the �P . If pattern p occurs multiple times in

�C while rarely in�P , p will be assigned a higher score. Therefore,

the patterns with higher ranking scores are more suspicious to be

root causes. As an example, an exception fault occurs in the code

region of 42 and 43 in the production phase in Fig. 7. From Fig. 7,

we can �nd that 42 is always followed by 43 in �C but rarely in

�P . Thus, it is intuitive to infer that there is a fault in the code

region between 42 and 43, causing 42 not to follow 43. In terms

of Pattern Ranker, it computes the ranking score of 42 → 43 as

(2>A4E (42 → 43) =
3

3+1 = 0.75, which is the highest score (i.e.,

most suspicious) in the example.

4.4.2 Actual Pa�ern Ranker. Though Expected Pattern Ranker

presents event patterns that do not follow expected execution paths,

SREs also expect to know how these patterns change in the actual

fault-su�ering phase, which will facilitate SREs to understand faults.

Therefore, Actual Pattern Ranker is designed to pinpoint the newly

emerging patterns that break their expected execution paths and

take them as actual patterns. The core idea of Actual Ranker is to

rank event patterns that occur multiple times in the fault-su�ering

phase but rarely in the fault-free phase above other event patterns.

For each pattern p in P, Actual Pattern Ranker de�nes its ranking

score (2>A4A (p) as follows,

(2>A4A (p) = Pr(6 ∈ �P | p ⊑ 6)

=

BP (p)

BC (p) + BP (p)
.

(2)
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Figure 8: Example of constructing anomaly graphs to get an

aggregated list in Pattern Aggregator.

Nezha search... admin

Root Cause Analysis >>

1. Root Cause Service: adservice

Excepted Pattern: adservice/GetAds Start à adservice.java:130 à adservice.java:140

Actual     Pattern: adservice/GetAds Start à adservice.java:130 à adservice.java:151

2. Root Cause Service:  cartservice

Metric Alert: CPU Usage

Monitor Result:

Root Cause Results     Anomaly Time: 2023-01-02 10:00:01      RCA Time: 2023-01-02 10:00:30

Figure 9: A demo for inspecting root cause candidate.

Actually, not all patterns in Expected Pattern Ranker and Actual

Pattern Ranker provide useful information for root cause diagnoses.

For example, the pattern 41 → 42 is given a score 0.5 in Fig. 7.

But 41 → 42 occurs 3 times in both �C and �P , which is hardly

helpful for analyzing the underlying cause. Therefore, we specify a

minimum score threshold (2>A4min to exclude such useless patterns.

In this way, the pattern p is placed in the ranked score list only

when (2>A4E (p) ≥ (2>A4min. After excluding useless patterns, we

refer to the ranked pattern list output by Expected Pattern Ranker

as the expected patterns list and the ranked pattern list output by

Actual Pattern Ranker as the actual patterns list.

4.5 Pattern Aggregator

Although Expected Ranker ranks patterns that point towards root

causes, it can sometimes return a long list which is unfriendly to

SREs. This is because faults may cause downstream patterns of root

causes in �P to change, resulting in all downstream patterns of

root causes in �C having a high score as root causes. For instance,

in the example in Fig. 7, the patterns 42 → 43 and 43 → 45 share the

same score as one exception fault between 42 and 43 causes neither

43 nor 45 to occur in �P . Actually, 42 → 43 and 43 → 45 point to

the same fault. Checking all patterns pointing to the same fault is

unnecessary and burdensome for SREs. In this study, we refer to the

downstream patterns with the same score like 43 → 45 as redundant

patterns. Pattern Aggregator aims to exclude the redundant patterns

of Expected Ranker to provide a more valuable list for SREs to speed

up troubleshooting.

Pattern Aggregator constructs anomaly graphs by associating

expected patterns and �ltering redundant patterns by retaining the

root patterns of graphs. If both patterns 48 → 4 9 and 4 9 → 4: are in

the list and (2>A4 (48 → 4 9 ) ≥ (2>A4 (4 9 → 4: ), Pattern Aggregator

will join 4: into 48 → 4 9 (i.e., 48 → 4 9 → 4: ). After iterating

all patterns in the list, Pattern Aggregator obtains some anomaly

graphs constructed from these patterns. Phase 1○ in Fig. 8 shows

an example of constructing anomaly graphs. Pattern Aggregator

then chooses the root patterns of these anomaly graphs as �nal
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expected patterns. Phase 2○ in Fig. 8 shows that the pattern number

decreased from 6 to 3 after excluding redundant patterns.

To improve the interpretability of Nezha, we correlate the ex-

pected patterns with actual patterns to provide the complete fault

scene. For the expected pattern, we identify its associated actual

pattern with the common pre�x. For instance, the expected pattern

41 → 42 → 43 has the common pre�x 41 → 42 as the actual pattern

41 → 42 → 46 in Fig. 7. If there is more than one actual pattern with

the common pre�x, we select the actual pattern with the highest

score as the actual pattern.

Eventually, Nezha outputs a ranked list of root causes candidates

to be checked. Candidates are ranked in descending order based on

the score of the candidate’s expected pattern. For expected patterns

with the same score, we place the pattern with the deeper depth in

the event graph further up the list because patterns with shallower

depths are more likely to be caused by anomaly propagations.

Moreover, we implement a demo of Nezha, shown as Fig. 9, to

demonstrate root causes candidates for SREs. As shown in Fig. 9,

one pair of expected and actual patterns constitutes a root cause

candidate. For candidates without metric alert events, Nezha shows

the service name and the code region between events (e.g., 1st

candidate in Fig. 9). Otherwise,Nezha displays themetric alert event

and corresponding monitoring view (e.g., 2nd candidate in Fig. 9).

To sum up, Nezha is able to provide �ne-grained and actionable root

cause candidates and tells SREs why candidates are anomalous.

5 EXPERIMENTAL EVALUATION

In this secion, we aim to evaluate Nezha to answer the following

research questions (RQs):

• RQ1: How e�ective is Nezha in service-level RCA?

• RQ2: How e�ective is Nezha in inner-service-level RCA?

• RQ3: How much does multi-modal data contribute to RCA?

5.1 Experiment Setup

Microservice Applications.We deploy two open-source microser-

vice applications: OnlineBoutique (OB) and TrainTicket (TT) in our

testbed. OnlineBoutique is a microservice system for e-commerce

and TrainTicket provides a railway ticketing service where users

can check, book, and pay for train tickets. Both of them have been

widely used in many previous studies [7, 29, 37, 67, 70, 72, 76]. The

open-sourced OnlineBoutique and TrainTicket are not equipped

with adequate observability (e.g., traces are incomplete and logs do

not contain trace ID). In this study, we �rst instrument the Open-

telemetry SDK [48] for each service to obtain complete traces. We

then modify one line of logging pattern in the logging con�gu-

ration of Java service [39] to insert trace and span IDs into logs.

For services implemented in other languages, we need to insert

2 lines of code into the source code based on Opentelemetry to

obtain trace and span IDs and modify the existent log statement

for each log (e.g., Fig. 10). With the standard Opentelemetry toolkit

and examples in many programming languages [38–41], it is not

di�cult for developers to insert trace and span IDs into the logs.

Experimental Platform.We deploy the OnlineBoutique and

TrainTicket on a Kubernetes platform with 12 virtual machines,

each of which has a 8-core 2.10GHz CPU, 16GB memory, and runs

with Ubuntu 18.04 OS. We use Opentelemetry Collector [49] to

log.error('Req	Failed')

trace_id	=	'{trace:032x}'.format(trace=ctx.trace_id)
span_id	=	'{span:016x}'.format(span=ctx.span_id)
log.error('Trace_id=%s	Span_id=%s	Req	Failed',	trace_id,	span_id)

Source	Code

Modified	Code

Figure 10: Example of correlation trace with logs.

collect traces and store them in Grafana Tempo [17]. Logs are

collected by Grafana Promtail [16] and stored in Grafana Loki [15].

For metrics, we use cAdvisor [5] to collect system-level metrics and

Istio [24] to collect application-level metrics (e.g., request latency).

Moreover, Prometheus Node Exporter [54] on each node is used to

export metrics to Prometheus [53] database to persist them.

Data Collection. We use fault injection to mimic application

issues following the previous work [35, 37, 42, 67, 72, 73]. To mimic

resource issues, we inject CPU contention and network jam faults

in the same way as the existing work [35, 37, 67]. Mimicking code

defects at program runtime is challenging becausewe cannot stop or

restart services. To achieve this, we design some language-speci�c

fault injectors for the characteristics of program language for Java,

Golang, and Python services [4, 28, 52]. We use the above injectors

to inject error return and exception code defects following previous

work [42, 72, 73]. We set each fault duration to 3 minutes to emulate

the process between fault occurrence to �x. We randomly inject one

fault into one microservice following previous work [35, 72, 73]. In

total, we inject 56 faults (42 resource issues and 14 code defects) into

OnlineBoutique and obtain traces and application logs. We inject 45

faults (20 resource issues and 25 code defects) into TrainTicket and

get traces and application logs. The collected metrics encompass

application-level measurements (e.g., success ratio) and system-

level metrics (e.g., CPU usage rate).

Evaluation Metric.We use the following two metrics to mea-

sure the e�ectiveness of Nezha and baselines because some base-

lines can only localize root causes at the service level.

• Top-k accuracy at service level (�(@:) refers to the probabil-

ity that root cause services are included in the top-k results.

• Top-k accuracy at inner-service level (��(@:) refers to the

probability that the inner-service root causes (resource type or

code region) are included in the top-k results.

Implementation and Settings.We implement the prototype

of Nezha built on Python 3.6. All experiments are conducted on a

Linux server with Intel Xeon Gold 5318Y 2.10GHz CPU, 256 GB

RAM, 1TB SSD Disk, and running Ubuntu 18.04. The minimum

score threshold (2>A4min, which is used to avoid the in�uence of

normal �uctuations, is set to 0.67 (i.e., 23 ) by default. In this case, a

pattern p in Expected Pattern Ranker is suspicious if the support

of p in fault-su�ering phase is less than half of the support of p in

fault-free phase. The in�uence of (2>A4min is discussed in § 5.3.5.

5.2 Baselines

We use the following six state-of-the-art unsupervisedmetric-based,

trace-based, and log-based RCA approaches as the baselines. We do

not consider the supervised approaches because they need a large

training dataset with labels, which is hard to obtain in practice.

• MicroScope [35] is a metric-based RCA approach that identi�es

root causes based on the correlation of metrics along dependency.
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Table 3: Comparison of baselines at service level.

Approach
OnlineBoutique TrainTicket

�(@1 �(@3 �(@5 �(@1 �(@3 �(@5

MicroScope 12.5 41.07 55.35 17.78 26.67 35.56

MicroRCA 16.07 62.5 92.75 20.00 31.11 44.44

SBLD 19.64 23.21 25.00 15.56 22.22 24.44

LogFaultFlagger 19.64 21.42 23.21 17.78 24.44 24.44

MicroRank 41.07 48.21 62.5 15.56 24.44 35.56

TraceAnomaly 30.35 33.92 48.21 13.33 28.89 33.33

PDiagnose 41.07 73.21 82.14 8.89 13.33 22.22

Nezha w/oML 14.28 17.85 17.85 6.67 8.89 11.11

Nezha w/o M 26.78 33.92 35.71 55.56 62.22 68.89

Nezha w/o L 64.28 64.28 64.28 42.22 44.44 44.44

Nezha 92.86 96.43 96.43 86.67 97.78 97.78

• MicroRCA [64] presents a metric-based RCA approach that lo-

calizes suspicious services by applying a PageRank method [50]

on the extracted anomaly sub-graph.

• LogFaultFlagger [1] is a log-based RCA approach that compares

passing and failing logs to �nd faults in failing logs.

• SBLD [55] is a log-based RCA approach that analyzes the cover-

age of log events using Spectrum algorithms [25] to �nd suspi-

cious log events.

• MicroRank [67] proposes a trace-based RCA approach that com-

bines the personalised Pagerank method and Spectrum method

to locate suspicious root causes.

• TraceAnomaly [37] provides a trace-based RCA approach that

adopts a deep learning method to learn normal patterns of traces

o�ine and detect anomalous traces online to perform RCA.

• PDiagnose [21] takes metrics, traces, and logs as input and trans-

forms them into time series. Then PDiagnose determines root

causes through voting abnormal time series.

5.3 Evaluation Results

5.3.1 RQ1: E�ectiveness at Service Level. The ground truths at the

service level are the known injected services. Table 3 shows the ef-

fectiveness evaluation results of di�erent approaches at the service

level. From Table 3, we can observe that Nezha outperforms all the

baseline approaches signi�cantly and achieves high accuracy in

�(@1 (90%), �(@3 (97%), �(@5 (97%) on average, illustrating that

Nezha can successfully localize root causes at service level most of

the time. The excellent performance of Nezha is mainly attributed

to the fact that Nezha takes multi-modal data as input and fuses

them so that it can capture the abnormal behaviours of a wider

range of fault situations.

Themetric-based approachesMicroScope andMicroRCA achieve

low�(@1 and�(@5 on average. After a detailed dissection of their

RCA results, we �nd that MicroScope and MicroRCA are adept at

locating the root causes of resource issues but not good at code de-

fects. This is because MicroScope and MicroRCA only take metrics

into account, but many code defects do not manifest themselves

in metrics. The accuracy of MicroScope is lower than MicroRCA

because the design of MicroScope never places the frontend service

as the root cause.

The two log-based approaches (i.e., SBLD and LogFaultFlagger)

obtain�(@1 and�(@5 less than 30%. These two approaches do not

consider metrics. Thus, they miss the root causes of faults caused by

resources because these faults would not change the log sequences.

Table 4: Comparison of baselines at inner-service level

Approach
OnlineBoutique TrainTicket

AIS@1 AIS@3 AIS@5 AIS@1 AIS@3 AIS@5

SBLD 14.28 17.85 17.85 15.56 22.22 24.44

LogFaultFlagger 19.64 21.42 21.42 15.56 24.44 24.44

PDiagnose 35.71 53.57 71.42 8.89 13.33 15.56

Nezha w/oM 26.78 33.92 35.71 55.56 62.22 68.89

Nezha w/o L 64.28 64.28 64.28 42.22 44.44 44.44

Nezha 92.86 96.43 96.43 86.67 97.78 97.78

The average �(@5 of two trace-based approaches (i.e., MicroRank

and TraceAnomaly) reach almost 50% and 40%, respectively. Both

approaches take traces as input and use the latency of spans to

�nd root causes. Therefore, they can only localize the faults that

have signi�cant impacts on latency. However, the error return and

exception faults do not manifest as anomalies in latency, which

results in low accuracy for MicroRank and TraceAnomaly.

Multi-modal approach PDiagnose achieves better accuracy than

single-modal baselines in OnlineBoutique. However, the accuracy of

PDiagnose degrades dramatically (from 82.14% to 22.22% at �(@5)

in TrainTicket. The poor performance of PDiagnose is attributed

to two reasons. (1) PDiagnose transforms multi-modal data as time

series and localizes root causes based on the anomalous time series.

However, not all faults cause time series anomalies, leading to

missing some root causes. (2) PDiagnose performs RCA based on

a simple voting mechanism that ignores the service dependency

and anomaly propagation, which is challenging to get consensus

in TrainTicket with 41 microservices.

In conclusion, Nezha is e�ective in microservice root cause diag-

nosis at the service level and improves �(@1 by 61.45% ∼ 74.63%

and �(@5 by 28.51% ∼ 73.28% on average compared to baselines.

These results also validate our motivation to integrate multi-modal

data to facilitate root cause localization in § 2.2.

5.3.2 RQ2: E�ectiveness at Inner-service Level. The ground truths at

the inner-service level are the code region or resource type extracted

from the fault-injected operation. We only compare Nezha with

SBLD, LogFaultFlagger, and PDiagnose because only these three

baselines have the ability to identify root causes at the inner-service

level. Considering that the above three baselines are designed to

pinpoint error logs rather than code regions, their result would be

determined to be correct if their output error logs are within the

code region of root causes.

Table 4 shows the e�ectiveness of di�erent approaches at the

inner-service level. Nezha performs the best by taking all base-

lines into consideration, achieving ��(@1 of 87%, ��(@3 of 97%,

and ��(@5 of 97% on average. With the incorporation of multi-

modal data while retaining execution contexts, Nezha can localize

root causes at the inner-service level more accurately. SBLD and

LogFaultFlagger use the di�erences in frequency and coverage of

logs to locate root causes. Resource faults do not cause a signif-

icant di�erence in frequency and coverage of logs, so SBLD and

LogFaultFlagger cannot accurately identify these root causes. PDi-

agnose performs better than SBLD and LogFaultFlagger because

it considers valuable metrics and traces ignored by SBLD and Log-

FaultFlagger. However, the performance of PDiagnose degrades

dramatically in TrainTicket dataset because the voting mechanism

of PDiagnose is di�cult to get consensus in a system with many
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Figure 11: Change of diagnosis time with event number.

services. To overcome the drawbacks of SBLD, LogFaultFlagger,

and PDiagnose, Nezha inserts metrics alert events into logs events

so that Nezha can handle both the code defects and resource faults

while retaining execution context.

To sum up, the results demonstrate the e�ectiveness of Nezha

in localizing root causes at the inner-service level and improves

��(@1 by 67.47% ∼ 74.85% and ��(@5 by 53.61% ∼ 75.96% on

average compared to baselines.

5.3.3 Contribution of Multi-modal Data. We perform two ablation

studies to explore the contribution of multi-modal data, so we

derive the following variants: Nezha w/oML that drops metrics

and logs, Nezha w/o M that drops metrics and Nezha w/o L that

drops logs. The ablation study results on service and inner-service

level are shown at the bottom of Table 3 and Table 4, respectively.

We observe that each data source contributes to the e�ectiveness of

Nezha because Nezha with all multi-modal data performs the best.

In addition, we observe that the contributions degrees of logs

and metrics are not exactly the same in di�erent datasets. Nezha

w/o L is the second-best in OnlineBoutique dataset while Nezha

w/oM performs the second-best in TrainTicket dataset. We believe

this di�erence is due to the distribution of fault types. In the On-

lineBoutique dataset, there are more resource issues, so Nezha w/o

L performs better. However, in the TrainTicket dataset, there are

more code defects, so Nezha w/oM performs better. Though Nezha

w/o ML performs the worst in ablation studies, it does not mean

that the contribution degree of trace data is low because trace is the

core of linking logs of di�erent services and building event graphs.

5.3.4 E�iciency of Nezha. The diagnosis time of Nezha is essential

for achieving timely RCA. It depends highly on the size of events in

a time window. To evaluate the scalability of Nezha with event size,

we conduct an experiment on the changes of diagnosis time with

the increase of events. The time to calculate fault-free patterns is not

included in the diagnosis time because the patterns in the fault-free

phase is calculated once and used multiple times. Fig. 11 shows the

diagnosis time of Nezha under the di�erent event numbers in a time

window. It can be seen that the diagnosis time increases linearly

with the number of events. In a time window of 50,000 events,

OnlineBoutique and TrainTicket take 16 seconds and 30 seconds

to determine root causes, respectively. Analysing TrainTicket data

needs longer than OnlineBoutique because TrainTicket has a larger

number of spans per trace and more complex dependencies. Thus,

Nezha takes longer to traverse all spans of traces.

5.3.5 Sensitivity of Nezha. The minimum score threshold (2>A4min

is one crucial factor that may impact the performance of Nezha. As

stated in Sec. 4.3, (2>A4min controls the minimum score of patterns

that will be considered as root causes. Fig. 12 shows the impact of
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Figure 12: Impact of minimum score threshold (2>A4min.

(2>A4min on ��(@1 and ��(@3 of Nezha on two datasets. Smaller

(2>A4min usually leads to lower accuracy as some event patterns

with low scores caused by normal �uctuation of the system a�ect

the �nal results. According to Fig. 12, (2>A4min = 0.67 achieves the

best accuracy in both two datasets. The results also demonstrate

that Nezha exhibits less sensitivity to (2>A4min when it is set above

0.6. Note that the best con�guration of (2>A4min highly depends on

the characteristics of datasets.

6 DISCUSSION

6.1 Limitations and Future Work

Nezha relies on the anomaly detection approach triggers for RCA,

thus it cannot identify root causes for faults that escape anomaly

detection. Future work can integratemore robust anomaly detection

algorithms (e.g., USAD [2]) and monitor additional metrics beyond

the P90 latency and success ratio to avoid missing faults.

The applicability of Nezha is limited to troubleshooting faults

that exhibit abnormal patterns in multi-modal data. Some byzan-

tine faults, such as returning an unreasonable result to the user,

cannot be identi�ed by Nezha because these faults do not manifest

themselves as any abnormal patterns. Troubleshooting for such

byzantine faults like [65] is the future work to improve Nezha.

Thus if a non-change fault is not �ltered by me, we also generate

a suspicion list for SRE to check, which increases the checking

burden on SRE. However, SRE believes that this false alarm burden

is acceptable compared to a missed alarm. In the future we will

add more pluggable components to �lter out non-change faults as

much as possible.

6.2 Threats to Validity

The threats to the internal validity mainly lie in the fault-free data

collection and minimum score threshold (2>A4min, which can intro-

duce bias on the e�ectiveness of Nezha. (1) The accuracy of Nezha

can be a�ected if fault-free data is noisy or lacks certain types of

requests. To mitigate this threat, it is recommended to construct

fault-free data that includes a wide range of request types and has

a similar number of requests to the production phase. Capturing

workloads of systems and replaying these workloads is a common

approach in the software test phase. SREs can easily collect such

fault-free data when replaying workloads. Even without replaying

workloads, collecting fault-free data within a short time window is

not di�cult as the production environment is predominantly in a

normal status with limited faults [30]. (2) As the pattern of a similar

number of occurrences in the fault and fault-free phases hardly

provides a clue for RCA, the minimum score threshold (2>A4min

is used to exclude such uninformative patterns. We recommended

setting (2>A4min above 0.6 because a pattern p is considered more
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suspicious if the support of p in fault-su�ering phase is less than

the support of p in fault-free phase.

The external threat mainly comes from the microservice modi�-

cation and experimental environment. (1) The integration analysis

of Nezha relies on the insertion of trace ID into logs, which may not

be available in some practical systems. However, with the standard

Opentelemetry toolkit and examples in various programming lan-

guages [38–41], it is easy for developers to insert trace and span IDs

into the logs. For example, for Java applications, we only need to

modify one line of logging pattern in the logging con�guration [39].

(2) Nezha is evaluated on two widely-used microservice systems in

a Kubernetes platform. It needs further e�ort to validate the e�ec-

tiveness of Nezha in more complex real-world systems. However, it

is reasonable to believe Nezha can work in such a system accord-

ing to current results. The complexity of the systems is alleviated

by constructing datasets that include more than 600 events for a

single request and involves parallel and asynchronous service calls.

Typically, a request involving dozens of service calls in industrial

microservice systems contains hundreds of log events [72]. There-

fore, the amount of events is comparable. The complexity of fault

scenarios is alleviated by injecting resource issues and code defects

from real faults in industrial systems [33, 76] into microservices.

Thus, the fault scenarios in our evaluation are representative.

7 RELATED WORK

Metric-based RCA. Metric-based RCA approaches commonly di-

agnose problems by mining the relations between di�erent met-

rics [6, 26, 35, 61, 63, 64]. CauseInfer [6] and Microscope [35] con-

struct a causality graph using the PC-algorithm, and identify root

causes based on the correlation of di�erent metrics along the causal

paths. MicroRCA [64] �rst extracts an anomalous sub-graph from

an attribute graph including service dependencies and performance

metrics. A personalised PageRankmethod is then used on the anom-

aly sub-graph to locate root causes. MicroDiag [63] �rst derives a

metric causality graph by Granger Causality tests. Then it weighs

the causality graphwith the pearson correlation coe�cient between

two metrics and ranks the root causes with PageRank. GROOT [60]

constructs the causality graph using monitoring events such as

performance metrics deviation events and ranks the most probable

root causes from the event causality graph based on a customized

PageRank algorithm. An important drawback of metrics-based RCA

approaches is that analyzing metrics provides a super�cial analysis

of the system’s operations but not a dissection of how the system

is actually running.

Log-based RCA. Most of log-based RCA methods localize root

causes by comparing frequent patterns between logs of normal

and abnormal phase [1, 11, 34, 36, 55]. SBLD [55] applies spectrum

algorithms [25] to the logging domain by abstracting logs into

events and locating root causes by analyzing the coverage of events.

Facebook proposes a fast dimensional analysis framework to locate

the frequent items most likely to be the root cause by mining the

di�erence between the frequent item sets of normal and abnormal

log [34]. LogCluster [36] uses log clustering to mine log sequences

and compares production with test log sequences to �nd previously

unseen ones. However, current logs-based RCA approaches do not

take into account the contextual information of requests and cannot

identify faults where logs have not changed.

Trace-based RCA. Various work and tools [10, 48, 56, 57, 59]

have been proposed to generate traces by instrumenting trace code

into the source code of applications. The empirical study in [76]

shows that microservice debugging can be improved by employing

proper tracing and visualization techniques and strategies. But the

study does not provide an automatic RCA approach based on traces.

GMTA [18] is a graph-based trace analysis approach implemented

and deployed in eBay. It abstracts traces into di�erent paths and fur-

ther groups them into business �ows for architecture understanding

and problem diagnosis. Nevertheless, such aggregated trace anal-

ysis approach may mask a small number of abnormal traces that

are critical to root cause localization. Based on the insight that a

microservice that is traversed by more abnormal and fewer nor-

mal traces is likely to be the root cause, T-Rank [66] proposes a

lightweight performance diagnostic tool built on spectrum analysis.

However, if two di�erent microservices have similar coverage infor-

mation, T-Rank cannot distinguish between them. MicroRank [67]

and TraceRank [71] combine PageRank and spectrum algorithms

to distinguish two di�erent microservices with similar coverage.

Nevertheless, the root causes output by MicroRank and TraceRank

(i.e., service instance level or operation level) are more coarse than

Nezha. Overall, traces-based RCA approaches are limited by the

granularity of traces, which is mostly at the operation level rather

than the code region level. Moreover, the absence of system-level

metrics also makes traces-based approaches impossible to specify

whether the faults are caused by resources.

8 CONCLUSION

In this study, we present Nezha, an interpretable and �ne-grained

RCA approach based on multi-modal observability data. Nezha uni-

�es multi-modal data as events within a single solution and mines

event patterns by constructing event graphs. Nezha correlates and

ranks event patterns by identifying which event patterns do not

follow expected execution paths and how these patterns change

in the fault-su�ering phase to localize root causes. We have imple-

mented a prototype of Nezha and conducted extensive evaluations

on two widely-used microservice applications. Our results show

that Nezha achieves a high top1 accuracy at both the service and

inner-service level and outperforms state-of-the-art approaches

by a large margin. Moreover, Nezha deals with events with high

scalability, which makes it practical for industrial systems.
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