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A B S T R A C T

In recent years, the adoption of the service mesh as a dedicated infrastructure layer to support cloud-native
systems has gained significant popularity. Service meshes involve the incorporation of proxies to handle
communication between microservices, thereby speeding up the development and deployment of microservice
applications. However, the use of service meshes also increases the request latency because they elongate the
packet transmission between services. After investigating the transmission path of packets in a representative
service mesh Istio, we observed that the service mesh dedicates approximately 25% of its time to packet
transmission in the Linux kernel network stack. To shorten this process, we propose a non-intrusive solution
that enables packets to bypass the kernel network stack through the implementation of socket redirection and
tc (traffic control) redirection with eBPF (extended Berkeley Packet Filter). We also conduct comprehensive
experiments on the widely-used Istio. The evaluation results show that our approach can significantly reduce
the request latency by up to 21%. Furthermore, our approach decreases CPU usage by 1.73% and reduces
memory consumption by approximately 0.98% when compared to the original service mesh implementation.
1. Introduction

The microservice architecture decomposes large, self-contained mo-
nolithic applications into smaller, loosely-coupled services, enhancing
flexibility and scalability, as each service can be developed, tested, and
deployed independently (Yu et al., 2019; Srirama et al., 2020; Wan
et al., 2018; Cinque et al., 2022). In microservice systems, commu-
nication between services is facilitated by software development kits
(SDKs), which ensure consistent service invocation across the microser-
vice network. However, executing custom-built SDKs in microservice
can be challenging, as it requires a significant development effort and
sophisticated control, and may result in inconsistencies due to human
errors.

The service mesh is introduced to decouple the dependencies be-
tween SDKs for faster deployment and development of microservices.
A service mesh serves as a dedicated infrastructure layer, deploying
and managing network proxies in conjunction with each microservice
instance (e.g., Fig. 1(b)). These proxies intercept and control network
communication of microservices, without requiring any modifications
to their source codes. According to the 2022 Annual APIs and Inte-
gration Report (AG, 2022), over 47% of organizations have adopted
service meshes to manage their microservice systems.

Although the introduced proxies in a service mesh essentially elimi-
nate the maintenance overhead of SDKs, they result in increased latency
due to longer service-to-service communication. As shown in Fig. 1, the
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communication between service instances 𝑆1 and 𝑆2 becomes longer
in a service mesh compared to that in a traditional microservice archi-
tecture. In the traditional cases, 𝑆1 and 𝑆2 communicate directly with
each other, as the service and communication SDK are packaged within
the same container. In a service mesh, unlike direct communication, 𝑆1
first sends the request to proxy 𝑃1, which then forwards it to proxy 𝑃2
and ultimately to 𝑆2. The response transmission follows a similar path
in reverse. This procedure demonstrates that service communication in
a service mesh involves multiple interactions with proxies, leading to
increased latency.

To better understand the impact of service mesh on request latency,
we conduct an experiment with the microservice application Bookinfo
(2022) and the typical service mesh Istio (2022), whose details will
be shown in Section 3.3. Our results show that Istio introduces an
additional 14 ms (ms) request latency overhead compared to the 16 ms
latency experienced in the microservice architecture. The additional
latency comes from the fact that requests and responses have to pass
through proxies as well as the underlying network stack multiple times.
In addition, service meshes typically manage the packet forwarding and
filtering rules based on iptables (Purdy, 2004), which has an inefficient
computational complexity of 𝑂(𝑛). Service meshes have to spend more
time matching rules in a large iptable in the network stack, which is
important for alleviating the increased request latency.
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Fig. 1. The communication between service instance 𝑆1 and service instance 𝑆2 in a
microservice system with and without service mesh deployed.

Existing approaches (Merbridge, 2022; Xu Yizhou, 2021; Cilium,
2020) fail to effectively mitigate the adverse effects of service meshes.
The performance improvement of Merbridge (2022) and Xu Yizhou
(2021) is limited because they are designed to optimize packet trans-
mission within a single node and are unable to extend to inter-node
transmission. Cilium (2020) can speed up the inter-node packet trans-
mission by implementing its own service mesh from scratch. However,
Cilium’s optimization is dependent on its own Kubernetes container
network interface (CNI) cilium-cni. Therefore, the Kubernetes cluster
deployed on other popular CNIs (e.g., Calico (2023)) has to be re-
deployed. Redeploying microservices can result in the unavailability
of business services temporarily, which is unacceptable in production
environments due to huge loss in revenue.

To overcome the above limitations, we propose a non-intrusive
framework to reduce the impact of service mesh on request latency.
We first collect latency distribution of packet transmissions inside a
service mesh using eBPF (extended Berkeley Packet Filter) (Corbet,
2014) (Section 3.3). We observe that the request latency is primarily
distributed among three parts: Istio proxies, kernel network stack and
application itself, which account for 25.83%, 25.4% and 48.77%, re-
spectively. Since the delay consumed in the proxies and applications is
intrinsic in service meshes, it cannot be eliminated in a non-intrusive
manner. Thus, we attempt to shorten the packet transmission path in
the kernel network stack to alleviate the increased latency incurred
by service meshes. The core idea is to utilize eBPF to enable socket
redirection and tc (traffic control) redirection, allowing packets to
bypass the underlying network stack.

Specifically, we propose two optimization strategies, namely intra-
pod optimization and inter-pod optimization. For intra-pod optimiza-
tion, requests and responses are transmitted directly between sockets.
For inter-pod optimization, requests and responses can also be redi-
rected between sockets within a node, and be redirected between two
NICs (Network Interface Card) for across-node communication.

Practical evaluations on two widely-used microservice benchmarks,
Bookinfo (2022) and Google (2022), driven by a representative service
mesh Istio (2022) demonstrate that our approach improves the request
latency by up to 21% for Bookinfo and up to 10% for HipsterShop,
mainly improving latency for the first 90% of requests. In addition, our
proposed optimization can both reduce the overhead of CPU utilization
and memory usage.

In summary, this paper makes the following contributions.

• We construct an eBPF monitor to obtain the latency distribution
of service-to-service communication in a typical service mesh and
analyze that service mesh has a noteworthy effect on request
latency, where the kernel network stack accounts for about 25%.
2

• We shorten service-to-service communication in the service mesh
with eBPF in a non-intrusive way to alleviate the increased la-
tency incurred by service meshes. Especially, our approach sup-
ports the optimization on cross-node communication under large-
scale clusters.

• We evaluate the performance of our approach on Bookinfo and
HipsterShop deployed with Istio. We find that our approach can
reduce the request latency by up to 21%, CPU utilization by
1.73%, and memory by 0.98%.

The following sections of this paper are organized as follows. In
Section 2, we discuss some related work on eBPF and network shortcuts
in Linux. Section 3 introduces the background of service meshes and
eBPF as well as our motivation for doing the network shortcut in the
service mesh. In Section 4, we show the design of our optimization.
We evaluate the performance of our proposed approach and provide a
discussion in Section 5. Finally, Section 6 concludes this paper.

2. Related work

eBPF allows user-defined programs to run in the Linux kernel. Thus,
eBPF plays an important role in performance monitoring. Brondolin
and Santambrogio (2020) proposes a black-box monitoring framework
to help measure microservice runtime performance. bpftrace (2018)
realizes eBPF monitors to collect kernel and user program runtime
information, which improves the observability of Linux kernel sig-
nificantly. Nam and Kim (2017) implement eBPF-based packet trac-
ing on multiple Linux network interfaces. Lee et al. (2022) enhance
packet tracing with eBPF to help latency measurement. Abranches et al.
(2021) introduce a network monitoring approach that enables effi-
cient high-level metric computation with eBPF and XDP. Miano et al.
(2023) implement high-performance network measurement in eBPF,
like sketch-based algorithms. Deepflow (Shen et al., 2023) proposes
a distributed tracing framework for troubleshooting microservices with
monitoring data provided by eBPF.

There also exists some optimization work on network functionality
based on eBPF. InKeV (Ahmed et al., 2018) enables programmable dis-
tributed network virtualization for DCN. BPFabric (Jouet and Pezaros,
2017) enhances the packet processing and forwarding functionality of
the data plane with the programmability of eBPF. SPRIGHT (Qi et al.,
2022) uses eBPF to support shared memory processing and implements
serverless computing. Baidya et al. (2018) implements real-time packet
replication and forwarding based on eBPF. Facebook (2018) and Xhon-
neux et al. (2018) implement a load balancer and segment routing in
the kernel with eBPF. Scholz et al. (2018) analyzes the impact of eBPF’s
XDP programs running in the NIC. Choe et al. (2020) defends against
DoS attacks by XDP filtering. Miano et al. (2018) summarized the expe-
rience of constructing the complex network with eBPF. Electrode (Zhou
et al., 2023) accelerates the performance of distributed protocols by
implementing the election process with eBPF. MiddleNet (Qi et al.,
2023) utilizes eBPF to achieve high-performance communication in
L4/L7 function chains. TPC (Jadin et al., 2022) leverages eBPF to
manage TCP connections and make TCP path-aware. BPF can also used
to program packet filters or basic forwarding in P4 (Hauser et al.,
2023). BCC (2022) and libbpf (2020) are proposed to help developers
rapidly develop eBPF programs in high-level languages such as Golang
and Python. In this paper, we develop eBPF programs with libbpf since
libbpf consumes fewer system resources (e.g., CPU) than BCC.

Kernel bypassing is an important approach for network optimiza-
tion, even in service meshes. Data Plane Development Kit (DPDK) (In-
tel, 2014) and NetMap (Rizzo, 2012) speed up Linux packet processing
by bypassing the network stack and processing packets in user space
in a polling mode. AF_XDP (Kuhr and Carôt, 2020) directly forwards
packets to corresponding user programs. IO-TCP (Kim et al., 2023)
splits the TCP stack and offloads disk I/O and TCP packet transfer to
SmartNIC to accelerate content delivery. Intel utilizes eBPF to accel-
erate the container network of Xu Yizhou (2021). Merbridge (2022)
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Fig. 2. A typical architecture of a service mesh.

accelerates packet transmission between socket pairs in a node by using
eBPF instead of iptables in a service mesh. Cilium (2020) implements its
own service mesh by deploying an eBPF proxy per node. Compared to
the existing network optimization approaches in Istio, our approach can
better handle optimization on the cross-node communication between
services in a large-scale microservice system, requires no intrusive
codes into applications and service meshes, and does not need any
redeployment of the Kubernetes cluster.

3. Background and motivation

3.1. Service mesh

Nowadays, containers are adopted in microservice systems since
they virtualize system resources in a lightweight way. Kubernetes
(2022) helps manage containers and allows developers to automatically
deploy and scale services (Bernstein, 2014), where a pod is the basic
scheduling unit. One or more containers can be deployed in one pod,
interacting with each other by the Loopback NIC (Network Interface
Card). Flannel (2014) is one kind of the underlying network implemen-
tations of Kubernetes, which assigns each node a network subnet and
transmits packets over the VxLan (Mahalingam et al., 2014).

Although microservice improves the scalability of applications, it in-
troduces some new problems. In microservice systems, developers have
to embed service invocation in source codes, for example, if there is a
dependency on the service version, which makes application migration
and upgrade difficult. Service meshes (Li et al., 2019) were proposed to
handle service communication and implement reliable packet delivery
in cloud-native applications. Service meshes are usually implemented
with lightweight proxies, which are deployed together with service
instances and transparent to applications. In a service mesh, services
only focus on their own business, with the communication between
services implemented by proxies.

Fig. 2 shows the architecture of a typical service mesh. The con-
nection between proxies represents the invocation between services.
A topology formed by proxies constitutes a service mesh, where the
collection of these interconnected proxies is called the data plane. All
the inbound and outbound traffic for each service instance must pass
through its proxy first. Configured by the control plane, proxies finish
the load balancing and forward traffic to the corresponding service
instances. Istio is one of the most popular service meshes (Calcote
and Butcher, 2019; Istio, 2022), where an envoy (Envoy, 2019) works
as a high-performance proxy for all inbound and outbound traffic
forwarding. In this paper, we choose Istio to perform our optimization
for the network shortcut.

3.2. eBPF

BPF (Berkeley Packet Filter) (McCanne and Jacobson, 1993) was
proposed to capture and filter packets that meet certain rules as soon
as possible, avoiding packets copying from kernel space to user space
in Linux and improving the performance of packet processing. tcp-
dump (tcpdump, 2022), a widely-used Linux tool, is implemented based
3

on BPF. Extended BPF (eBPF) (Corbet, 2014; eBPF, 2022) is designed to
allow developers to run user-defined programs in the kernel and extend
the functionality of BPF. Developers first write an eBPF program and
then compile it into bytecode with Clang and LLVM (Low Level Virtual
Machine). After passing the security verification by the eBPF verifier,
the bytecode is converted into the machine code by eBPF JIT (Just-in-
Time) compiler and finally attached to somewhere in the kernel, which
is called a hook. Each time a program executes at the attached hook,
the eBPF program is triggered to run. eBPF is useful for packet filtering,
kernel debugging, and more (Vieira et al., 2020).

3.2.1. eBPF program types
eBPF defines many types of programs as well as their mounted

hooks in the kernel. In this paper, we mainly utilize kprobe, sockops
and sk_msg and tc of the eBPF program types to realize our optimization.
kprobe programs can be attached to the entry of kernel functions to cap-
ture fine-grained metrics in the kernel. sockops programs are triggered
when socket connections are established, obtaining the connection
information such as IP addresses and ports of the established sockets.
sk_msg programs are attached to a map storing specific sockets and
triggered to execute when those sockets send a file or a message. tc
programs are attached to the inbound or outbound queue of a NIC,
processing the packets passing through.

3.2.2. eBPF maps
eBPF Maps (eBPF, 2022) are in-kernel key–value data stores specif-

ically designed for eBPF programs. eBPF Maps can be accessed by both
eBPF programs and user programs, sharing data among them. eBPF
Maps have multiple types such as hash, array, sockhash and so on. In
this paper, we use the hash and sockhash of eBPF Maps. hash acts as
a hash table. sockhash is a hash table with user-defined keys, storing
sockets as values.

3.3. Motivation

To better understand the distribution of request latency in the
service mesh, we apply eBPF to collect the occurrence timestamp of
socket functions on sending and receiving data, without intrusiveness
to the service mesh. eBPF kprobe programs are attached to the kernel
function sock_sendmsg and sock_recvmsg. When the established sockets
start to send or receive messages, eBPF programs are triggered to collect
their occurrence timestamp. This allows us to calculate the time taken
for packets to pass through Istio proxies, the kernel network stack and
the applications.

We denote the receiving timestamp of socket(i) as 𝑇 𝑖
𝑟𝑒𝑐𝑣 and its

sending timestamp as 𝑇 𝑖
𝑠𝑒𝑛𝑑 . As shown in Fig. 3, eBPF kprobe programs

monitor the established sockets for their receiving and sending times-
tamp. The solid lines indicate packet transmission processes. Blue lines
indicate that packets are processed by proxies, black lines represent
the time for packets to travel through the kernel network stack, and
orange lines denote request processing time within the applications
respectively. Table 1 shows the time overhead of these three processes
and displays their distribution with 300 requests randomly issued in
the Istio benchmark Bookinfo (Bookinfo, 2022).

From Table 1, we can observe that Bookinfo serves clients with
an average request latency of 30.31 ms (ms) when it is managed by
Istio, while that without Istio is 16.44 ms. In other words, Istio imposes
an 84% latency overhead on Bookinfo. The additional latency comes
from the additional time for packets to pass through the Istio proxies
and the kernel network stack multiple times. Alleviating the increased
request latency incurred by service meshes is imperative to provide
better performance for developers.

In order to optimize service meshes, we go deep into the packet
transmission path within the service mesh. As shown in Table 1, the
request latency is primarily spent in three parts: the Istio proxies,
the kernel network stack and the application itself, which account for
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Fig. 3. The procedures of service-to-service communication in Istio.
Table 1
The distribution of average latency when deploying Bookinfo application with and without Istio.

Processes Value Ratio

Without Istio With Istio

Latency Ratio Latency Ratio

Istio proxies 𝑇 3
𝑠𝑒𝑛𝑑 − 𝑇 2

𝑟𝑒𝑐𝑣, 𝑇
2
𝑠𝑒𝑛𝑑 − 𝑇 3

𝑟𝑒𝑐𝑣, 𝑇
5
𝑠𝑒𝑛𝑑 − 𝑇 4

𝑟𝑒𝑐𝑣, 𝑇
4
𝑠𝑒𝑛𝑑 − 𝑇 5

𝑟𝑒𝑐𝑣 – – 7.83 ms 25.83%
Kernel network stack 𝑇 2

𝑟𝑒𝑐𝑣 − 𝑇 1
𝑠𝑒𝑛𝑑 , 𝑇 1

𝑟𝑒𝑐𝑣 − 𝑇 2
𝑠𝑒𝑛𝑑 , 𝑇 6

𝑟𝑒𝑐𝑣 − 𝑇 5
𝑠𝑒𝑛𝑑 , 𝑇 5

𝑟𝑒𝑐𝑣 − 𝑇 6
𝑠𝑒𝑛𝑑 5.40 ms 32.82% 7.69 ms 25.40%

Applications 𝑇 1
𝑠𝑒𝑛𝑑 − 𝑇 1

𝑟𝑒𝑐𝑣, 𝑇
6
𝑠𝑒𝑛𝑑 − 𝑇 6

𝑟𝑒𝑐𝑣 11.044 ms 67.18% 14.78 ms 48.77%
Total – 16.44 ms 100% 30.31 ms ↑ 100%
Fig. 4. Request packet transmission with and without our optimization.
25.85%, 25.4% and 48.77% of latency, respectively. The transmission
delay consumed in the proxies of service meshes and applications is
inherent and cannot be removed in a non-intrusive way due to the
design of service meshes. Thus, in this study, we attempt to shorten
the packet transmission path in kernel network stack to reduce the
increased latency incurred by service meshes.

From the above observation, bypassing the network stack can re-
duce request latency by up to 25%. Istio proxies utilize netfilter and
iptables in the kernel to define rules on packet forwarding, so that all
the inbound and outbound traffic of a service instance have to pass
through its proxy. iptables matches the forwarding rules of the packets
sequentially. With the computational complexity of 𝑂(𝑛) for 𝑛 rules, it
may introduce additional delay due to more matching rules for packets.
In this paper, we attempt to bypass some of the iptables to generate
network shortcuts and reduce the request latency.
4

There already exist some studies on network bypassing, such as Data
Plane Development Kit (DPDK) (Intel, 2014), NetMap (Rizzo, 2012)
and AF_XDP (Kuhr and Carôt, 2020). However, the polling drivers of
DPDK and Netmap increase CPU consumption, and DPDK and AF_XDP
require dedicated drivers. eBPF offers an alternative for network stack
bypassing in service meshes without any dedicated drivers in the
event-triggered mode, featuring hot-pluggable, universal, and flexible
capabilities. Cilium (2020) implements its own service mesh by deploy-
ing per-node eBPF proxies to accelerate underlying packet transmission.
However, Cilium requires redeployment of the Kubernetes cluster and
microservices. In addition, a failure on a per-node proxy will cause all
services deployed on that node to fail. To reduce the failure impact of
the per-node proxy and the cost of cluster redeployment, Xu Yizhou
(2021) and Merbridge (2022) utilize eBPF to speed up the container
network of Istio. However, they only focus the network optimization
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within one node. When a large number of cross-node requests happen
in large-scale microservice applications, their proposed optimization
methods are unable to perform well.

After the optimization objectives and the problems of existing ap-
proaches, we attempt to optimize network performance in service
meshes that satisfy the following requirements. (1) The optimization
should be non-intrusive without any modifications to source codes of
services and service meshes. (2) The optimization should be general
by supporting service meshes with various Kubernetes CNI. (3) The
optimization should be efficient in accelerating both the inter-pod and
intra-pod service communication within service meshes.

4. Optimization

4.1. Overview

As analyzed in Section 3.3, the latency incurred in the kernel
network stack is the primary factor in reducing request latency in
service meshes. It is intuitive to employ AF_XDP (Kuhr and Carôt, 2020)
and DPDK (Intel, 2014) to accelerate packet processing. However, when
using DPDK and AF_XDP, developers must upgrade their underlying
network drivers, such as the DPDK driver, which can be costly. For-
tunately, eBPF allows us to make packets bypass the network stack
without any intrusion in application codes. Specifically, eBPF hooks at
the socket and tc (traffic control) layer are helpful for packets to bypass
the network stack, making it an advantageous choice for reducing
request latency by circumventing the network stack in the Linux kernel.

Fig. 4 illustrates the request packet transmission before and after
deploying our optimization. Arrows indicate the transmission direction
of requests. The white boxes are the processes that requests go through.
The beige and blue boxes represent the optimization processes within
and between pods, respectively. For intra-pod communication, requests
can bypass the kernel network stack when transmitting between the
proxy and its alongside service. For inter-pod communication, there
are two cases. When the client and server are deployed in the same
node, packets can bypass the underlying network stack and bridge.
When the client and server are deployed in different nodes, packets
can be forwarded early to the Flannel network interface and bypass the
bridge. By shortening the packet transmission path, our optimization
can reduce the request latency within service meshes.

4.2. Intra-pod optimization

Services in service meshes have to communicate with their proxies
first when they connect to other services. As shown in Fig. 4, a service
instance is always accompanied by a proxy in a pod. They communicate
with each other through the Loopback Interface, which we call it as
the intra-pod communication. In the intra-pod communication, we can
accelerate the packet transmission by reducing the time for passing
through the network stack and Loopback Interface.

4.2.1. sockops, sk_msg
In order to accelerate the intra-pod communication without any

intrusion into the existing service meshes, we choose eBPF to imple-
ment it in the Linux kernel. eBPF has some hooks at kernel sockets and
allows the attached user-defined programs to run when those hooks are
triggered. Our work mainly focuses on two types of programs supported
by eBPF, which are sockops and sk_msg. A sockops program can be
triggered when a socket connection is established. Some of the sockets’
parameters such as IP addresses and ports can be accessed as the
connection information by the sockops program. The sockops programs
can be regarded as a collector for socket connection information. An
sk_msg program is attached to a map storing some specific sockets.
When these sockets call sendmsg or sendfile system calls to send a file or
a message, the attached sk_msg program will execute. sk_msg programs
can parse the parameters of these system calls to obtain the connection
5

Fig. 5. The workflow of the intra-pod optimization.

information of the running socket. In addition, sk_msg programs support
socket redirection between two sockets. For example, if a socket is
redirected to another socket, its sending messages are directly written
into the buffer of that socket rather than its own socket buffer, so
messages can bypass the underlying kernel network stack, where the
message would otherwise need to be transmitted between these two
socket buffer.

4.2.2. Implementation
Fig. 5 and Algorithm 1 displays how the sockops and sk_msg pro-

grams work together to do socket redirection and accelerate intra-pod
communication. A client is trying to send a request to a service.
when the connection is established, the sockops program captures the
established sockets as well as their connection information (source
and destination IP addresses and ports). Then the sockops program
constructs a key–value pair with the connection information as a key
and the socket as a value, and updates it into a mapping table. After
the connection is established, the established sockets send messages to
each other and then trigger their sk_msg programs to run. The sk_msg
programs take charge of bypassing the network stack in the kernel. Two
sockets transmitting messages to each other are considered as a socket
pair. For example, socket (1) and socket (2) in Fig. 4 constitute a socket
pair, and socket (2) is the peer socket of socket (1) and vice versa.

The sk_msg program constructs the connection information of its
peer socket and uses this information to query the mapping table, and
then obtains the peer socket. Once the peer socket is found, the message
to be sent is directly written into the buffer of the peer socket by the
sk_msg program without passing through the underlying kernel network
stack. As a result, messages are directly transmitted between socket
pairs. In the meanwhile, headers of some network protocols, like TCP,
will not be encapsulated into the transmitting messages and it reduces
the amount of data to be transmitted, thereby reducing part of the
transmission time.

Algorithm 1 Procedure of socket redirection

Require: socket 𝑠𝑖 and its peer socket 𝑠′𝑖 , a transmitting message 𝑚𝑗
between these two sockets, eBPF program 𝑠𝑜𝑐𝑘𝑜𝑝𝑠 and 𝑠𝑘_𝑚𝑠𝑔
if 𝑠𝑖 and 𝑠′𝑖 in the same node then

𝑠𝑜𝑐𝑘𝑜𝑝𝑠 monitors the establishing socket.
𝑠𝑜𝑐𝑘𝑜𝑝𝑠 captures socket information of 𝑠𝑖 and 𝑠′𝑖
𝑠𝑘_𝑚𝑠𝑔 finds 𝑠𝑖 and 𝑠′𝑖 as a socket pair
𝑠𝑘_𝑚𝑠𝑔 redirects message 𝑚𝑗 between 𝑠𝑖 and 𝑠′𝑖

end if

It is important for the sk_msg program running in a socket to find its
peer socket. To realize it, we first collect and observe the connection
information of sockets in Istio as drawn in Fig. 4. For a common request,
the client owns the client_ip as its pod IP. The server with the server_ip as
the pod IP serves the service listening on (service_ip: service_port). The
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Table 2
Connection information of sockets for a request in the Istio.

Socket Source(ip:port) Destination(ip:port)

(1) client_ip:rdp1 service_ip:service_port
(2) 127.0.0.1:15001 client_ip:rdp1
(3) client_ip:rdp2 server_ip:service_port
(4) server_ip:15006 client_ip:rdp2
(5) 127.0.0.6:rdp3 server_ip:service_port
(6) server_ip:service_port 127.0.0.6:rdp3

random port used in the established connection is denoted as rdp. The
collected information is summarized in Table 2. The Loopback address
(127.0.0.1 and 127.0.0.6) is used for the intra-pod communication in
Istio. Istio typically utilizes port 15001 as the egress port and 15006 as
the ingress port for a pod.

With the information from Table 2, for socket pair 1 ⟷ 2 and
5 ⟷ 6 in the intra-pod communication, the sk_msg can easily construct
the peer socket of its own. Socket(1) and socket(2) can construct
the connection information of its peer socket with the same key as
‘‘client_ip:rdp1’’. Socket(5) and socket(6) can easily find each other
by exchanging their source and destination addresses and ports to
construct the connection information of the peer. After finding the peer
socket, the sk_msg program can correctly forward messages between
socket pairs and bypass the network stack. It is worth noting that the
sockops program is just used to update the running socket along with
its connection information without the information construction of its
peer socket. Since the sockops program is triggered by all the sockets
in a node and it takes some time to construct the information of the
peer socket, we have found that the information construction in the
sockops program may introduce more time overhead than that in the
sk_msg program.

4.3. Inter-pod optimization

The time spent on the inter-pod communication between two prox-
ies also affects the request latency in service meshes. For example,
messages have to pass through the network stack, the virtual network
interface and the bridge in the kernel as shown in Fig. 4. We also try to
bypass part of the kernel network stack to accelerate inter-pod packet
transmission in service meshes.

4.3.1. Cases within a node
We are first concerned about the cases where the client and the

server are deployed in the same node in Fig. 4(b), where both socket
(3) and (4) for the communication between proxies can be seen and
captured in the kernel of the same node. Similar to the intra-pod
optimization, the sockops program captures the established connection
information. From Table 2, the sk_msg program can find out the peer
socket with the same key as ‘‘client_ip:rdp2’’ for socket (3) and (4), then
the sk_msg program can directly forward messages between socket (3)
and (4) without passing through the underlying network stack and the
bridge.

4.3.2. Cases across nodes
We then focus on the cases where the client and the server are

deployed in different nodes in Fig. 4(d), as services are commonly
deployed in different nodes in a distributed microservice system. To
keep the service mesh non-intrusive, we utilize eBPF functionality on
packet forwarding at the traffic control layer between the network
interfaces.

The traffic control (tc) module implements policies for traffic con-
trol in Linux kernel, such as configuring different queuing rules for
various queues (Vieira et al., 2020). Each NIC can build up a queue
called clsact to process ingress and egress traffic. eBPF enables packets
in the queue clsact of one NIC to be forwarded into that of another
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Fig. 6. Inter-pod optimization across nodes.

NIC, so packets can bypass the transmission in some NICs or bridges.
Both the inbound and outbound traffic of NIC can be processed in
tc. As shown in Fig. 4(d) and detailed in Fig. 6, veth1, veth2, and
ens3 are all virtual NICs. We first apply packet forwarding in advance
from the ingress of veth1 to the egress of Flannel in node 1 with the
eBPF helper function bpf_redirect, and from the ingress of Flannel to the
ingress of ens3 (the peer of veth2) in node 2 with the helper function
bpf_redirect_peer. As a result, in node 1, once the veth1 receives packets
from its peer, ens3, it rapidly forwards them to the Flannel as outbound
packets so that packets can bypass the network bridge. Similarly in
node 2, once the Flannel receives packets which are sent to the server,
it directly forwards them to the ens3, the peer of veth2, as inbound
packets. The time for packets forwarding in bridges and veth2 then can
be reduced.

To successfully execute the inter-pod optimization in service meshes,
the network symmetry and the changes in MAC (Media Access Con-
trol) addresses during packet transmission have to be considered. On
one hand, for the network symmetry, both the inbound and outbound
traffic of a pod need to bypass the bridges, which means we need to
deploy the tc programs to forward both the request and its response.
On the other hand, since the queuing packets have been encapsulated
in the ethernet header, their MAC addresses change when they are
transmitted in the underlying network. In order to enable packets to
be forwarded between two network interfaces, we employ a hash to
record the MAC addresses for forwarding packets, and then we modify
the MAC addresses of packets in advance.

5. Evaluation

To evaluate our optimization, we focus on the following three
questions and answer them in our evaluation.

Q1: How effective is our optimization in improving performance in
service meshes?

Q2: Compared to Cilium, a different implementation of the service
mesh, does our optimization work better?

Q3: What is the overhead of our optimization on system resources?

5.1. Evaluation settings

We construct a Kubernetes platform with 5 virtual machines and run
the service mesh Istio 1.14.3. Each virtual machine runs on a physical
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Fig. 7. The performance of Bookinfo and Hipster under different workloads.

machine separately, equipped with 16 GB RAM and a 32-core 2.80 GHz
Intel Xeon Gold 6242 CPU. Each virtual machine runs on Ubuntu 18.04
OS and 5.10.85 Linux kernel. To run eBPF programs, clang and LLVM
in version 10 are used to compile eBPF programs from source codes to
bytecodes. bpftool with the same version of the Linux kernel is helpful
to load the eBPF programs into the kernel and interact with eBPF maps.
Fortio (Fortio, 2018) is used to generate user-defined query-per-second
(QPS) loads to services and record their request latency.

5.1.1. Benchmarks
We deploy two open-source microservice benchmarks, Bookinfo

(2022) and Google (2022) in our testbed. Bookinfo, provided by Istio,
is a typical microservice benchmark in service meshes. Bookinfo serves
as a single catalog entry of an online bookstore, which shows infor-
mation about a book, including its description, details and comments.
HipsterShop is a cloud-native application open-sourced by Google. It
serves as a web-based e-commerce application and is composed of ten
services written in different languages (e.g., Golang, Java, Python, C#
and JavaScript). In our evaluation, Bookinfo is chosen as an example of
HTTP applications, while HipsterShop is chosen as an example of gRPC
applications. Each service owns 2–3 replicas.

5.1.2. Baselines
We use the following two state-of-the-art approaches as baselines.

• Cilium (2020) implements a service mesh with a per-node eBPF
proxy to manage communication among services rather than
a per-pod envoy proxy adopted in Istio. For our performance
comparison, Cilium can be regarded as the fastest solution on
network optimization in service meshes using eBPF.

• Merbridge (2022) is designed for Istio as a network acceleration
solution. It also uses eBPF to bypass the kernel network stack and
accelerate packet transmission.

5.1.3. Evaluation metrics
To evaluate the effectiveness of our optimization, we employ two

widely-used metrics to represent service performance, which are the
request latency and query-per-second (QPS). Request latency directly
shows the real latency of user requests to benchmark applications
under testing load. We mainly focus on the average as well as the
90th percentile (P90) of the request latency. QPS reflects the number
of requests an application can handle in one second. Data on request
latency and QPS is provided by the Fortio (Fortio, 2018). To evaluate
the overhead of our optimization, CPU usage and memory usage are
chosen as indicators of system resource usage.

5.2. Performance improvement

To demonstrate the effectiveness of our proposed optimization,
Fortio is set to generate workloads for Bookinfo and HipsterShop under
different concurrency. We first generate loads in different concurrency,
then compare the results on average latency and QPS of Bookinfo
and HipsterShop as shown in Fig. 7. As we can see, the maximum
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QPS served by the Bookinfo is around 400 and that of HipsterShop
is around 100. Meanwhile, the curve of average latency of Bookinfo
and HipsterShop becomes steeper when the concurrency reaches 100,
A concurrency level of 100 serves as the threshold between low and
high load. When the concurrency reaches 500, HipsterShop runs out of
its capacity and can no longer serve properly. So the concurrency for
benchmarks is set to be 1, 10, 100, 1000 for Bookinfo and 1, 10, 100 for
HipsterShop. These experiments are executed in five cases, which are
in the Kubernetes with Istio, Istio with Merbridge, Istio with only intra-
pod optimization, Istio with only inter-pod optimization and Istio with
our full optimization.1 In our experiments, the target QPS is set to be
unlimited and each experiment lasts for three minutes and is repeated
five times.

Results of our experiments are drawn in Figs. 8 and 9. They show
the average, P90 of the request latency and the QPS of Bookinfo and
HipsterShop in benchmarks, where the error bars reflect the standard
variance of the experiments repeated five times. In Figs. 8 and 9, the
concurrency is denoted by c.

For Bookinfo, Merbridge accelerates packet transmission in Istio, re-
duces the average latency of Bookinfo by about 13%, 4% and improves
QPS by 15% and 3.6% when the concurrency is low at 1 and 10, respec-
tively. However, Merbridge does not perform well when concurrency
reaches 100 and 1000. Under high concurrency, the average latency
and QPS of Bookinfo when deploying Merbridge are similar to those
with Istio, or even Merbridge introduces a higher latency to Bookinfo.
In the meanwhile, our full optimization decreases the average latency
of Bookinfo by 21%, 10%, 1% and 0.95%, improves QPS by about
27.8%, 11%, 1.2%, 0.95% at the concurrency of 1, 10, 100 and 1000,
respectively, performing better than Merbridge.

For HipsterShop, our full optimization still outperforms Merbridge.
Our full optimization improves by 9.7%, 4.5% and 1.4% on the av-
erage latency of HipsterShop and 10%, 4.4%, 1.4% on QPS when the
concurrency is 1, 10 and 100, respectively, while Merbridge improves
by about 6%, 4.8% and 0%, respectively. Since Merbridge changes the
connection information of socket connection pairs, recording mapping
from the original socket connection information to the new ones,
Merbridge could not achieve better performance than ours.

In order to better understand the effectiveness of our optimization,
we conducted an ablation experiment and compared the performance
between Istio, Istio with the intra-pod optimization, Istio with the inter-
pod optimization and Istio with our full optimization. For Bookinfo,
our full optimization improves its average request latency and QPS
by 21%, 10%, 1% and 0.95% at the concurrency of 1, 10, 100 and
1000, while those with the inter-pod optimization are 18%, 11%, 1.8%,
and 0.3%, and those with the intra-pod optimization are 22%, 13%,
4.8%, and 4.8%, respectively. For HipsterShop, our full optimization
achieves improvement on latency and QPS of HipsterShop by about
9.7%, 4.5% and 1.4%, while those with the inter-pod optimization
are 4.9%, 3.1%, 2.2%, and those with the intra-pod optimization are
8.6%, 5%, 1%. Istio with intra-pod optimization performs better than
Istio with inter-pod optimization because the intra-pod optimization
shortens the communication between a proxy and a service instance
twice when the message is sent between two instances, while the
inter-pod optimization only shortens once.

As we can see from Fig. 7, with the increase of the number of
the concurrency, the queuing time of packets has a greater impact on
the request latency, and the effect of our optimization and Merbridge
becomes not obvious. Meanwhile, our optimization consumes more
overhead associated with high concurrent accesses to the mappings
used in the optimization between pods and within pods under high
concurrency. Our optimization performs better on HTTP requests than
we do on gRPC because of the optimization on the communication of

1 Source codes are available at https://github.com/IntelligentDDS/
ServiceMeshRedirect.

https://github.com/IntelligentDDS/ServiceMeshRedirect
https://github.com/IntelligentDDS/ServiceMeshRedirect
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Fig. 8. Comparison results on service performance of Bookinfo when deploying Istio, Istio with Merbridge, Istio with only intra-pod optimization, Istio with only inter-pod
optimization and Istio with our full optimization.

Fig. 9. Comparison results on service performance of HipsterShop with Istio, Istio with Merbridge, Istio with only intra-pod optimization, Istio with only inter-pod optimization
and Istio with our full optimization.
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Table 3
Comparison results on service performance of Bookinfo and HipsterShop when deploying Cilium, Istio and Istio with our full optimization.

Metrics Settings Bookinfo HipsterShop

Istio Istio(with opt.) Cilium Istio Istio(with opt.) Cilium

c = 100 30.3 ± 1.5 ms 23.7 ± 1.2 ms(1.22x) 18.9 ± 0.0 ms(1.38x) 85.5 ± 2.4 ms 77.2 ± 1 ms(1.09x) 73.1 ± 0.7 ms(1.14x)
Average c = 101 35.9 ± 2.8 ms 32.3 ± 1.6 ms(1.10x) 33.8 ± 0.2 ms(1.06x) 146.4 ± 7.9 ms 140 ± 0.2 ms(1.04x) 161.2 ± 1.4 ms(0.9x)

Latency c = 102 247.7 ± 0.7 ms 244.7 ± 0.6 ms(1.01x) 327 ± 1.6 ms(0.68x) 997 ± 37.3 ms 983 ± 30.1 ms(1.01x) 1126 ± 13 ms(0.88x)
c = 103 2.61 ± 0.005 s 2.58 ± 0.007 s(1.01x) 3.51 ± 0.012 s(0.66x) – – –

QPS

c = 100 33.0 ± 1.7 42.2 ± 2.2(1.28x) 52.9 ± 0.3(1.60x) 11.7 ± 0.3 13.0 ± 0.2(1.107x) 13.7 ± 0.1(1.111x)
c = 101 279.6 ± 21.5 310.6 ± 15.7(1.11x) 296.2 ± 1.9(1.06x) 68.4 ± 3.7 71.4 ± 0.2(1.04x) 61.9 ± 0.5(0.88x)
c = 102 403.5 ± 1.1 408.5 ± 0.9(1.01x) 305.61 ± 1.5(0.76x) 100.2 ± 3.6 101.6 ± 3.0(1.01x) 88.6 ± 1.0(0.87x)
c = 103 382.2 ± 0.6 385.8 ± 1.0(1.01x) 282.5 ± 1.0(0.74x) – – –
the gRPC service itself. By comparing the P90 of requests in Figs. 8
and 9, our optimization and Merbridge both mainly improve the service
performance of Bookinfo and HipsterShop by reducing their P90.

Answers for Q1: Our optimization performs better than Merbridge
and improves the average request latency and QPS by up to 21% for
Bookinfo and 10% for HipsterShop, mainly improving the latency of
Bookinfo and HipsterShop for the first 90% of requests. Our optimiza-
tion improves service performance under high concurrency less than
that under low concurrency because of the increasing queuing time
of packets and frequent concurrent access to the socket hash on our
implementation.

5.3. Architecture comparison

Since Cilium implements the service mesh with eBPF in Linux
kernel, we compare it with our optimization to better understand our
performance. We run benchmarks with the same settings mentioned in
Section 5.2 and present the results in Table 3.

From Table 3, we can observe that Cilium performs better than Istio
and our full optimization at low concurrency. Cilium can achieve a
1.38x speedup for Bookinfo and a 1.14x speedup for HipsterShop, while
our optimization only performs a 1.22x speedup for Bookinfo and a
1.09x speedup for HipsterShop. Cilium implements the service mesh
with an in-kernel proxy per node, unlike Istio with per-pod proxies,
so Cilium reduces the time overhead of going through the proxies
repeatedly for packets. In addition, Cilium implements its underlying
network of Kubernetes so that it can further reduce the overhead of
the kernel network stack. These are the reasons why Cilium performs
better than ours at low concurrency.

With the increase of concurrency, the enhancement of both our
optimization and Cilium decreased. In the case of high concurrency, the
per-node proxies have to process and redirect more requests, resulting
in lower optimization performance than Istio. With the per-pod proxies,
our optimization can achieve a better optimization effect than Cilium
under higher concurrency.

Answer for Q2: Our optimization can achieve higher performance
than Cilium under high concurrency, since per-node proxies used in
Cilium must process all the requests in the local node.

5.4. Overhead

In order to evaluate the overhead introduced by our optimization,
we keep running experiments on Bookinfo for three minutes with the
concurrency as 100 and then we record the CPU and memory usage
of each node once per second during the experiments. sar and free
commands in Linux are used to capture the CPU and memory usage.
The results are captured three times in two cases, when the nodes are
running properly in Istio with and without our full optimization. The
average results are shown in Fig. 10.

First, we focus on the consumed CPU resources. Our full optimiza-
tion can reduce CPU consumption by 1.73% compared with the Istio,
in total. Our full optimization reduces CPU usage in kernel by 0.5%,
since packets bypass some of the kernel network stack. Moreover, our
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Fig. 10. Comparison results on CPU and memory usage of Istio with and without our
full optimization in the same service deployment.

full optimization reduces 1.23% of the CPU consumption in the user
space. This reduction comes from the fact that the application does not
have to wait a long time for an upstream response to return because of
the faster message transmission.

Then, we compare the memory used during the experiments. Since
memory is likely to be used more and more while the node is working,
we calculate the difference between the maximum and minimum of the
used memory during the experiments as the memory usage. Observed
from Fig. 10, about 161 MB (0.98%) more memory is used in Istio
than that with our full optimization. Our optimization can reduce the
memory used in packet copying between the network interface and the
Linux kernel, thus reducing the memory replication.

Answer for Q3 : Our proposed optimization can reduce the over-
head of CPU resources consumed by Istio since we can make packets
bypass some of the kernel network stack. Meanwhile, we can reduce
the used memory resources when copying packets between the network
interface and Linux kernel.

5.5. Discussion and future work

The experimental results above show the effectiveness of our op-
timization. However, it can still be improved and extended in future
work. Inspired by XRP (Zhong et al., 2022), each socket can be stored
in a separate space to reduce the time overhead of concurrent access to
a hash, thus improving the service performance at high concurrency.
In addition, we plan to further optimize the packet transmission path
by sharing established socket connections between pods of the same
service, thereby reducing the time overhead of passing through the
network stack during socket establishing.

Table 4 shows the comparison among Cilium, Merbridge and our
optimization in detail. All the optimization based on eBPF requires the
root privilege. Cilium performs well on network optimization of service
meshes at low concurrency. However, it needs to change the architec-
ture from the original Kubernetes underlying network to Cilium, which
limits the generality of Cilium. In addition, a proxy is deployed on each
node in Cilium, thus the failure on a proxy has a greater impact on the
overall communication in a node than Merbridge and our optimization.
Merbridge performs worse than ours since it does not accelerate packet
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transmission across nodes and spends more time on the maintenance
of the mapping between its established sockets. Our optimization can
accelerate packet transmission for developer-specified services without
interfering with other communication between multiple containers in
a pod. Furthermore, if a fault occurs when the sk_msg program queries
for the peer socket, the packet transmission is reverted to the original
network path, which guarantees the normal communication among
services to a certain degree. Our optimization is also pluggable and easy
for software developers and operators to install and uninstall.

6. Conclusion

In this paper, we study the packet transmission path with and
without service mesh deployed. To avoid making any code intrusions
to applications and proxies of the service mesh, we choose to shorten
the packet transmission path to improve the application performance.
We use eBPF to optimize request latency in a service mesh. Packets
are forwarded directly between sockets so they do not need to pass
through the kernel network stack. For cross-node communication, we
shorten the request latency by directly forwarding packets from one
network interface to another at the traffic control layer to bypass the
bridge. Practical evaluations demonstrate that our proposed method
can significantly optimize latency in Istio in a non-intrusive way, and
reduce 1.73% of the CPU consumption and 0.98% of the memory.

In our future work, we plan to improve socket query performance
by storing each socket in a separate space to improve our optimization
performance on concurrent requests. Moreover, by sharing established
socket connections between pods of the same service, we expect to fur-
ther optimize the packet transmission path to reduce the time overhead
when packets pass through the network stack to establish a new socket
connection.
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Table 4
Comparison among Cilium, Merbridge and our optimization.

Cilium Merbridge Ours

Proxy Deployment per-node per-pod per-pod
Impact of proxy breakdown node pod pod
Architecture Supporting – Istio Istio
Underlying Network Cilium iptables iptables
Accelerate within a node Yes Yes Yes
Accelerate across nodes Yes No Yes
Effectiveness good good better
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