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Abstract—End-to-end tracing plays an important role in un-
derstanding and monitoring distributed microservice systems.
The trace data are valuable to help find out the anomalous
or erroneous behavior of the system. However, the volume of
trace data is huge leading to a heavy burden on analyzing and
storing them. To reduce the volume of trace data, the sampling
technique is widely adopted. However, existing uniform sampling
approaches are unable to capture uncommon traces that are
more interesting and informative. To tackle this problem, we
design and implement Sieve, an online sampler that aims to bias
sampling towards uncommon traces by taking advantage of the
attention mechanism. The evaluation results on the trace datasets
collected from real-world and experimental microservice systems
show that Sieve is effective to increase sampling probabilities of
the structurally and temporally uncommon traces and reduce the
storage space to a large extent by taking a low sampling rate.

Index Terms—End-to-end tracing, Weighted sampling, Mi-
croservice, Robust Random Cut Forest

I. INTRODUCTION

With a microservice architecture, an application is decou-
pled into a group of loosely distributed fine-grained services
with complex interactions [1], bringing great challenges to
operate microservice systems. Distributed tracing plays an
important role in profiling, diagnosing, and debugging mi-
croservice systems. By instrumenting the components of the
system, trace data are generated to record the execution paths
of a request. The trace data can be leveraged to obtain the
complex dependencies between microservices as well as to
detect and explain anomalous behavior. Although traces are
of great help, they are often produced in a large volume
and costly for storage. The microservice architecture often
comprises hundreds to thousands of microservices. For exam-
ple, WeChat system accommodates more than 3000 services
running on over 20000 machines and the total amount of
requests is normally 1010 ∼ 1011 on a daily basis [2], which
produces dozens of Tera Bytes trace data per day. However,
most of them are similar and redundant. It is not necessary to
store so many redundant traces. Only a fraction of traces that
are helpful to operators are those from corner cases [3].

To reduce the storage cost of traces, some sampling tech-
niques are proposed. For distributed tracing systems such as

Zipkin1 and Jaeger2, they use head-based sampling to decide
whether to keep the trace or not. The sampling decision is
made at the beginning of the trace. Then the decision will
be propagated with the request to the downstream services.
The disadvantage of head-based sampling is the unawareness
of what would happen in the following steps. Therefore, the
traces are sampled randomly, which will limit the ability
to preserve the informative traces. On the other hand, tail-
based sampling mitigates the defect of head-based sampling
by making sampling decisions at the end of the request. It is
able to capture more informative traces by taking the message
recorded in the traces like latency or HTTP status code (e.g.,
404) into consideration. But the tail-based is still inadequate
to detect uncommon traces since it focuses on the individual
trace and ignores the difference between current traces and
previous traces.

To find out uncommon traces, more attention should be paid
to the differences between traces. Some sampling approaches
[3], [4] have been proposed following this way. However,
these methods only focus on the structural difference and pay
no attention to the temporal difference. To make full use of
these two types of attention, we design and develop Sieve,
an online sampling approach for end-to-end trace data. Sieve
uses robust random cut forest (RRCF) [5] which is a variant of
the isolation forest [6] to detect uncommon traces. It will pay
attention to the traces that are temporally or structurally dif-
ferent from other traces, and raise their sampling probabilities.
To achieve the biased sampling scheme, Sieve firstly encodes
a trace as a path vector [7] which is a useful form to express
the temporal and structural difference and gives the vector an
attention score, which represents how much attention Sieve
pays to the trace. Finally, the attention score will be used to
calculate the sampling probability of the trace.

To evaluate the effectiveness of Sieve, we perform ex-
periments on four trace datasets from different microservice
systems. The results show that Sieve is effective to detect
uncommon traces and reduce the cost of storage to a large
extent, robust to the degree of uncommonness and parameter
settings, suitable for the sampling scenario in a large-scale

1https://zipkin.io/
2https://www.jaegertracing.io/



microservice system.
The contribution of this paper is four-fold shown as follows.
• We introduce the attention mechanism which focuses

on the temporal and structural differences to capture
uncommon traces.

• We propose the path vector encoding method to encode
the trace into a vector that incorporates the temporal and
structural information.

• We provide a biased sampling scheme based on attention
score. The sampling probabilities of uncommon traces are
high, while the ones of common traces are pretty low,
which reduces the storage space significantly.

• We design and implement Sieve to conduct online sam-
pling at a low cost. The effectiveness is evaluated in
several microservice systems.

The rest of the paper is organized as follows. Section II
presents our motivation. Section III depicts the design of Sieve
in detail. Section IV introduces the implementation of Sieve.
Section V shows the experimental evaluation. In section VI,
we review the previous related work. Section VII concludes
this paper.

II. MOTIVATION

According to the specification of OpenTracing3, a trace
is a direct acyclic graph including multiple spans which are
correlated by the causal relationships. A span represents the
work done by a service and records the execution latency,
tags and logs, etc [8]. Trace data is a kind of semi-structured
text varying from hundreds of bytes to millions of bytes.
Moreover, they are produced at a high speed. A real-world
telecommunication enterprise can produce more than 2 million
traces in one minute and an electronic payment company can
produce 50GB traces in one day. By analyzing these data,
operators can uncover performance issues [9]–[11], detect
anomalies [7], [12] and locate root causes of faults [8], [13]–
[15]. The huge amount of trace data makes it too expensive
for storage and analysis. Therefore, a sampling method that
preserves the useful traces and discards the useless traces is
necessary to reduce the overhead.

Trace data contain abundant information including structural
information and temporal information. The structural infor-
mation (i.e., calling relationship, number of spans) and the
temporal information (i.e., request latency) are two indicators
of unusual behavior. Existing sampling approaches do not take
the structural and temporal information into account explicitly.
It is problematic to judge a trace in such a way because the
trace with high latency is not necessarily anomalous (e.g., a
request may access a database) and the trace with a usual
structure is not necessarily normal (e.g. the request latency
is high). A microservice system usually handles many types
of requests. Each type of request is related to a pattern. The
pattern can be simply depicted as the combination of structural
information and temporal information embedded in a trace.
Here, we call such information as temporal and structural

3https://opentracing.io/
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Fig. 1. An example of temporal and structural attention. (a) denotes a normal
trace. (b) denotes a trace with temporal attention since the latency of Service
A and B increases significantly. (c) represents a trace with structural attention
since Service D is disconnected from Service B.

attention. The traces with the same pattern are produced by the
same type of request. Hence, it is reasonable to compare the
trace with other traces with the same pattern in order to find
uncommon traces. Fig. 1 illustrates the temporal and structural
attention.

To develop an online sampler, we should solve the following
challenges to balance the sampling quality and the sampling
overhead.

• Trace Representation. A trace is a human-readable text
that cannot be processed by algorithms directly. We
should encode a trace into a form that can be processed by
algorithms. The main principle of trace encoding is to find
a representation that can reflect our attention to distinctive
traces. Moreover, trace encoding should incorporate its
structural and temporal information.

• Biased Sampling with Attention. The volume of trace
data is huge, but the informative traces (i.e., uncommon
traces) only take up a pretty small part. The uniform
sampling scheme with a low sampling rate often picks
out common traces and leaves out uncommon traces. A
biased sampling scheme should be designed for such an
unbalanced dataset to preserve more uncommon traces.

• Constant Time and Space Complexity. The design of
an online sampler requires fast sampling and low memory
consumption. The workload might be continuous and
heavy, thus the sampling overhead should adapt to the
workload volume.

III. SYSTEM DESIGN

This section describes the design of Sieve. Sampling aims
to preserve traces that might have useful information for
debugging or diagnosis and to discard redundant traces. In
reality, the microservice system runs steadily most of the time.
Therefore, most traces share common characteristics and are
similar to each other. Uncommon executions are rare and we
should pay more attention to them. How to pick out those
rare patterns and sample them with high probabilities are our
goals. Sieve makes use of the isolation-based approach to
discover uncommon executions. To achieve that, Sieve uses
a path vector encoder to extract the structural and temporal
features from the trace data and builds path vectors. Then the
path vector is sent to the adaptive scorer and gets an attention
score. Finally, the biased sampler makes a sampling decision
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Fig. 2. The sampling workflow of Sieve. Every span of the trace is labeled by a letter and has a latency attribute. The core of the scorer module is a random
cut forest which is comprised by RRCT (i.e., robust random cut tree). In the sampler module, the first red box contains the operators to calculate the variance
of scores, the second red box contains an operator to conduct subtraction, the third red box contains the operators to map the attention score to the sampling
probability in different ways, depending on the result of the subtraction operator. The fourth red box contains an operator to make a sampling decision. Finally,
the filtered traces are stored persistently. While other traces are discarded.

based on the current score and the previous scores. Fig. 2
shows the overview of Sieve’s sampling workflow.

A. Path Vector Encoder

A trace records the execution path of a request. The first
span represents the request entry which is called a root span.
Starting from the root span A, we can navigate to the child
span B which depends on A and now we have a path A→ B.
When we navigate to the child span C of B, we have another
path A → B → C. After we traverse all the spans in the
trace, we get a path set P , each of which starts from the
root span A. For each path p in P , it is associated with the
latency lt of the tail span of path p. With the path set P and
the corresponding latency set L of a trace, we can build the
path vector x = (x1, ..., xn) of the trace. Each index of x is
associated with a path. The index i associates with the path
pi and the value xi in index i is assigned with the latency li.
Different traces may contain different path sets. For a certain
trace, if it does not contain the path pi associated with the
index i, then −1 is assigned to xi of its path vector x, which
means it is an invalid index. Fig. 3 shows an example of path
vector encoding. In this way, we incorporate structural and
temporal information into a vector. The valid indexes of a path
vector reveal the path set of the trace and the values in the
valid indexes reveal the latency set of the trace. Therefore,
when we compare two traces with different structures, the
value in the invalid index will make them distinguishable.
When we compare two traces with the same structure but
different latency, the value in the valid index will make them
distinguishable likewise.

Beyond the path and latency features, Sieve can extend
the path vector to incorporate more meaningful features that
help distinguish different types of traces. For example, the
number of spans will add more information to help diagnose
structural uncommonness. The request status code which is
usually recorded in the trace, will play an important role in
discovering anomalous traces. We only need to concatenate
these features to form a more informative trace encoding and
it will benefit the isolation procedure which will be introduced
in the next subsection.

B. Adaptive Scorer

1) Isolation: Since traces are encoded into path vectors,
finding out uncommon traces is equivalent to finding out
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Fig. 3. The example of path vector encoding of two traces. Sieve extracts
all the paths that starting from the root span. In the path vector, each index
associates with one path, and the value in the index is the latency of the tail
span of the associated path. If a trace does not contain a path, the value in
the corresponding index is set to -1. If more than one same paths exist in a
trace, the maximum latency amongst these paths is selected for encoding.

uncommon path vectors. The uncommonness means deviation
from the majority. Therefore, the distributions of the uncom-
mon and common traces are quite different. Sieve makes use of
the difference and conducts a partitioning procedure to isolate
the uncommon from the common traces. Given a path vector
set X ⊂ RN , we select a partition over some dimension to
split X repeatedly until every path vector is isolated from each
other. The uncommon path vectors in X will be isolated earlier
and easier due to their difference and minority [6]. A tree
is an appropriate data structure to perform isolation because
we can partition X recursively from top to down and finally
place every path vector in the leaf node. The length of a path
from the root to a leaf node measures the number of partition
conducted to isolate the path vector. Hence, the uncommon
path vector will have a shorter path than that of the common
path vector.

According to the above observations, we adopt RRCF to
achieve the isolation of uncommon traces. RRCF is suitable
for handling the outlier detection in the streaming data and
the capability is leveraged by Sieve to discover uncommon
traces. Sieve builds an enhanced RRCF model to figure out the
attention scores of a trace. The original RRCF model can only
process data with fixed dimensions while the path vector varies
with different lengths. When there is one trace containing paths
that never appeared before, the dimension will be extended by
appending −1 to other path vectors. Making RRCF adapt to
the dimension variation is one of our innovations.

RRCF is built on many RRCTs, which are built from scratch
and finally grow to a fixed size. There are two stages for an
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PV is the path vector.

RRCT, namely the construction stage and the maintenance
stage. Fig. 4 shows the workflows of both stages. Suppose
the final size of each RRCT is m and the dimension of the
path vector is n, Sieve uses these m path vectors to build
RRCTs in the construction stage. m path vectors form a path
vector set X = {xi = (xi1, ..., xin)|xi ∈ X, 1 ≤ i ≤ m} and
each RRCT is built by partitioning X recursively. Starting
from the root of an RRCT, Sieve selects a cutting dimension
j(1 ≤ j ≤ n) that is most likely to isolate the uncommon. The
method to select cutting dimensions is another improvement
on the original RRCF model. The structural distinction is con-
sidered first since this information is distinctive to distinguish
different clusters of path vectors. A dimension j is named
invalid dimension if, for some path vector, the index j is
invalid. Sieve selects one invalid dimension as the cutting
dimension. If there are no invalid dimensions, Sieve selected
the cutting dimension according to the dimension weight. The
weight of dimension j is calculated in the following way,

wj =

max
1≤i≤m

xij − min
1≤i≤m

xij

n∑
j=1

max
1≤i≤m

xij − min
1≤i≤m

xij

. (1)

The probability that dimension j is selected is proportional
to wj , thus the dimension that has the largest difference
will be selected with the highest probability. After selecting
the cutting dimension j, a cutting value qj is selected. If
the cutting dimension j is an invalid index for some path
vectors, the cutting value qj is always set to −0.5. Otherwise,
the cutting value qj is selected between the maximum and
minimum value in the selected dimension j randomly. The
subset XL = {xi = (xi1, ..., xin)|xi ∈ X,xij ≤ qj} whose
value in index j is equal or less than qj is assigned to the
left child of root. The rest XR = X \ XL, whose value in
index j is greater than qj is assigned to the right child of the
root. Then Sieve partitions the left child and right child in the
above way until every leaf contains only one path vector. Fig.
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Fig. 5. Illustration of the building procedure of one RRCT. The blocks with
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the latency. The dimension denoted by ¶ is an invalid index for the third path
vector so dimension 3 is selected as the cutting dimension first. The first and
second path vectors are partitioned again on the right child of RRCT’s root.
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The bounding box records the upper and lower bound of the values on each
dimension.

5 shows the partition procedure of an RRCT.
At the end of the construction stage, the maintenance stage

begins. With an incoming path vector, the leaf containing the
path vector of the trace produced earliest is removed. Besides
the cutting dimension and the cutting value, each internal node
of RRCT maintains a bounding box of its leaves. The bounding
box records the upper and lower bound of the values on each
dimension. With the removal of the oldest leaf, each RRCT
is adjusted by replacing the parent of the removed leaf with
the removed leaf’s sibling and updating the bounding box of
the internal node above the sibling. Fig. 6 shows an example
of leaf removal. Then the incoming path vector is inserted
into each RRCT. If the path vector has new dimensions, the
insertion is handled in three steps. Firstly, Sieve extends the
path vectors that are already in the tree by appending -1 to
the path vectors. Secondly, Sieve extends the bounding boxes
in the same way as path vector expansion. Finally, Sieve
generates a new root with its cutting dimension set to one
new dimension, its cutting value set to -0.5, its left child set
to the old root, its right child set to the incoming path vector,
and set the new root’s bounding box. Fig. 7 shows the insertion
of the incoming path vector with a new dimension. If the path
vector has no new dimensions, Sieve performs the insertion
using the original method of RRCT, which is referred to in
[5].

The size of RRCT is constant during the maintenance stage
since Sieve keeps the latest m path vectors by performing the
removal and insertion operations on each RRCT. Therefore,
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Fig. 6. Illustration of the removal of the oldest leaf.
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Fig. 7. Illustration of the insertion of path vector with a new dimension.

Sieve evaluates a path vector in the context of the distribution
of the latest m path vectors, so Sieve can adapt to the changes
of the traces.

2) Attention Score: After the construction of RRCT, un-
common path vectors will have a shorter path from the
root to leaf. Therefore, they are at the shallower layers of
the tree. RRCT assigns an attention score to a path vector
according to its depth in the tree. Intuitively, the significance
of uncommonness should increase as the tree becomes deeper.
Given depth(l, t) which gets the depth of leaf l in tree t, the
attention score si of the path vector xi in leaf l′ of tree tj is
calculated as follows

si =
max

l∈Leaves
depth(l, ti)

depth(l′, tj)
. (2)

Each RRCT in RRCF represents a different partition scheme
for the trace data. When a path vector gets a high score from
most of the trees, it is likely to be an uncommon one with a
high probability. The final score assigned to the path vector
is calculated by averaging the scores given by all the RRCTs.
Given an RRCF including k RRCTs, the final score of a path
vector is

s =
s1 + ...+ sk

k
. (3)

3) Dimension Reduction: Sieve is designed to be adaptive
to the new traces with execution paths that never existed
before. With the path vector expansion mechanism introduced
in section III-B1, RRCT can handle path vectors with new
dimensions. These path vectors will be isolated from other path
vectors. However, the path vector expansion mechanism has a
side effect and will cause the dimension of the path vector to
continue to grow. The curse of dimensionality impacts Sieve’s
online sampling ability severely so the dimension reduction
technique is necessary.

The cause of the dimensionality curse is that Sieve records
all execution paths it has seen up to now, while the RRCT
only keeps the path vectors of the most recent traces. The
execution paths of these traces account for a small part of
the total execution paths Sieve has seen. Since one execution
path is associated with one dimension, there are plenty of
dimensions that are invalid for all the path vectors in the
RRCT. In Fig. 8, the left figure shows the drastic growth of
the invalid dimensions, especially when an RRCT is of a small
size. All these invalid dimensions make no influence on the
partition because they have never been selected as a cutting

dimension. Hence, Sieve can remove these invalid dimensions
safely.

Besides the removal of the dimensions that are invalid
for all the path vectors in the RRCT, Sieve adopts a more
aggressive approach to remove the dimension that satisfies
the following two criteria: the dimension is not the cutting
dimension; the variance of the values in the dimension is
lower than 0.1. The dimensions meeting the criteria have a
tiny chance to be selected as the cutting dimension. We name
them as weak dimensions due to their almost zero contribution
to the partition. Note that the invalid dimensions that Sieve
can remove safely are a kind of weak dimension. Sieve treats
them differently. The right figure in Fig. 8 shows the number
of weak dimensions during the sampling procedure of 1000
traces. Different from the complete removal of the invalid
dimensions, Sieve temporarily removes the weak dimensions
and keeps monitoring the variance of the values in the weak
dimensions. When the variance is greater than 0.1, the weak
dimension is changed to the normal dimension and all the path
vectors in the RRCT will be extended with such a normal
dimension.

C. Biased Sampler
Sieve calculates the sampling probability of a trace based

on its attention score and the scores of previous traces. Sieve
keeps a sliding window containing k most recent scores and
the current score. In the sliding window, Sieve calculates the
variance vark of the past k scores and the variance vark+1

of the k + 1 scores. The difference between vark+1 and
vark indicates the deviation of current score sk+1 from the
distribution of the past k scores. If the difference degree
exceeds a threshold h, Sieve adopts a sigmoid function to
greatly raise the sampling probability of the current trace.
Otherwise, Sieve calculates the sampling probability of the
current trace in proportion to its weight in the sliding window.
Given a sliding window W = [s1, ..., sk+1], the sampling
probability of the current trace is calculated in the following
way where W is the mean value of W :

f(sk+1) =


1

1 + e2W−sk+1

if vark+1 − vark > h,

sk+1∑k+1
i=1 si

if vark+1 − vark ≤ h
(4)

The trace whose score has a significant increase to the
variance in the sliding window will get a sampling probability
close to 1. The common trace gets a low sampling probability
due to its low attention score. It seems that the selection
of threshold h plays an important role in controlling the
sample size. We show the impact of threshold in the evaluation
section. After getting the sampling probability f(sk+1), Sieve
generates a random number between [0, 1] and compares it to
f(sk+1). If f(sk+1) is no less than the random number, Sieve
samples the trace, otherwise Sieve drops it.

D. Online Sampling
Sieve is a real-time online sampler to achieve a high sam-

pling probability for the uncommon trace. When the streaming
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Fig. 8. The number of invalid dimensions and weak dimensions. Different
lines represent different RRCT sizes. The x-axis shows the number of traces
that are processed by Sieve.

Algorithm 1 Online Sampling Algorithm
Input: The trace t; the RRCF rrcf ; the sliding window sw

of the previous k scores; the threshold h.
Output: The sampling decision decision; the updated sliding

window sw; the updated RRCF rrcf .
1: x← encode(t)
2: scores← []
3: for all rrct ∈ rrcf do
4: rrct.remove oldest()
5: rrct.insert(x)
6: s← rrct.score(x)
7: scores.append(s)

8: avg ← average(scores)
9: sw.append(avg)

10: if variance(sw)− variance(sw[1 : k]) > h then
11: p← 1

1 + e2∗average(sw)−avg
12: else
13: p← avg∑k+1

i=1 sw[i]

14: sw.remove(sw[0])
15: if random(0, 1) < p then
16: decision← True
17: else
18: decision← False
19: return decision, sw, rrcf

traces come, Sieve collects enough traces, encodes them into
path vectors, and constructs the RRCF, then Sieve enters the
maintenance stage. With more incoming traces, before insert-
ing a new coming trace, the oldest trace is removed. For every
trace inserted into the trees, the attention score is evaluated
by all RRCTs of the RRCF. Next, the sampling probability is
calculated using equation (4). Finally, Sieve samples a trace
according to its sampling probability. Algorithm I describes
the sampling procedure at the maintenance stage.

IV. IMPLEMENTATION

We have implemented Sieve in python based on an open-
source implementation4 of RRCF. We modify the original
RRCF model to fit the online sampling scenario. We improve
the cutting dimension selection method by giving priority

4https://github.com/kLabUM/rrcf

to invalid dimensions and new dimensions. Therefore, the
structural uncommonness is considered first to accelerate
isolation. We replace the original scoring scheme with our
scheme which is introduced in Section III-B2 because of the
poor performance of the original one. We enhance the RRCF
model with the path vector expansion mechanism to enable
the ability to process vectors of indefinite length, which is
introduced in III-B1. To solve the curse of dimensionality, we
implement the dimension reduction scheme by removing the
invalid dimensions and weak dimensions, which is introduced
in III-B3.

V. EVALUATION

In this section, we carry out evaluations on four trace
datasets to show the effectiveness of Sieve. In addition, we
evaluate Sieve’s sensitivity to the degree of uncommonness
and its parameters including the number and size of RRCT,
the threshold. To evaluate the performance of Sieve, we com-
pare its sampling result to the hierarchical clustering method
proposed in [3]. By default, the number of RRCT is set to
50, and the size of RRCT is set to 128; the length of sliding
window is set to 50 and the threshold is set to 0.3. These
parameters can be tuned in different systems. The datasets we
use are illustrated as follows:

• A simulated microservice system. The traces are gen-
erated by Virtual War Room (VWR) [16]. We use VWR
to simulate a microservice system composed of 6 mi-
croservices and inject two types of faults (i.e., network
delay and early stop) into it, collect trace data with
OpenTracing. There are 34167 traces in total, 32592 of
them are normal, 66 of them are with high network delay,
1509 of them are with early stop. The name VWR is used
to refer to this dataset in the following part.

• A Real-world microservice system. The dataset is
generated by a real microservice application deployed
in the private cloud environment of an ISP and pre-
pared for an international AIOps challenge5. There are
13 microservices in the system, some of which have
multiple instances. Different types of faults are injected
into different instances to make diverse anomalies. The
dataset has 164340 normal traces and 4092 abnormal
traces. The name AIOps is used to refer to this dataset
in the following part.

• Online Boutique microservice benchmark. Online
Boutique is a microservice demo application consists of
a 10-tier microservice. We instrumented the application
with OpenCensus6 and deployed it on a Kubernetes
cluster with 8 nodes. We run the workload on the
benchmark to emit traces and two types of faults were
injected. One fault will delay the response of an email
microservice and the other will break down the product
catalog microservice. 2000 traces are collected and 99

5http://iops.ai/dataset list/
6https://opencensus.io/
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Fig. 9. Biased Sampling towards temporal uncommonness. The red circle denotes the attention scores and the sampling probability of the uncommon traces.

TABLE I
LATENCY SETTING

Dataset Spans Latency
Common Uncommon

VWR 6 200 ∼ 400ms > 100000ms
AIOps 58 100 ∼ 200ms 500 ∼ 1000ms

Boutique 28 < 200ms > 500ms
TC 15 22 ∼ 30ms 50 ∼ 66ms

traces are anomalous. The name Boutique is used to refer
to this dataset in the following parts.

• Real production traces. This dataset comprises 6561
traces from a large telecommunication enterprise. The
traces can be grouped into 10 different API types. The
longest trace contains 451 spans. The name TC is used
to refer to this dataset in the following part.

A. Biased Sampling

We first show the ability of our solution to bias sampling
towards uncommon traces which often indicate anomalies. We
show how Sieve makes use of temporal attention and structural
attention to find out uncommon traces.

Temporal attention. We replay 1000 traces which consist
of 990 traces whose latency is in a normal range and 10
traces whose latency deviates from the normal distribution.
The structures (i.e. the number of span, causal relationship)
of these 1000 traces are the same. The specific settings of the
different datasets are listed in Table I.

Fig. 9(a) shows the attention scores and the sampling
probabilities. It shows that uncommon traces have higher
scores because they are easier to be isolated and placed in
the shallower layer of the tree. The sampling probability is
extremely high for uncommon traces, namely 0.990 on aver-
age. Conversely, the sampling probability of common traces is
very low and the average is 0.018. The significant difference
between the sampling probabilities is due to the different
policies we take when the difference of score variances is
above/below the threshold. When a score makes the difference
of variances exceed the threshold, the sigmoid function makes
the sampling probability converge to 1 rapidly. For most traces,
their sampling probabilities are calculated linearly and are
proportional to the length of the sliding window. Therefore, the

sampling probabilities of the common traces fluctuate around
0.02 when the sliding window is of length 50.

We conduct a similar experiment on the AIOps dataset. Fig.
9(b) shows the scores and sampling probabilities. The attention
scores of the minority are significantly higher than that of the
majority. The sampling probability of the minority is 0.999 on
average and the counterpart of the majority is 0.019. In the
second figure of Fig. 9(b), we notice one common trace has
a sampling probability close to 1. The reason for this false
positive is the selection of sub-optimal threshold which is 0.3
in the experiment. But the sub-optimal threshold only adds a
few more samples and has little effect on the sampling result,
which we will show later.

We conduct a similar experiment again on Boutique and
TC respectively. Fig. 9(c) shows the result of Boutique and
Fig. 9(d) shows the result of TC. Both figures illustrate that
the Sieve detects all the uncommon traces and raises their
sampling probabilities enormously. Even for the small gap
between the common and uncommon like the latency setting
of TC, Sieve is effective to distinguish them.

Structural attention. We evaluate the effectiveness of Sieve
to uncommon traces with structural attentions. 1000 traces
including 990 structurally common traces and 10 structurally
uncommon traces are replayed. To avoid the impact of tem-
poral deviations, the latency of the traces is restricted within
a specific range. Table II shows the settings of traces from
different datasets. The 1000 traces are shuffled and then fed
into Sieve.

Fig. 10(a) shows attention scores and sampling probabilities
of traces from VWR. The sampling probabilities of common
traces are much lower than that of uncommon traces. The
average of the former is 0.020, while the latter is 0.996. There
are two false positives in the second figure. When we inspect

TABLE II
TRACE STRUCTURE SETTING

Dataset Latency Spans
Common Uncommon

VWR < 200ms 6 {4,5}
AIOps 400 ∼ 450ms 58 59

Boutique < 200ms 28 18
TC 25 ∼ 35ms 15 14
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Fig. 10. Biased Sampling towards structural uncommonness. The red circle denotes the attention score and the sampling probability of uncommon traces.

the traces corresponding to the two false positives, we find
them both have extremely low latency below 10ms which
makes them deviate from the distribution of latency. Hence,
Sieve regards the two traces are uncommon and gives them
high attention scores.

We adopt the AIOps dataset to conduct a similar experiment.
In Fig. 10(b), there are no false positives due to the small range
of latency. The averaged sampling probabilities of the common
traces is 0.018 and the counterpart of the uncommon traces is
0.997.

We experiment again on the trace from Boutique. Fig. 10(c)
shows that all uncommon traces are detected by Sieve and
will be sampled with a high probability. The average sampling
probabilities of the common and the uncommon are 0.018 and
0.997 respectively.

For the TC dataset, we select 990 traces with 15 spans as the
common ones and 10 traces with 14 traces as the uncommon
ones. The latencies of them are within 25ms to 35ms. The
uncommon and the common are almost the same in structure,
except that the common has one more span. Fig. 10(d) shows
that Sieve detects all the uncommon traces. Therefore, we
conclude that Sieve is sensitive to the subtle difference in
structure.

B. Sensitivity

We evaluate Sieve’s sensitivity to the degree of uncom-
monness and its parameters including the number and size
of RRCT, and the threshold. We focus on different degrees
of temporal deviations because it is more challenging to
sample the temporal uncommonness which does not severely
deviate from the distribution than to sample the structural
uncommonness. In the following experiments, we regard the
uncommon traces, whose attention scores make the difference
of variance exceed the threshold, as True Positive (TP), and the
common traces, whose attention scores make the difference of
variance exceeds the threshold, as False Positive (FP).

We select 1000 traces from AIOps with different ranges of
latency for the common and the uncommon traces. To avoid
the effect of structural deviation, the traces we selected is of
the same structure. The latency of 990 traces is below 200ms.
The latency of the rest 10 traces is above 200ms. We randomly
insert the 10 traces into the 990 traces. Then the 1000 traces

Fig. 11. Sieve’s sensitivity to the degree of uncommonness.

TABLE III
TRACE COMPOSITION

Type Spans Latency Amount
common 58 0 ∼ 300ms 990

uncommon
58 > 400ms 5
59 0 ∼ 300ms 2
7 0 ∼ 300ms 3

are streaming to Sieve and we record the number of TP and
FP. To vary the degree of uncommonness, we change the
latency range of the uncommon traces and repeat the steps
above. Common traces and the position of insertion remain
unchanged.

Fig. 11 demonstrates true positives and false positives that
Sieve recognizes under various degrees of uncommonness.
Sieve detects all the 10 uncommon traces in most scenarios.
The scenario in which Sieve performs not so well is in the
range 200 ∼ 250ms. Since the latency of the common traces is
below 200ms, the boundary between common and uncommon
is fuzzy. As the difference becomes more distinguishable,
Sieve improves its detection ability rapidly and keeps the false
positive rate at a low level.

Our next set of experiments evaluate Sieve’s sensitivity to
its parameters including the number and size of RRCT, the
threshold. We select 1000 traces from AIOps. The composition
of 1000 traces is listed in Table III. 990 common traces with
58 spans whose latency is below 300ms are selected. The
rest 10 traces consist of two types of traces. 5 temporally
uncommon traces with 58 spans have latency above 400ms.
The latency of 2 structurally uncommon traces with 59 spans
and 3 structurally uncommon traces with 7 spans is below
300ms.

Fig. 12(a) shows the results when the size of RRCT is set



TABLE IV
TRACE COMPOSITION OF DIFFERENT DATASET

Type VWR AIOps Boutique TC AmountSpans Latency Spans Latency Spans Latency Spans Latency
common 6 0 ∼ 200ms 58 0 ∼ 300ms 28 0 ∼ 200ms 29 0 ∼ 40ms 990

uncommon
6 > 100000ms 58 > 400ms 28 > 500ms 29 60 ∼ 90ms 5
5 0 ∼ 200ms 59 0 ∼ 300ms 18 0 ∼ 200ms 30 0 ∼ 40ms 57 0 ∼ 300ms 4 0 ∼ 200ms

0 200 400 600

Size of RRCT

0

2

4

6

8

10

A
m

o
u

n
t

TP

FP

(a) Size of RRCT

0 25 50 75 100

# of RRCT

0

2

4

6

8

10

TP

FP

(b) Number of RRCT

0 0.5 1 1.5 2

Threshold

0

5

10

15

20

TP

FP

(c) Threshold

Fig. 12. Sieve’s sensitivity to the its parameters.

to 32, 64, 128, 256, 512 respectively. Fig. 12(b) presents the
results when the number of RRCT is set to 10, 30, 50, 70, 90
respectively. Fig. 12(c) shows the results of different thresholds
varying from 0.05 to 2.05. The results of Fig. 12(a) and Fig.
12(b) illustrate that the size and number of RRCT have a little
effect on its accuracy and the performance of Sieve is stable
under different configurations. But the threshold has a direct
influence on Sieve’s accuracy. When the threshold is lower
than 0.55, the number of FP decreases significantly and the
number of TP remains the maximum. When the threshold is
between 0.6 and 0.85, the number of the TP remains stable
with a slight decrease. And the number of FP decreases to 0.
When the threshold is above 1, the number of TP decreases to
7 and remains stable. From the above results, we can conclude
that Sieve is not sensitive to the threshold in a limited range
and it is encouraged to set a low threshold to get a high
coverage of TP with a small increase of FP.

C. Performance Comparison

To evaluate the sampling quality of Sieve, we compare the
sampling result of Sieve to that of the hierarchical clustering
(HC) method. The composition of the 1000 traces for different
datasets is listed in Table IV. For the sake of comparison, we
set a sampling budget, i.e., the sample size, and sample traces
until the budget runs out. For Sieve, it is designed for online
sampling and is not restricted by a budget inherently. To make
use of the budget, Sieve samples traces in the following way.
If Sieve runs out of the budget, then it stops processing the
remaining traces; if Sieve still has a budget after the 1000
traces are processed, then it samples traces randomly from the
traces which are not sampled until the budget runs out. We
vary the budget from 10 to 100 and measure the quality of
sampling by calculating the proportion of uncommon traces
in the sample. We repeat experiments 50 times with the same
setting and record the average proportion.

Fig. 13 shows the proportion of uncommon traces sampled
by random, HC, and Sieve, under different settings of budget.

Sieve achieves the best performance in four datasets. The
proportion of random sampling is approximately equal to the
sampling rate. With the increase of budget, the proportion of
HC grows slowly and does not exceed 60%. Since HC can only
detect the structural uncommonness, 5 structurally uncommon
traces are sampled and the other 5 temporally uncommon
traces are omitted. For Sieve, the proportion is lower than
that of HC at the beginning because of its online sampling
scheme. Though the sampling probabilities of common traces
are low, they have a huge quantity in the trace stream and
will consume a large part of the budget if the uncommon
traces do not occur in the early stage. As the budget increases,
the proportion of Sieve grows and converges closely to 100%
rapidly. The result on TC is different from other datasets
for the reason that neither the temporal uncommonness nor
the structural uncommonness is not explicitly considered. The
effectiveness of HC is largely reduced, while Sieve still has
an ideal performance.

D. Representative sampling

We evaluate Sieve’s ability to obtain a representative sam-
ple, which comprises traces of different patterns. Traces of
TC can be divided into 10 groups. We use 6561 traces of
TC as the population and test Sieve’s ability to get a sample
from different groups. In order to compare Sieve with HC
and random sampling, we set the sample size of the latter
two methods to the number of samples that Sieve produces.
The experiment is repeated 50 times. Table V shows the
number of traces in different groups and the sampling results
using different methods. Sieve is more effective to preserve
uncommon traces than HC. For the very few traces, Sieve
preserves most of them. On the contrary, Sieve drops most
of the common traces. To evaluate Sieve’s storage saving, we
conduct experiments with the other three datasets to observe
the sampling rate. Table VI records sampling results. The
results show that the reduction of traces is up to 97.5%, which
brings considerable storage savings.

E. Overhead

We measure the time Sieve spends on sampling. The number
of RRCT is set to 20 for its approximate performance to
that of the setting of 50. Other parameters remain unchanged.
The sampling latency comprises three parts, namely the time
spending on path vector encoding, the time spending on
calculating attention score, the time spending on calculating
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Fig. 13. The proportion of uncommon traces sampled by three different methods in different trace datasets.

TABLE V
RESULTS OF REPRESENTATIVE SAMPLING

API-1 API-2 API-3 API-4 API-5 API-6 API-7 API-8 API-9 API-10
Population 11 16 48 119 135 210 325 571 607 4519

Sieve 11 16 41.2 64 51 31.2 9.4 15.2 10.8 65.4
HC 5.9 16 5.44 17.22 19.44 32.64 42.24 45.92 42.84 87.56

Random 0.42 0.68 2.3 5.38 6.34 10.78 16.12 27.28 29.7 217

TABLE VI
SAMPLING RATES OF DIFFERENT DATASETS

Population Sample Sampling Rate
VWR 34167 85 2.5%
AIOps 168432 7602 4.5%

Boutique 2000 114 5.9%

0 5 10 15 20 25 30 35 40

Latency/ms

0

0.25

0.5

0.75

1

C
D

F VWR

AIOps

Boutique

TC

Fig. 14. The cumulative distribution of sampling latency.

sampling probability. Fig. 14 shows the cumulative distribution
function of latency when Sieve processes different datasets.
The latency varies between 3ms and 33ms. Even for the
production traces with hundreds of spans, Sieve is efficient
to process them.

VI. RELATED WORK

Debugging the distributed systems is notoriously challeng-
ing due to the interactions between various components which
may run on different machines. Numerous distributed tracing
systems are designed to help understand the systems and
provide more observability when something wrong happens.

Magpie [17] is able to capture the control flow and resource
consumption of requests to construct a concise workload
model of the distributed system. Mike Y.Chen et al. [18]
have proposed a request path based method to manage failure
and evolution in large distributed systems. They apply the
statistical technique to the collected path to infer system
behavior. X-Trace [19] is a tracing framework that focuses
on tracing applications at different network layers, to provide

a comprehensive view of the system’s behavior. Dapper [8]
is Google’s production distributed systems tracing platform
and shares conceptual similarities with Magpie and X-Trace.
Dapper has achieved a number of new features including sam-
pling and the degree of application-level transparency to make
it more appropriate in production. In industry, open-source or
commercial distributed tracing systems have emerged follow-
ing the tracing model of Dapper, such as Jaeger, Lightstep.
Systems like [10], [13], [20]–[24] detect the performance
degradation and pinpoint the root cause. MEPFL [15] trains
prediction models to predict latent error and locate fault for
microservice applications by making use of the trace level and
microservice level features extracted from the trace log. Some
of these features may be helpful for Sieve to improve its ability
of uncommonness detection.

Sampling becomes necessary in distributed tracing. Faced
with the high volume of trace data, Dapper uses a random
sampling scheme with a sampling rate less than 0.1%. Though
Dapper reduces the storage cost enormously in this way, the
informative traces that account for a tiny part will lose. JCall-
Graph [25] only samples successful traces and preserves all
the traces of failure invocation. Although it reduces enormous
network bandwidth consumption on trace transmission, but the
traces with high latency will be lost. Martin Bauer et al. [26]
introduce trace sampling into conformance checking. They
continuously sample traces until no trace with new information
for conformance is found. The hierarchical clustering sampling
scheme [3] is able to bias the sampling to maximize the
diversity of traces in terms of the number of spans. It is neither
a proper solution for online sampling nor unable to detect
traces with temporal uncommonness. Sifter [4] uses traces to
builds a low-dimension model to approximate the system’s
common-case behavior and bias sampling towards traces that
are poorly captured by the model. Since Sifter only focuses
on the structure of traces, the traces with uncommon temporal
characteristics will be ignored. In the database literature, the
problem of sampling a small portion of data to represent the



whole dataset exists as well. Ying Yan, et al. proposed an error-
bounded stratified sampling scheme to reduce the sample size
with the knowledge of data distribution [27].

VII. CONCLUSION
Distributed tracing in microservice systems becomes com-

mon. Moreover, sampling is essential to reduce the expense
of storage facing trace data with several Tera Bytes per day.
We design and implement Sieve to fulfill the requirements of
biased online sampling. With the attention mechanism, Sieve is
sensitive to temporally and structurally uncommon traces and
samples them in a high probability, while most common traces
are discarded to reduce the redundancy. The evaluation of
different trace datasets shows that Sieve is robust to the degree
of uncommonness. Compared to state-of-the-art approaches,
Sieve can increase the probability of uncommon traces and
reduce storage space tremendously. Moreover, the overhead
of Sieve is low enough to work in real-time sampling.
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