
SwissLog: Robust and Unified Deep Learning
Based Log Anomaly Detection for Diverse Faults

Xiaoyun Li, Pengfei Chen∗, Linxiao Jing, Zilong He and Guangba Yu
School of Data and Computer Science, Sun Yat-sen University

Guangzhou, China
Email: {lixy223, jinglx3, hezlong, yugb5}.mail2.sysu.edu.cn, ∗chenpf7.mail.sysu.edu.cn

Abstract—Log-based anomaly detection has been widely stud-
ied and achieves a satisfying performance on stable log data. But,
the existing approaches still fall short meeting these challenges:
1) Log formats are changing continually in practice in those
software systems under active development and maintenance. 2)
Performance issues are latent causes that may not be detected
by trivial monitoring tools. We thus propose SwissLog, namely a
robust and unified deep learning based anomaly detection model
for detecting diverse faults. SwissLog targets at those faults
resulting in log sequence order changes and log time interval
changes. To achieve that, an advanced log parser is introduced.
Moreover, the semantic embedding and the time embedding
approaches are combined to train a unified attention based Bi-
LSTM model to detect anomalies. The experiments on real-world
datasets and synthetic datasets show that SwissLog is robust to
the changing log data and effective for diverse faults.

Keywords-deep learning; log parsing; anomaly detection;
BERT

I. INTRODUCTION

For large-scale software systems, especially those deployed
on cloud servers, it is vital to enhance system health and
stability. Both external faults (e.g., malicious attack, node
disconnection) and internal software bugs (e.g., an infinite
loop, incorrect configuration) may deliver to unexpected sys-
tem aborts. All of these failures are regarded as anomaly.
A large-scale halt of cloud servers can lead to the failure
of downstream services, customers drain, and even huge
economic loss. Take an anomaly in cloud server for example.
During an upgrade, a snippet of error code caused I/O hang
in many running instances. Millions of services, especially e-
commerce services and financial services built on top of cloud
servers, suffered huge economics loss from this anomaly [1].
Anomaly detection is therefore required to alarm immediately
and mitigate the impact of an anomaly.

Log data is an extensively available data resource that
records system states and critical events at runtime in all
kinds of software systems. Developers generally utilize log
data to obtain the system status, detect anomaly and locate root
causes. The hidden abundant information offers a good view
to analyze system problems. Hence by mining log information
in a large amount of log data, data-driven methods can help to
enhance system health, stability, and availability. As the scale
and complexity of modern computer systems increase, log data
is generated in explosion. For example, there are more than 50
GB of logs generated per hour [2]. It is a crucial challenge to
process such a large amount of log data. Instead of error-prone

and time-consuming manual work, an effective and efficient
data-driven log processing tool is an urgent need.

There are a large body of data-driven methods that automat-
ically detect anomalies. Principal Component Analysis (PCA)
based methods [3], Invariant Mining-based (IM) methods
[4], and workflow-based methods [5] are typical automated
algorithms to detect anomaly based on log data. With the
prevalence of deep learning, deep learning-based methods are
gradually applied to anomaly detection such as DeepLog [6],
LogAnomaly [7], LogRobust [8]. They present remarkable
results than previous methods in anomaly detection.

But, the existing approaches are built based on some strong
assumptions which are not satisfied in the real-world pro-
duction environment. There are two major challenges when
applying the methods mentioned above in the production
environment. 1) Changing logs: log formats are changing
constantly in practice in those software systems under ac-
tive development and maintenance. Kabinna, et al. [9] and
Zhang, et al. [8] discussed log instability in their prior works.
The empirical study shows that there are around 20-45%
logs changed throughout the software system lifetime. 2)
Underlying performance issues: performance issues are the
common manifestation of partial failures [10], which refers
that partial functionalities are broken, but not all of them.
Indeed, partial failures are behind many real-world outages
[1], [11]–[14], hence not latent problems that developers can
ignore. Consequently, we can dig up partial failures through
detecting performance issues.

To address the above challenges, we propose SwissLog, a
robust and unified deep learning based log anomaly detection
for diverse faults. SwissLog is robust and versatile like Swiss
Army Knife. From real-world log data, we find two common
types of log changes when an anomaly occurs. In this paper,
we name those faults resulting in sequence order changes
as sequential log anomalies, and time interval changes as
performance issues, respectively.

SwissLog consists of four stages: log parsing, sentence
embedding, and Attention-based Bidirectional Long Short-
Term Model (Attn-based Bi-LSTM), and anomaly detection.
SwissLog introduces a novel log parsing approach that extracts
log data by mapping valid words in a dictionary without
losing the semantic meaning of sentences. To detect perfor-
mance issues, we additionally combine temporal information,
namely the time interval between log statements, with seman-
tic information in log data. SwissLog employs Bidirectional

09:59:38 INFO Receiving block
09:59:38 INFO AllocateBlock
09:59:39 INFO Receiving block
09:59:39 INFO Receiving block

10:00:02 INFO AddStoredBlock

(a) normal sequence

09:37:53 INFO AllocateBlock
09:37:54 INFO Receiving block
09:37:54 INFO Receiving block
09:37:54 INFO Receiving block

09:38:49 WARN Redundant addStoredBlock

(b) sequence order change

09:59:38 INFO Receiving block
09:59:38 INFO AllocateBlock
10:01:42 INFO Receiving block
10:01:42 INFO Receiving block

10:02:18 INFO AddStoredBlock

(c) log time interval change

09:59:38 INFO Receiving block from ip
09:59:38 INFO AllocateBlock
09:59:39 INFO Receiving block from ip
09:59:39 INFO Receiving block from ip

10:00:02 INFO AddStoredBlock

(d) changing events

Fig. 1. Four types of log sequences with different changes.

Encoder Representation from Transformers (BERT) [15] to
encode semantic information, namely log templates. Then
SwissLog utilizes a novel time embedding method to encode
temporal information. Next, Attn-based Bi-LSTM receives the
concatenation of semantic embedding and time embedding and
learns the fixed pattern of log data. Finally, an alarm occurs if
detecting an anomaly. We conduct experiments on real-world
log datasets and synthetic datasets to evaluate the effectiveness
and robustness of SwissLog for detecting diverse faults.

The contributions of this paper are four-fold:
• We propose a novel approach that parses log messages

based on a dictionary. Particularly, it does not require any
parameter tuning process. To our best knowledge, we are
the first to propose a log parsing method based on the
dictionary.

• We introduce BERT to encode log templates which is
robust to changing log formats.

• We combine time embedding and semantic embedding
approaches to detect sequential log anomalies and per-
formance issues by a unified deep learning model. The
performance issues are rarely studied in log analysis
before.

• We implement SwissLog and evaluate it on real-world
datasets and synthetic datasets. The results prove the
effectiveness and robustness of SwissLog for detecting
diverse faults.

The remainder of this paper is organized as follows. Sec.
II illustrates the motivation. Sec. III shows an overview and
details of SwissLog. We present our evaluation results and
discussions in Sec. IV and Sec. V. The related work is
summarized in Sec. VI. Finally, we conclude this paper in
Sec. VII.

II. MOTIVATION

Log data is a substantially available data source recording
system states and significant events at runtime. It is intuitive to
observe system status and inspect potential anomaly. One of
the normal sequences is shown in Fig. 1(a). We can observe
that the beginning of a normal sequence is to allocate and
receive blocks. After a series of operations, this block is
eventually added to the set of stored blocks, which means
the end of a cycle.

With the increasing complexity and scale of distributed
systems, complicated log data and various types of the anoma-
lies are constantly coming out. In this section, we show out
the observation from log data in a real-world production
environment and analyze the requirements of a robust anomaly
detection under a large-scale production environment.

A. Diverse Faults

A large-scale system inevitably encounters faults, resulting
in log pattern changes. We target at two types of log changes
in practice, as shown in Fig. 1(b) and Fig.1(c). We omit some
unimportant log statements and only show the key information
(i.e. time, verbosity level, simplified log statement).

a) Sequence order change: An abnormal sequence
against the normal one in Fig. 1(a) is depicted in Fig. 1(b),
where the abnormal log statement is highlighted in yellow.
In this case, the system received a redundant addStoredBlock
request, causing the sequence order change. Therefore, sequen-
tial log anomalies can be generally observed from its abnormal
sequence order. Prior works [3], [4], [6]–[8], [16] mostly focus
on sequential log anomalies and recognize them by detecting
abnormal log sequence order .

b) Log time interval change: Another kind of fault is
performance issues, whose example is shown in Fig. 1(c).
In contrast to abnormal sequence order, those blocks with
performance issues usually keep the same sequence order
as the normal one. However, performance issues slow down
the execution time of specific tasks according to their faulty
components. For example, the receiving block in line 3 has
a 3000-millisecond latency which is caused by the network
congestion. The performance issue here is manifested in the
time interval change. Such performance issues are like buried
land mines that may trigger catastrophic outages. Therefore,
the topic of detecting performance issues gains lots of attention
recently [10], [17]–[20]. But the existing approaches employ a
static analysis to find performance bugs or an intrusive method
to detect them. Either they are difficult to detect performance
issues at runtime or they slow down system performance. If
we detect performance issues by mining time interval changes
in log data, the above problems are accordingly solved.

B. Changing Events

Modern software systems that need an automated log
processing tool are probably under active developments and
maintenance. Kabinna, et al. [9] examined the stability of
logging statements via empirical study. They find that 20-
45% of the logging statements change throughout the whole
lifetime. Zhang, et al. [8] also conducted a similar empirical
study on Microsoft Service X. As reported, up to 30.3%
logs are changed in the latest version. Two main possible
factors that cause log changes are: 1) Developers add new
log statements to source codes. 2) Developers add a few
new features and modify the content of log statements. Extra
words are thus attached to log data while not changing its
meaning. Fig. 1(d) shows a common case of changing events.

String “from ip” is added to the log statement while it keeps
the original meaning. The state of the art method to detect
anomaly in changing events is LogRobust [8].

On the basis of the observation in a real-world production
environment, we propose SwissLog, a robust and unified deep
learning based log anomaly detection model for diverse faults.
It can detect sequence order change and log time interval
change manifested in log data. Also, it is robust to changing
events.

III. DESIGN OF SWISSLOG
!,#

[%&, %', … , %)]

So
ftm
ax

+,-./0123

+12.-

Log Parsing Sentence Embedding

4

56

TM

TM

BERT

Projection

History Log

New Log

offline

online

Anomaly
Detection

Alarm

Attn-based
Bi-LSTM

Tokenize

Dictionarize

Clustering

online

Fig. 2. The overview of SwissLog

We first begin with an overview of SwissLog which is pre-
sented in Fig. 2. SwissLog comprises two phases, namely the
offline processing phase and the online processing phase. Each
phase includes log parsing, sentence embedding, Attn-based
Bi-LSTM stage and the online phase particularly contains
anomaly detection stage. Firstly, SwissLog adopts a novel log
parsing method and extracts multiple templates by tokenizing,
dictionarizing, and clustering history log data. These templates
are kept as natural sentences instead of event ids. We link those
log statements with the same identifiers or simply use a sliding
window to construct log sequences named “sessions”. And
then the log sequence is transformed into semantic information
and temporal information. SwissLog uses BERT encoder to
encode semantic information F into embedding Econtext and
projects temporal information ∆T onto embedding Etime.
The concatenation of semantic embedding Esemantic and time
embedding Etime as input is fed into Attn-based Bi-LSTM
to learn the features of normal, abnormal and performance-
anomalous log sequence. At runtime, the online phase also
executes the same workflow as the offline phase. Finally, the
pre-trained SwissLog model predicts if a log sequence is an
anomaly or not. An alarm will be raised once an anomaly is
detected.

We next introduce four stages of SwissLog including log
parsing (Sec. III-A), sentence embedding (Sec. III-B), Attn-
based Bi-LSTM (Sec. III-C), anomaly detection (Sec. III-D)
in detail.

A. Log Parsing

In this part, we briefly introduce the design of our log
parser. Log statements in Fig. 3 are readable because most
of the words in it are valid words, which can be looked up
in a dictionary. Due to the reading ability of the human brain,
most similar logs can be visually split into the same group.
Leveraging this feature, a dictionary-based approach naturally

addresses the log parsing issue. In the following parts, we
illustrate the log parser in SwissLog step by step.

1) Step 1: Tokenize and Preprocess using Delimiters: In
each log statement e, we define a slice of log statement
as token. How to tokenize a complete log statement into
appropriate tokens is a critical problem in the dictionary-based
approach since the parsing result largely depends on it. The
logging system is more likely to use special delimiters such
as colon, and quotation marks to separate strings. For better
tokenization, we thus utilize five special delimiters, namely {, .
; : ”} attained from empirical study, to tokenize log statements.

Given a dictionary D = {w1, w2, ..., wn}, such that every
word wi can be identified as a valid word. After tokeniz-
ing, we first check that if tokens of log statement e are
in dictionary D. Then we get the wordset, a multiset of
valid words dword = {d1, d2, ..., dm}, where ∀di ∈ D. An
example is shown in Fig. 3 Step 1. When a raw log message
“Received block blk 560063894682806537 of size 67108864
from /10.251.194.129” arrives, it will be separated into 11
tokens. After searching in the dictionary, ‘Received’, ‘block’,
‘of’, ‘size’, ‘from’ are identified as valid words. Particularly for
log-specific concatenated words like “PowerDown”, we import
an external package wordninja [21] to split it into “Power”
and “Down” based on the unigram frequencies in English
Wikipedia. Finally, we obtain the wordset dword containing
valid words.

2) Step 2: Cluster Logs by Wordset: The goal of this step is
to cluster similar log statements with the same wordset. When
a new wordset dword arrives, SwissLog looks for the matched
group for it. If a group is matched, SwissLog puts wordset
dword into it. Otherwise, SwissLog creates a new cluster for
wordset dword. Assume that dword1, dword2, dword3 are
the wordset of log statements e1, e2, e3, respectively. Since
the log statement e1 and e2 have different wordset, SwissLog
creates the new cluster C1 and C2 for them separately.
Observed that wordset dword3 is identical with dword1, log
statement e3 is consequently categorized into cluster C1.

Sometimes, a valid word occurs multiple times in one log
statement. For example, “120 bytes sent, 80 bytes received”.
The word bytes occurs twice in this log statement, which
is easily confused with those log statements with only one
bytes. Taking the word occurrence into account, we espe-
cially use count set fword to store wordset occurrence. Hence,
only when the wordset dword and occurrence fword are
completely identical, can the two log statements be categorized
into the same cluster.

3) Step 3: Mask Variable with LCS: The goal of the
masking layer is to distinguish the constant part and variable
part in a cluster. Common sequence of log statements in the
same cluster can be regarded as a constant part, while the
changing part can be viewed as the variable part. Next, we
introduce token-level Longest Common Sequence (LCS) to
help us mask all variable parts in a cluster with *.

LCS is to find the longest sequence among a sequence
set. An LCS example is shown in Step 3 of Fig. 3. Assume
there are four log statements A, B, C, D in the cluster C1.
We firstly define token-level subsequence. Suppose Σ is a
universe of tokens. Given any sequence α = {a1, a2, ..., am},

Step 1: Tokenize and Preprocess using Delimiters

{‘Received’, ‘block’, ‘blk_56006389
4682806537’, ‘of’, ‘size’, ‘67108864’,
‘from’, ‘/10’, ‘251’, ‘194’, ‘129’}

Received block
blk_560063894682806537 of size
67108864 from /10.251.194.129

dword={‘Received’, ‘block’, ‘of’, ‘si
ze’, ‘from’}

[,;:"=]

dword1 !"
!#
…

$"

dword2

dword3
!%
…

$%

Step 2: Cluster Logs by Wordset

{‘ABC’, ‘ABD’, ‘E’, ‘FGH’}

D HC

A E F

B G

ABC ABD

E

FGH

Step 4: Cluster Logs using Prefix Tree

A = [a, b, c, d]

B = [b, b, c, e]

C = [a, b, c, e]

D = [e, b, c, f]

LCS
Template	=	[*,	b,	c,	*]

Step3: Mask Variables with LCS

Fig. 3. The workflow of log parsing

such that ai ∈ Σ. Then a subsequence of α is defined as
{ai, ai+1, ..., aj}, where i ∈ Z+ and 1 ≤ i ≤ j ≤ m. A
common subsequence is a subsequence of both sequence α1

and α2. For instance, two common subsequence of A and C
are {a, b, c}. The token-level LCS of A, B, C, D is {b, c}.

Compared with traditional LCS problem, SwissLog focuses
on token-level LCS. After clustering by wordset, log statement
e1 and e3 are in the same cluster C1. The input of Step 3
involves all tokens, not only those words in the vocabulary,
but also those words out of vocabulary. Token-level LCS of
cluster C1 can be found as {‘Receiving’, ‘block’, ‘src’, ‘dest’},
so the masking result of this cluster is “Receiving block * src:
* dest: *”.

Template:
Disconnecting: Too many authentication failures for * [preauth]

𝒆𝟒:	Disconnecting: Too many authentication failures for admin [preauth]
𝒆𝟓:	 Disconnecting: Too many authentication failures for root [preauth]

Fig. 4. An example of prefix tree

4) Step 4: Cluster Logs using Prefix Tree: After masking
variable, an important issue cannot be ignored. Given an
example, templates in Fig. 4 come from OpenSSH log data
[22]. We observe that the difference between log statement
e4 and e5 is a user name, which is admin in e4 and root
in e5, respectively. In this case, the variable part involves
valid words, thus the two templates are viewed as different
templates after clustering log by wordset. The prefix tree has
been applied in log analysis before [23], [24], here we employ
it so as to avoid the above cases.

The Prefix Tree, an ordered tree data structure, is often used
to store a dynamic set. The root of the prefix tree points to an
empty string and all the descendants of a node in the prefix
tree have a common prefix string with that node. Step 4 in
Fig. 3 shows an example of a prefix tree structure. Keys are
listed in the nodes and final string values are below them.
Given a set of string strs = {ABC,ABD,E, FGH}, they
are indexed by the prefix tree. String ABD traverses the whole
tree starting from the root to check if there exists a common
prefix. Then it finds ABC, so their leaf nodes point to the same
parent node B. While string E and FGH branch out because
they have no common prefix.

Before clustering, we first sort all wordset in an alphabetical
order, which largely helps to reduce the prefix tree construction
time. Also, we place * as the first rank before all alpha

order. Instead of searching prefix, our approach needs to
find out common preceding subsequence. Each token (i.e.,
‘Disconnecting’ in Fig. 4) in wordset dword can be treated
as an element, then we utilize the prefix tree to find common
preceding subsequence. In this way, the example shown in Fig.
4 can be eventually clustered into one template.

B. Sentence Embedding
The ultimate goal of anomaly detection is to detect diverse

faults that we have described in Sec. II-A. We can observe
that it is insufficient only with semantic information to de-
tect multiple types of faults. Therefore, we also introduce
temporal information as features to complement the anomaly
detection approach. After log parsing, we construct sessions by
correlating log with the same identifiers or sliding windows.
We transform the sequence into semantic information T and
temporal information ∆T . Then we encode these two kinds
of information with the following methods.

Case 1: “Expected quotacontroller.Sync to still be running but it is
blocked. %v”,err

Case 2: “`{"metadata":{"ownerReferences":[{"apiVersion":"%s","kind":
"%s","name":"%s","uid":"%s","controller":true,"blockOwnerDeletion":
true}],"uid":"%s"}}`” ,m.controllerKind.GroupVersion(), m.controllerK
ind.Kind, m.Controller.GetName(), m.Controller.GetUID(), rs.UID)

Fig. 5. Two log cases extracted from Kubernetes

1) Semantic Embedding: Log formats are under active evo-
lution. Yet, the key meaning of changing log statements stays
unchanged as we discussed in Sec. II-B. Sentence embedding
is therefore introduced to encode templates into vectors to
preserve the key meaning of log statements. Word2Vec [25]
has been widely used in existing approaches to transform
words of log statements into vectors. But it only performs the
limited utility meeting the case in Fig. 5. There are two log
cases extracted from Kubernetes source codes. Both case 1 and
2 contain the word block. block in case 1 is a verb which
means to prevent something from happening, developing, or
making progress. While block in case 2 is a noun which
represents that there exists a data block to be processed. It
produces the same word embedding with Word2Vec for the
word block. It will probably confuse downstream works
and lead to false alarming. To overcome the challenges of
polysemous words and changing events in log data, we need
an advanced word embedding approach.

The pre-trained language representation gains considerable
progress in the NLP field, especially BERT developed by
Google. Google released the pre-trained language model which
has trained on Wikipedia corpus and Book corpus. Compared
to other embedding methods, the large pre-trained language
model provides a sufficient word database to encode words
more precisely. As described in the initial paper of BERT [15],
there are two usages based on specific downstream tasks: fine-
tuning and feature extraction. We adopt the latter to get the
semantic embedding.

Tok 1 Tok 2[CLS]

E[CLS] E1 E2 EM
Embedding

Log template ATok M

1

11

12
Semantic

Representation
𝑬𝒔𝒆𝒎𝒂𝒏𝒕𝒊𝒄

TM TM TMTM

TM TM TMTM

TM TM TMTM

Mean

Fig. 6. The structure of BERT

Fig. 6 shows a simplified structure of BERT. As we only
execute the feature extraction part of BERT, the rest of BERT
will not be shown in this paper. Log template A is first
tokenized into M tokens as listed in Fig. 6 (Tok means
Token). BERT particularly adds a [CLS] token at the beginning
of the sentence which refers to the starting position of a
sentence. The embedding layer generates an embedding vector
Ei for each token including [CLS], where i refers to the ith
word in sentence. Then embedding vectors Ei are fed into
transformer encoders (TM in Fig. 6) as model inputs. Unlike
other embedding methods, a self-attention layer is added in
the transformer encoder to acquire other word information in
log statements. Therefore, when processing a log statement,
the attention mechanism builds a correlation among all other
words in this statement. After that, the output of self-attention
is transferred to two feed-forward layers to learn further
position and word vector relation.

SwissLog leverages an off-the-shelf service bert-as-service
[26] which uses BERT as a sentence encoder and runs it as
a service. We utilize BERT base model [27] which contains
a 12-layer of transformer encoders and 768-hidden units of
each transformer. Each output per token from each layer can
be used as a word embedding. The first layer is close to the
initial word embedding while the last layer may be biased to
the training of downstream tasks. Choosing a word embedding
from these is then a trade-off. Xiao, et al. [26] did research
on this problem and suggests to generate word embedding
in the last second layer. Hence, we take the average of the
hidden state of encoding layer on the time axis to get the final
semantic embedding Esemantic.

2) Time Embedding: Existing approaches are difficult to
detect performance issues at runtime. Moreover, the intrusive
detection results in the performance slowdown. Log-based
performance issue detection is then a non-intrusive and real-
time approach. To detect the log time interval change shown in

Fig. 1(c), we particularly introduce the temporal information.
We calculate the time difference ∆t between two events
e1 and e2, and then obtain a temporal differential sequence
∆T = {∆t1,∆t2, ...,∆ti, ...}, where i refers to the time axis
in time series. Additionally, minus one is used to pad the
beginning of the time series. For example, we obtain temporal
sequence ∆T = {−1, 0, 3, 0, ...} in seconds in Fig. 1(c).
Intuitively, we can observe that ∆t is closely related to the
former event e1. For example, the IO task shows a smaller
∆t while the scheduling task shows a greater ∆t. Even in
the normal operation, the time interval vibrates in a task-
related time range. To mitigate this task-related time vibration
issue, we transform ∆t into θ = 1

∆t . Also, we standardize
all temporal data by removing the mean and scaling to unit
variance so as to receive a trainable data.

However, 1-dimension temporal data exhibits limited infor-
mation. It is better to extend 1-dimension temporal data to a
high dimension of time embedding. Li, et al. [28] has proposed
a time-dependent event representation method. Inspired by
their work, we encode θ using soft one-hot encoding.

The first step is to project the scalar value θ onto a d-
dimension vector space. As presented in Eq. 1, we multiply θ
with a randomly-initialized weight vector W and then add a
randomly-initialized biases vector b, where p is the projection
size. After the above linear transformation, we apply a softmax
function to catch the importance vector s of the obtained
projection vector. The function softmax(·) is used to re-scale
a tensor, making its elements lie in the range [0, 1] and sum
to 1 along with a selected dim.

s = softmax(θiW + b),where W ∈ Rp, b ∈ Rp (1)

Then we weight all rows in the randomly-initialized embed-
ding matrix Es with the vector values in s. It is better to
have the same dimension d as semantic embedding Esemantic.
Finally, we get the time embedding vector Etime.

Etime = sEs,where Es ∈ Rp×d (2)

C. Attn-based Bi-LSTM

After sentence embedding, each log message is trans-
formed into a semantic vector Esemantic and a time em-
bedding vector Etime. We obtain the concatenation V =
concat(Esemantic,Etime), so each log sequence is repre-
sented as a list of vectors (like [V1,V2, ...,VT]). Taking such
vectors as input, SwissLog adopts the Attn-based Bi-LSTM
neural network for detecting diverse anomalies, as shown in
Fig. 7.

The LSTM network, a variant of Recurrent Neural Network
(RNN), is capable of capturing contextual information for
sequential data. Incorporating gating mechanisms, LSTM can
have the ability to remove or add information to the cell state
and finally decide what information to go through. It allows
neural networks to dynamically exhibit temporal behavior. The
LSTM network consists of three layers: input layer, hidden
neurons layer and output layer. At each time step, LSTM
calculates the new cell state ct and new hidden state ht using
the input state Vt and transferred hidden state ht−1. Bi-LSTM
is an extension of LSTM. It particularly adds a hidden neurons

LSTM LSTM LSTM

LSTM LSTMBackward

Forward

Input
sequence

LSTM

FC FC FCAttention

𝒉"𝒉"#$𝒉$

𝛼$ 𝛼"#$ 𝛼"

𝑝𝑟𝑒𝑑 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾′ 56𝛼7𝒉7)

𝑽$ 𝑽"#$ 𝑽"

Fig. 7. The architecture of Attn-Bi-LSTM.

layer in a backward direction and calculates each hidden state
ht at time t through concatenating from both directions as
input to output layers.

Like verbosity level in log statements, different log state-
ments show different importance in a log sequence. To mitigate
the impact of noisy or unimportant log statements, attention
mechanisms are therefore introduced to Bi-LSTM to assign
different weights to different log statements. Noisy or unim-
portant log statements will tend to be given low attentions.
The attention function αt at time t is implemented with a fully
connected layer (i.e., FC layer in Fig. 7), which performs the
following calculation,

αt = tanh(W ′α
t · ht). (3)

Here, W ′α
t denotes the trainable weight matrix of the at-

tention layer at time t. The function tanh(·) is kind of an
activation function. Then, all the hidden states multiply their
corresponding αt and are further summed to get a summarized
hidden state vector. Finally, a prediction output is calculated
by applying a softmax layer to the summarized hidden state
vector. The computation is formulated in Eq. 4, with W ′

representing the softmax layer weight.

pred = softmax(W ′ · (
T∑
t=0

αt · ht)) (4)

At the training stage, we calculate the cross-entropy as the
loss function and use the Adam optimizer [29] to train the
networks. The cross-entropy is formulated in Eq. 5, where
y(i) denotes the one-hot representation of the label (normal
or abnormal) of the ith log sequence and ŷ(i) refers to its
prediction.

H
(
y(i), ŷ(i)

)
= −

2∑
j=1

y
(i)
j log ŷ

(i)
j . (5)

D. Anomaly Detection
In the offline phase, we obtain a pre-trained Attn-based Bi-

LSTM model for anomaly detection using history log. When
a set of new log statements arrives, it first goes through log
parsing and sentence embedding. Then the obtained vectors
as input are fed into the pre-trained model. Finally, the Attn-
based Bi-LSTM can detect if an anomaly occurs. Pay attention
to that SwissLog makes decisions based on a session of log

statements correlated by a common identifier such as block
ID. Therefore, an anomaly can be robustly reported until the
session is closed. In other words, SwissLog works in a near
real-time mode like LogRobust [8] and LogAnomaly [7].

IV. EXPERIMENTAL EVALUATIONS

In this section, we evaluate the effectiveness and robustness
of SwissLog for diverse faults by answering the following
questions:
• RQ1: How effective and robust is the proposed log

parser?
• RQ2: How effective is the BERT encoder on anomaly

detection? Do other log parsers perform as well as the
proposed log parser using BERT encoder?

• RQ3: How robust is SwissLog on those log data with
changing events?

• RQ4: Can SwissLog detect performance issues? How
sensitive is SwissLog to log time deviations?

All experiments in this paper are conducted on a server
equipped with two 24-core CPU, 128GB RAM, and one
NVIDIA GeForce GTX 1080 Ti GPU.

A. Experiments Setting
1) Datasets: In this paper, we evaluate the proposed ap-

proach on the following datasets.
Real-world Datasets. Logpai [30] adopts 16 real-world

log datasets ranging from distributed systems, supercom-
puters, operating systems, mobile systems, server applica-
tions, to standalone software including HDFS, Hadoop, Spark,
Zookeeper, BGL, HPC, Thunderbird, Windows, Linux, An-
droid, HealthApp, Apache, Proxifier, OpenSSH, OpenStack,
and Mac. The above log datasets are provided by LogHub [22].
Each dataset contains 2,000 log samples with its ground truth
tagged by a rule-based log parser. Besides sampled datasets,
we select datasets collected from three representative systems
to evaluate the proposed approach. The details are shown in
Tab. I. HDFS log dataset is collected from a 203-node cluster
on Amazon EC2 platform [3], containing 11,175,629 raw log
messages. BGL dataset is a supercomputing system log dataset
collected by Lawrence Livermore National Labs (LLNL) [31].
The Android dataset provided by Loghub [22] is log data
recording Android framework states.

TABLE I
THE DETAILS OF LOG DATASETS

Log Type #Messages #Templates Labeled
HDFS [32] 11,175,629 30 Yes

Blue Gene /L [33] 4,747,963 377 Yes
Android [32] 30,348,042 76,923 No

Synthetic HDFS Data. To evaluate SwissLog, we synthe-
size new test datasets by simulating the real-world situation
discussed in Sec. II. Two possible types that may occur are
injected in HDFS log data illustrated as below:
• Changing events. Only unimportant words are inserted or

removed, without changing the key meaning of sentences,
in evolving log data. Therefore, the labels of changing
log data stay unchanged. We apply this injection with a

TABLE II
COMPARISONS OF SWISSLOG AND SOTA OF PARSING ACCURACY ON DIFFERENT LOG DATASETS

Dataset HDFS Hadoop Spark Zookeeper BGL HPC Thunderbird OpenStack Mac

Parsing Accuracy SwissLog 1.000 0.992 0.997 0.985 0.970 0.910 0.992 1.000 0.840
SOTA 1.000 0.957 0.994 0.967 0.963 0.903 0.955 0.871 0.872

Dataset Windows Linux Andriod HealthApp Apache Proxifier OpenSSH Average

Parsing Accuracy SwissLog 1.000 0.869 0.954 0.901 1.000 0.990 1.000 0.962
SOTA 0.997 0.701 0.919 0.822 1.000 0.967 0.925 0.865

103 104 105 106
0.0

0.2

0.4

0.6

0.8

1.0

Pa
rs

in
g

Ac
cu

ra
cy

Log Size (entries)

 SwissLog
 Drain
 AEL
 Spell
 IPLoM

(a) HDFS

103 104 105 106
0.0

0.2

0.4

0.6

0.8

1.0

Pa
rs

in
g

Ac
cu

ra
cy

Log Size (entries)

 SwissLog Drain
 AEL Spell
 IPLoM

(b) BGL

103 104 105 106
0.0

0.2

0.4

0.6

0.8

1.0

Pa
rs

in
g

Ac
cu

ra
cy

Log Size (entries)

 SwissLog Drain
 AEL Spell

(c) Android

Fig. 8. Comparisons among different log parsers of parsing accuracy on different volumes of logs

specific ratio ranging from 5% to 30% to the original
HDFS log data. Also, we tag the changed log message
as a new log template key.

• Performance issues. Only those performance issues that
do not change the log sequence order are considered.
Therefore, log sequence order also stay unchanged. We
apply the time interval latency injection to mimic CPU
hog, memory hog, disk write burn and network delay with
ratio 5% to those log whose original time interval is less
than 2. We label the injected sessions with performance
issues.

For simplicity, we name the dataset injected with changing
events as TestingEvent and performance issues as TestingPerf.

2) Evaluation Metrics: We leverage the widely used met-
rics, namely Precision, Recall, and F1-score to measure the
effectiveness of anomaly detection in SwissLog. Besides, the
parsing accuracy (PA) metric is introduced to qualify the ef-
fectiveness of an automated log parser. Compared to previous
metrics, evaluation using PA is more rigorous because partially
matched templates are also considered as incorrect. The de-
tailed definitions of them are as follows, where TP, FP, FN
represent True Positive, False Positive, and False Negative
respectively.
• Parsing Accuracy: PA = count(correct event ID group)

count(all event ID group) .
The ratio of correctly parsed log messages over the total
number of log messages.

• Precision: P = TP
TP+FP . The percentage of correctly

detected anomalies amongst all detected anomalies.
• Recall: R = TP

TP+FN . The percentage of correctly
detected anomalies amongst all real anomalies.

• F1-Score: F1 = 2∗P∗R
P+R . The harmonic mean of Precision

and Recall.
3) Implementation and Parameters Setting: 6,000 normal

and 6,000 abnormal blocks from real-world datasets are ran-
domly sampled for training. The neural network is trained
using Adam optimizer [29]. We use a weight decay of 0.0001
and set the initial learning rate to 0.001. We set the hidden

dim to 128. The training epoch is 30 and the mini batch size
is set to 32. We use the cross-entropy as the loss function. We
implement SwissLog with Python 3.7, Pytorch 1.3.

B. RQ1: The Effectiveness and Robustness of Log Parser

To answer RQ1, we utilize a sampled dataset and a large
dataset to figure out the effectiveness and robustness of Swiss-
Log. We first construct a dictionary and utilize an English
corpus including 5.2 million sentences, which is accessible on
[34]. After splitting this corpus with the space delimiter, we
collect 588,054 distinct words. Noting that not every occurred
word is valid (e.g., location name), we set an occurrence
threshold to filter common valid words. The dictionary finally
remains only 18,653 common words. In the evaluation, we
will use these 18,653 common words as the dictionary D to
recognize valid words.

The sampled dataset is a quick and effective to test the effec-
tiveness and robustness of log parsers. Therefore, we compare
SwissLog with 14 log parsers in the LogPai benchmark [30]
spanning 16 datasets. The results are shown in Tab. II. Due to
the limited space, we only present the state-of-the-art (SOTA)
result (i.e, the best score of the specific dataset shown in
the LogPai benchmark [30]). In particular, the better result
between SOTA and SwissLog is highlighted in bold font with
a gray block.

Overall, we observe that SwissLog shows almost the best PA
in all datasets except the Mac logs. Even more, SwissLog can
parse HDFS, BGL, Windows, Apache, OpenSSH datasets with
100% accuracy. Noting that we only utilize 2,000 log messages
for testing, thus a 100% accuracy is possible to achieve. The
average of SwissLog is up to 0.962, which is much more than
other log parsers by 10%. From this remarkable result, we can
indicate that the dictionary-based log parsing method is close
to the visual reflection of humans, it consequently achieves a
better result.

However, SwissLog shows an unsatisfactory performance
on the Mac logs. Consider three templates of Mac logs shown

PM response took <*> ms (<*>, powerd)
PM response took <*> ms (<*>, QQ)
PM response took <*> ms (<*>, WeChat)

<*>

Fig. 9. An example of Mac log templates

in Fig. 9. At first glance, it is not hard for us to classify these
three templates into one category, in that the difference is only
one word, namely the service name, powerd, QQ, WeChat. In
this case, according to the different characteristics of services,
they should be divided into three templates. However, in other
cases, where we can simply treat them as the variable part,
three templates should be merged into one template. We need
to adjust the dictionary used in preprocessing step according
to different template discriminant.

Besides the sampled dataset, we further evaluate SwissLog
towards three large datasets. The comparison of parsing ac-
curacy is shown in Fig. 8. The horizontal axis represents log
size which increases in logarithm and the vertical axis denotes
parsing accuracy over different amounts of log statements. We
compare SwissLog with the best four log parsers in LogPai
benchmark [30], namely Drain, AEL, Spell, and IPLoM. It is
worth noting that IPLoM is excluded on the Android dataset
since it consumes too much time to finish in parsing the data.

From Fig. 8, we observe that SwissLog outperforms other
log parsers on HDFS and Android dataset while it is slightly
higher than others on BGL dataset. When the volume of
logs increases, the parsing accuracy of SwissLog drops very
slightly. Also, there is no parameter tuning procedure in
SwissLog. Hence, we can indicate from the above results on
the sampled and large datasets that SwissLog has excellent ef-
fectiveness and robustness with different volumes and different
types of log statements.

C. RQ2: The Effectiveness of Semantic-based Model

In this part, we intend to evaluate the effectiveness of
semantic-based model in SwissLog. Consequently, we conduct
experiments on original datasets HDFS and BGL with two
kinds of labels, namely normal sequence, and sequential log
anomalies. For the HDFS dataset, we correlate log statements
with the same block id named session in advance. For the
BGL dataset, we apply a sliding window with a length of 20
entries to construct a sequence session.

We adopt the proposed log parser of SwissLog to extract
log templates. Then we employ one supervised method (i.e.,
LogRobust [8]), three unsupervised methods (i.e., DeepLog
[6], LogAnomaly [7], PCA [3]), and two variants of SwissLog
(i.e., with Bi-LSTM and with LSTM) to detect anomaly.
DeepLog [6] is a log key-based anomaly detection model and
it leverages LSTM to learn the pattern of normal sequence.
LogRobust [8] encodes log templates using Word2Vec and
leverages Attn-based Bi-LSTM to learn and detect anomaly.
LogAnomaly [7] accurately extracts the semantic and syntax
information from log templates.

The comparison results of evaluation metrics
Precision/Recall/F1-Score on different datasets are shown in
Fig. 10. A lower Precision means that more anomalies cannot
be detected while a higher Recall means more manual works.
Compared with other competitive approaches, SwissLog

 SwissLog(BiLSTM)

(a) HDFS

 SwissLog(BiLSTM)

(b) BGL

Fig. 10. Comparisons of different approaches on different datasets

with Attn-based Bi-LSTM achieves a better balance between
Precision and Recall. It achieves a very high F1-Score up to
0.99 and 0.98 in HDFS and BGL, respectively. It is worth
noting that Attn-based Bi-LSTM outperforms Bi-LSTM and
LSTM in detecting sequential log anomalies. Deep learning
based methods perform well in Precision. Here the freely
changed variable is the BERT encoder. Thus, the results
confirm the effectiveness of BERT.

Next, we need to figure out how the proposed log parser
affects the anomaly detection model. We select the top 2 log
parsers in the LogPai benchmark [30], namely AEL and Drain,
to parse the HDFS dataset in Tab. I into log templates. Then
these log templates work as input to the anomaly detection
model for sequence order changes.

TABLE III
RESULTS OF DIFFERENT LOG PARSERS USING BERT ENCODERS

LogParser Precision Recall F1-Score
Drain 0.95 0.96 0.96
AEL 0.96 0.97 0.97

SwissLog 0.97 1.00 0.99

Tab. III presents the comparison results among different log
parsers. Compared with other log parsers, SwissLog achieves
the best score of 0.99 in F1-Score. The biggest difference
between SwissLog and other approaches is that SwissLog
extracts more valuable valid words which provide wealthy
information for sentence embedding. For example, “Exception
in receivedBlock” is a piece of a log statement. AEL and
Drain treat it as the variable part so that the log template
loses lots of valuable semantic information. In contrast, the
dictionary-based log parsing method reduces the occurrence of
this condition. Through these experiments, we further confirm
the effectiveness of the proposed log parser. Hence, we can
verify the validity of semantic-based parsing and embedding
in SwissLog.

D. RQ3: The Robustness on Changing Log Data

As we discussed in Sec. II, changing events inevitably
occur in modern software systems under active development
and maintenance. In this part, we evaluate the effectiveness

of the semantic-based anomaly detection model on changing
log data. Two competitive approaches, namely DeepLog and
LogRobust are chosen as the baselines. DeepLog leverages
log key to identify templates while SwissLog and LogRobust
utilize sentence embedding. We use the model trained by
the original dataset to predict TestingEvent dataset. Since the
injected events are changed, we tag them as new templates in
DeepLog. The experimental results on TestingEvent are shown
in Fig. 11.

0 5 10 15 20 25 30
0.0
0.2
0.4
0.6
0.8
1.0

F1
-S
co

re

Injection Ratio (%)

 SwissLog
 LogRobust
 DeepLog

Fig. 11. F1-Score on the dataset TestingEvent

In Fig. 11, the horizontal axis denotes the injection ra-
tio and the vertical axis denotes the F1-Score of different
anomaly detection models. We can observe that the F1-Score
of SwissLog, LogRobust, and DeepLog with injection ratio 5%
are 0.96, 0.93, 0.78 respectively. Semantic-based models (i.e.,
LogRobust, SwissLog) achieve a better F1-Score than log key-
based models (i.e, DeepLog). The reason is that the log key-
based model treats those changing events as new templates,
which probably results in false alarming. Semantic-based
models utilize sentence embedding to encode templates, which
extend the 1-dimension sentence array to 2-dimension sen-
tence embedding matrix. Hence, sentence embedding brings
the robustness on changing log data as we expected. As the
injected ratio increases, the F1-Score of LogRobust starts to
drop while SwissLog still maintains a high F1-Score. For
example, under the injection ratio of 30%, the F1-Score
of SwissLog is higher than 0.9, but LogRobust can only
achieve 0.84. Compared to 2-dimension unordered sentence
embedding array in LogRobust, BERT encoders in SwissLog
capture the contextual information in templates and encode
changing log data with similar vectors. Hence, SwissLog with
BERT encoders is almost not affected by changing events,
showing a good robustness.

E. RQ4: The Effectiveness and Sensitivity of Time Embedding
The ultimate goal of SwissLog is to detect diverse faults

including sequential log anomalies and performance issues.
To answer RQ4, we need to verify the effectiveness of time
embedding in SwissLog using synthetic HDFS dataset Testing-
Perf. We compare SwissLog with those models using different
time embedding: 1) 1-dimension raw time (i.e., Raw time in
Tab. IV). 2) The mean of Esemantic and Etime (i.e., Mean in
Tab. IV). 3) Log time interval without reciprocal operation
(i.e., WO Reciprocal in Tab. IV). The comparison among
them is shown in Tab. IV. We can observe that SwissLog
achieves 0.92 in Precision while others are less than 0.7.
Raw time shows the worst results 0.42 in F1-Score since it

only contains 1-dimension information. It seems very weak
in front of the giants d-dimension Esemantic. Encoding the
log time interval without reciprocal operation also shows an
unsatisfactory performance 0.56 in F1-Score as expected. The
time interval violation is related to the base of the time
interval. The reciprocal operation can widen the gap between
normal time violation and abnormal time violation. The mean
embedding loses part of semantic information and temporal
information, therefore it obtains 0.76 in F1-Score. According
to the result, the effectiveness of time embedding is confirmed.

TABLE IV
RESULTS ON DIFFERENT OPERATION FOR TIME EMBEDDING

Time embedding Precision Recall F1-Score
Raw time 0.67 0.68 0.42

Mean 0.67 0.94 0.76
WO Reciprocal 0.65 0.66 0.56

SwissLog 0.92 0.99 0.95

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

F1
-S
co

re

Count

 Attn-based Bi-LSTM
 Bi-LSTM
 LSTM

(a) Injected seconds=1

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

F1
-S
co

re

Count

 Attn-based Bi-LSTM
 Bi-LSTM
 LSTM

(b) Injected seconds=2

Fig. 12. F1-Score on TestingPerf

The sensitivity to time violation is crucial in detecting
performance issues. Here we inject additional 1-second and
2-second latency (i.e., the latency between two consecutive
log statements) to mimic performance issues, where the count
of injected faults ranges from 1 to 5. Also, we choose the
deep learning model Bi-LSTM and LSTM as competitive
approaches. As shown in Fig. 12, when the injected number
of performance issues and the injected latency increase, all
of them achieve a higher F1-Score. We can observe from
Fig. 12(b) that when injecting two 2-second latency faults,
Attn-based Bi-LSTM achieves an excellent result 0.95 in F1-
Score. In Fig. 12(a), even when injecting one and two time
interval changes with only 1-second, Attn-based Bi-LSTM still
achieves 0.78 and 0.86 in F1-Score, respectively. It reveals the
sensitive response of SwissLog to time violation. However,
the performance of these three deep learning models seems
very similar. That means we can always get a consistent result
with a time embedding approach to detect performance issues.
Yet, Attn-based Bi-LSTM outperforms Bi-LSTM and LSTM
in detecting log sequential anomalies which is shown in RQ2
IV-C. Therefore, we choose Attn-based Bi-LSTM in SwissLog
so as to get better performance.

V. DISCUSSION

Threats To Validity. We discuss threats in two aspects: 1)
The log parser of SwissLog is based on a dictionary. However,
18,653 common words in our filtered dictionary cannot cover

all of the valid words in logs. A portion of terminology,
such as “DataNode” in Hadoop, is not included in them.
It is quite challenging to find a suitable dictionary for all
software systems generally. Instead, customizing a particular
dictionary for a software system accordingly is a better choice.
2) Although the time interval of the normal sequence seems
unchanged, different tasks still have different execution times
in software systems. The label of task type should also be
considered as feature in the future.

Efficiency. Efficiency is critical in real-time anomaly detec-
tion on large-scale log data. We adopt the metric milliseconds
per log statement (ms/l) to measure the efficiency of SwissLog
on HDFS dataset which includes 11,175,629 raw log mes-
sages. The elapsed time of log parsing, sentence embedding,
network training, and anomaly detection are 4.5 ms/l, 2.6
ms/l, 800.0 ms/l, 4.5 ms/l, respectively. Log parsing, sentence
embedding and anomaly detection are the three core stages
of the online process. All of them achieve 4.5 ms/l within
our experimental environments. Therefore, it is reasonable to
believe SwissLog can work in real-time anomaly detection on
large-scale log data.

VI. RELATED WORK

Log Parsing. Log parsing is the fundamental step of log
analysis works which has been widely studied. Xu, et al. [3]
and Nagappan, et al. [35] parsed logs by generating regular
expressions based on source codes. However, not all projects
are open-source online in practice. Moreover, existing log
parsing approaches can be divided into several categories. 1)
Similarity based clustering: LKE [36], LogSig [37], LogMine
[38], SHISO [39] and LenMa [40] compute distances between
two log messages or their signature and then cluster them
based on similarity. 2) Frequency based clustering: a set of
constant items generally occurs frequently in logs, so mining
frequency of items is a straightforward way to parse logs
automatically. SLCT [41], LFA [42] and LogCluster [43]
firstly record frequency of item and then group them into
multiple groups. 3) Heuristics by searching tree: Drain [24]
and Spell [44] utilize a tree structure to parse log into multiple
templates.

Anomaly Detection. Existing anomaly detection ap-
proaches mainly focus on sequential log anomalies. They
can be mainly separated into data mining methods and deep
learning methods.

Data mining methods include supervised learning methods
and unsupervised learning methods. 1) Supervised: by train-
ing labeled log data, supervised methods (e.g., decision tree
[45], support vector machines [46], regression-based technique
[47]) can learn the fixed pattern of different labeled log.
Consequently, they generally achieve a higher score than
unsupervised methods. But it is time-consuming to label a
large volume amount of history data for training. Moreover,
they cannot detect a black swan, which may not be involved
in history data. 2) Unsupervised: unsupervised methods take
unlabeled history data to train. This kind of methods generally
constructs a normal space and an abnormal space for normal
sequence and abnormal sequence, respectively [3], [4]. The
strength of unsupervised methods is unnecessary to label log

data. But similar to supervised methods, a black swan is also
hard to detect.

With the prevalence of deep learning, anomaly detection
models based on deep learning are widely studied [6]–[8],
[16]. Deep learning methods go through parsing log, model
training, and model predicting. 1) Log key-based models: log
key-based models first parse log statements into templates
and tag them with log keys. Du, et al. [6] adopted LSTM
while Vinayakumar et, al. [16] trained stacked-LSTM to model
the sequential patterns of normal and abnormal sessions.
However, when source codes update for a new version, the old-
trained log key-based model will treat them as new templates
which leads to unsatisfactory performance. 2) Semantic-based
models: As log data contains wealthy semantic information
of system states, NLP techniques are utilized to analyze log-
based anomaly detection. Meng, et al. [7] trained LSTM
considering the synonyms and antonyms with word vectors.
However, it also takes log count vector as inputs that are not
robust to the changing log data. Zhang, et al. [8] leveraged
Attention-Based Bi-LSTM to detect anomaly. But Word2Vec
and TF-IDF ignore the contextual information in sentences.
In our work, we use BERT to capture the contextual semantic
meaning in sentences.

VII. CONCLUSION AND FUTURE WORK

Log-based anomaly detection methods help to detect and
analyze anomalies. Changing events and performance issues
are two major challenges in existing approaches. We propose
SwissLog in this paper, a robust and unified anomaly detection
model for diverse faults including sequential log anomalies and
performance issues. Compared to other approaches, SwissLog
employs BERT encoders to encode log templates which can
capture contextual information in a log statement. Also, Swiss-
Log utilizes the concatenation of semantic embedding and
temporal embedding to train a unified Attn-based Bi-LSTM
model for diverse faults. We have conducted experiments on
real-world datasets and synthetic datasets to evaluate the effec-
tiveness and robustness of SwissLog. The results show that our
approach outperforms others.In the future, we plan to collect
more real-world datasets to evaluate SwissLog. Moreover, we
will design an effective and flexible incremental updating
mechanism to adapt to the new emerging log templates and
log sequences.

VIII. ACKNOWLEDGMENTS

The work was supported by the Key-Area Research
and Development Program of Guangdong Province
(2020B010165002), the National Key Research Development
Program of China (2019YFB1804002), the Basic and
Applied Basic Research of Guangzhou (202002030328) and
the Natural Science Foundation of Guangdong Province
(2019A1515012229). The corresponding author is Pengfei
Chen.

REFERENCES

[1] “Alibaba cloud reports io hang error in north china,”
https://equalocean.com/technology/20190303-alibaba-cloud-reports
-io-hang-error-in-north-china, 2019, [Online].

[2] H. Mi, H. Wang, Y. Zhou, M. R.-T. Lyu, and H. Cai, “Toward fine-
grained, unsupervised, scalable performance diagnosis for production
cloud computing systems,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 24, no. 6, pp. 1245–1255, 2013.

[3] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in SOSP’09: Proc.
of the ACM SIGOPS 22nd Symposium on Operating Systems Principles.
ACM, 2009, pp. 117–132.

[4] J.-G. Lou, Q. Fu, S. Yang, J. Li, and B. Wu, “Mining program
workflow from interleaved traces,” in SIGKDD’10: Proc. of the 16th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2010, pp. 613–622.

[5] X. Yu, P. Joshi, J. Xu, G. Jin, H. Zhang, and G. Jiang, “Cloudseer:
Workflow monitoring of cloud infrastructures via interleaved logs,” ACM
SIGARCH Computer Architecture News, vol. 44, no. 2, pp. 489–502,
2016.

[6] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in SIGSAC’17:
Proc. of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security. ACM, 2017, pp. 1285–1298.

[7] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun et al., “Loganomaly: Unsupervised detection of sequential
and quantitative anomalies in unstructured logs.” in IJCAI’19: Proc. of
the 28th International Joint Conference on Artificial Intelligence, 2019,
pp. 4739–4745.

[8] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li et al., “Robust log-based anomaly detection on unstable
log data,” in ESEC/FSE’19: Proc. of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 2019, pp. 807–817.

[9] S. Kabinna, C.-P. Bezemer, W. Shang, M. D. Syer, and A. E. Hassan,
“Examining the stability of logging statements,” Empirical Software
Engineering, vol. 23, no. 1, pp. 290–333, 2018.

[10] C. Lou, P. Huang, and S. Smith, “Understanding, detecting and lo-
calizing partial failures in large system software,” in NSDI’20: Proc.
of the 17th USENIX Symposium on Networked Systems Design and
Implementation, 2020, pp. 559–574.

[11] “Gocardless service outage on october 10th, 2017,” https://gocardless
.com/blog/incident-review-api-and-dashboard-outage-on-10th-october,
2017, [Online].

[12] “Office 365 update on recent customer issues,” https://blogs.office.co
m/2012/11/13/update-on-recent-customer-issues/, 2017, [Online].

[13] “Google compute engine incident 17008,” https://status.cloud.google.
com/incident/compute/17008, 2017, [Online].

[14] “Twilio billing incident post-mortem: Breakdown, analysis and root
cause.” https://bit.ly/2V8rurP, 2013, [Online].

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[16] R. Vinayakumar, K. Soman, and P. Poornachandran, “Long short-term
memory based operation log anomaly detection,” in ICACCI’17: 2017
International Conference on Advances in Computing, Communications
and Informatics. IEEE, 2017, pp. 236–242.

[17] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati,
and R. Yao, “Gray failure: The achilles’ heel of cloud-scale systems,”
in HotOS’17: Proc. of the 16th Workshop on Hot Topics in Operating
Systems, 2017, pp. 150–155.

[18] P. Huang, C. Guo, J. R. Lorch, L. Zhou, and Y. Dang, “Capturing and
enhancing in situ system observability for failure detection,” in OSDI’18:
Proc. of the 13th USENIX Symposium on Operating Systems Design and
Implementation, 2018, pp. 1–16.

[19] D. J. Dean, H. Nguyen, X. Gu, H. Zhang, J. Rhee, N. Arora, and
G. Jiang, “Perfscope: Practical online server performance bug inference
in production cloud computing infrastructures,” in SOCC’14: Proc. of
the ACM Symposium on Cloud Computing, 2014, pp. 1–13.

[20] D. J. Dean, H. Nguyen, P. Wang, X. Gu, A. Sailer, and A. Kochut, “Per-
fcompass: Online performance anomaly fault localization and inference
in infrastructure-as-a-service clouds,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 6, pp. 1742–1755, 2015.

[21] “wordninja,” https://github.com/keredson/wordninja, 2020, [Online].
[22] S. H. Pinjia He, Jieming Zhu and M. R. Lyu, “Loghub: A large collection

of system log datasets for ai-powered log analytics,” in ESEC/FSE’19:
Proc. of the 27th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering. ACM,
2019.

[23] W. Meng, Y. Liu, F. Zaiter, S. Zhang, Y. Chen, Y. Zhang, Y. Zhu,
E. Wang, R. Zhang, S. Tao et al., “Logparse: Making log parsing
adaptive through word classification.”

[24] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in ICWS’17: 2017 IEEE International
Conference on Web Services. IEEE, 2017, pp. 33–40.

[25] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in ICML’14: Proc. of the 31st International Conference on
Machine Learning, 2014, pp. 1188–1196.

[26] H. Xiao, “bert-as-service,” https://github.com/hanxiao/bert-as-service,
2018.

[27] “Bert pretrained models,” https://github.com/google-research/bert,
2020, [Online].

[28] Y. Li, N. Du, and S. Bengio, “Time-dependent representation for neural
event sequence prediction,” arXiv preprint arXiv:1708.00065, 2017.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[30] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools
and benchmarks for automated log parsing,” in ICSE(SEIP)’19: Proc.
of the 41st International Conference on Software Engineering: Software
Engineering in Practice. IEEE Press, 2019, pp. 121–130.

[31] A. Oliner and J. Stearley, “What supercomputers say: A study of
five system logs,” in DSN’07: Proc. of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE,
2007, pp. 575–584.

[32] “Loghub datasets,” https://zenodo.org/record/3227177, 2019, [Online].
[33] “Bluegene/l message types,” https://www.usenix.org/cfdr-data#hpc4,

2019, [Online].
[34] “English corpus,” https://storage.googleapis.com/nlp chinese corpus/tr

anslation2019zh.zip, 2020, [Online].
[35] M. Nagappan, K. Wu, and M. A. Vouk, “Efficiently extracting opera-

tional profiles from execution logs using suffix arrays,” in ISSRE’09:
Proc. of the 20th International Symposium on Software Reliability
Engineering. IEEE, 2009, pp. 41–50.

[36] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection
in distributed systems through unstructured log analysis,” in ICDM’09:
Proc. of the 9th IEEE International Conference on Data Mining. IEEE,
2009, pp. 149–158.

[37] M. Mizutani, “Incremental mining of system log format,” in SCC’13:
2013 IEEE International Conference on Services Computing. IEEE,
2013, pp. 595–602.

[38] H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and A. Mueen,
“Logmine: Fast pattern recognition for log analytics,” in CIKM’16:
Proc. of the 25th ACM International on Conference on Information and
Knowledge Management. ACM, 2016, pp. 1573–1582.

[39] K. Q. Zhu, K. Fisher, and D. Walker, “Incremental learning of system
log formats,” ACM SIGOPS Operating Systems Review, vol. 44, no. 1,
pp. 85–90, 2010.

[40] K. Shima, “Length matters: Clustering system log messages using length
of words,” arXiv preprint arXiv:1611.03213, 2016.

[41] R. Vaarandi, “A data clustering algorithm for mining patterns from event
logs,” in IPOM’03: Proc. of the 3rd IEEE Workshop on IP Operations
& Management. IEEE, 2003, pp. 119–126.

[42] M. Nagappan and M. A. Vouk, “Abstracting log lines to log event types
for mining software system logs,” in MSR’10: Proc. of the 7th IEEE
Working Conference on Mining Software Repositories. IEEE, 2010,
pp. 114–117.

[43] R. Vaarandi and M. Pihelgas, “Logcluster-a data clustering and pattern
mining algorithm for event logs,” in CNSM’15: Proc. of the 11th
International Conference on Network and Service Management. IEEE,
2015, pp. 1–7.

[44] M. Du and F. Li, “Spell: Streaming parsing of system event logs,” in
ICDM’16: Proc. of the 16th International Conference on Data Mining.
IEEE, 2016, pp. 859–864.

[45] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer,
“Failure diagnosis using decision trees,” in ICAC’04: Proc. of the first
International Conference on Autonomic Computing. IEEE, 2004, pp.
36–43.

[46] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “Failure prediction in ibm
bluegene/l event logs,” in ICDM’07: Proc. of the 7th IEEE International
Conference on Data Mining. IEEE, 2007, pp. 583–588.

[47] M. Farshchi, J.-G. Schneider, I. Weber, and J. Grundy, “Experience
report: Anomaly detection of cloud application operations using log
and cloud metric correlation analysis,” in ISSRE’15: Proc. of the 26th
International Symposium on Software Reliability Engineering. IEEE,
2015, pp. 24–34.

