
1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3162857, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

SwissLog: Robust Anomaly Detection and
Localization for Interleaved Unstructured Logs

Xiaoyun Li, Pengfei Chen∗, Linxiao Jing, Zilong He, and Guangba Yu

Abstract—Modern distributed systems generate interleaved logs when running in parallel. Identifiers (ID) are always attached to them
to trace running instances or entities in logs. Therefore, log messages can be grouped by the same IDs to help anomaly detection and
localization. The existing approaches to achieve this still fall short meeting these challenges: 1) Log is solely processed in single
components without mining log dependencies. 2) Log formats are continually changing in modern software systems. 3) It is challenging
to detect latent performance issues non-intrusively by trivial monitoring tools. To remedy the above shortcomings, we propose
SwissLog, a robust anomaly detection and localization tool for interleaved unstructured logs. SwissLog focuses on log sequential
anomalies and tries to dig out possible performance issues. SwissLog constructs ID relation graphs across distributed components and
groups log messages by IDs. Moreover, we propose an online data-driven log parser without parameter tuning. The grouped log
messages are parsed via the novel log parser and transformed with semantic and temporal embedding. Finally, SwissLog utilizes an
attention-based Bi-LSTM model and a heuristic searching algorithm to detect and localize anomalies in instance-granularity,
respectively. The experiments on real-world and synthetic datasets confirm the effectiveness, efficiency, and robustness of SwissLog.

Index Terms—deep learning; log parsing; anomaly detection; anomaly localization; log correlation

F

1 INTRODUCTION

R ELIABILITY and availability are of great importance in
large-scale software systems, especially for those sys-

tems deployed on cloud servers. Faults including external
faults (e.g., resource hogs, node disconnection) and internal
software bugs (e.g., an infinite loop, incorrect configuration)
are primary culprits of breaking the high availability and
reliability of distributed systems. We consider a system that
runs according to the expected behavior under sufficient
resources as normal, and the deviation from the normal
behavior as an anomaly. The above faults are manifested
as anomalies by system metrics (e.g., CPU usage spikes),
business KPIs (e.g., increase of request errors), and logs
(e.g., exception messages). What is worse, they may lead to
failures of downstream services, customer drain, and even a
huge revenue loss. Take an anomaly in a cloud server as an
example. During an upgrade, a snippet of error code caused
an I/O hang in many running instances. Millions of services,
especially e-commerce services and financial services built
on top of cloud servers, suffered a huge revenue loss from
this anomaly [2]. Anomaly detection and localization are
therefore required to be conducted immediately to mitigate
the impact of an anomaly.

Log data is an extensively available data resource in
all kinds of software systems. It records system states and
critical events at runtime so that developers generally utilize
log data to obtain the system status, analyze anomalies.
As the scale and complexity of modern computer systems
increase, systems generate interleaved logs when process-

• Xiaoyun Li, Pengfei Chen, Linxiao Jing, Zilong He, and Guangba Yu
are with the School of Computer Science and Engineering, Sun Yat-sen
University, Guangzhou 510006, China.
E-mail: {lixy223, jinglx3, hezlong, yugb5}@mail2.sysu.edu.cn and
chenpf7@mail.sysu.edu.cn.
Pengfei Chen is the corresponding author.
This paper is an extended version of ISSRE’20 paper SwissLog [1]

ing asynchronous or executing tasks in parallel. It is quite
challenging to manually process the exploded volume of
interleaved logs (e.g., more than 50 GB of logs generated
per hour [3]) and complex dependencies inside distributed
components. An effective and efficient data-driven log anal-
ysis tool is thus an urgent need.

Recently, data-driven log-based anomaly detection and
localization has been widely studied [4]–[12]. However, the
existing approaches are built based on strong assumptions
which are not easily satisfied in the real-world production
environment. There are three major challenges shown as
follows when applying the above methods in the production
environment.

(i) Log dependencies. IDs are attached to running in-
stances or entities to trace their states and critical
events. Correlating logs via the same IDs is a typical
approach to separate interleaved logs. The existing
approaches correlate them solely for one component,
which is not enough in distributed systems. Digging
out dependencies between IDs and correlating log
messages with the same ID across distributed compo-
nents can largely help developers to localize anoma-
lies.

(ii) Changing logs. Log formats are changing constantly
in practice in those software systems under active
development and maintenance. Kabinna, et al. [13]
and Zhang, et al. [10] discussed log instability in their
prior works. The empirical study shows that there are
around 20-45% logs changed throughout the software
system lifetime.

(iii) Latent performance issues. Performance issues are the
common manifestation of partial failures [14], which
refers that partial functionalities are broken, but not all
of them. Indeed, partial failures are behind many real-

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 03,2022 at 06:18:14 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3162857, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

world outages [2], [15]–[18], hence not latent problems
that developers can ignore. In practice, it requires
many aspects of system observations to distinguish
whether it is a performance issue or not. Although not
all latent performance issues can be detected through
log data, digging out latent ones as much as possible
also helps to enhance the reliability of the systems.

To overcome the above issues, in this study, we propose
SwissLog, a robust and unified deep learning-based log
anomaly detection and localization tool for unstructured
interleaved logs, particularly log messages consisting of
IDs and natural languages like “Receiving block blk 123
from IP:1.1.1.1”. SwissLog is robust and versatile like the
Swiss Army Knife. From real-world log data, we find two
common types of log changes, including log sequence order
changes and log time interval changes when an anomaly
occurs. Considering these two types, our work targets those
anomalies manifested on log data involving sequential log
anomalies and part of performance issues, which we name
latent performance issues in the remainder of the paper.

SwissLog contains two phases, namely the offline phase
and the online phase, and consists of four stages, namely
relation construction, log parsing, anomaly detection, and
anomaly localization. In the offline phase, SwissLog builds
relation graphs of IDs from the inter-component logs and
correlates interleaved logs with the same IDs. To help ana-
lyze logs precisely, a novel and robust dictionary-based log
parser without parameter tuning is introduced to extract log
templates without losing the semantic meaning of sentences.
To the best of our knowledge, we are the first to propose
an online data-driven log parser without parameter tuning.
Instead of assigning index for log templates, SwissLog en-
codes semantic information in the templates by Bidirectional
Encoder Representation from Transformers (BERT) [19],
which makes it robust to newly incoming templates and
additionally considers temporal information by projecting it
to a high-dimension embedding. Next, SwissLog employs
Attention-based Bidirectional Long Short Term Memory
(Attn-based Bi-LSTM) to learn the fixed patterns of log data,
where the attention mechanism is robust to slight turbu-
lence. In the online phase, SwissLog instantiates the relation
between IDs from the incoming logs and parses logs in a
streaming manner. The semantic and temporal information
are concatenated and fed into the anomaly detection model.
When an anomaly is detected, SwissLog raises an alarm and
launches the anomaly localization process. Finally, SwissLog
utilizes a heuristic algorithm to localize anomalies and re-
ports anomalous instances or entities with a fine granularity.

The key contributions of this paper are four-fold:

• We propose a novel online dictionary-based log pars-
ing method. Compared to previous work, it does not
require any parameter tuning and provides predom-
inant effectiveness, robustness, and generalizability.

• We introduce both semantic and temporal informa-
tion in log sequences to detect various kinds of
anomalies including sequential log anomalies and
latent performance issues. The latent performance
issues are rarely studied in log analysis before.

• We design a heuristic algorithm to localize anomalies
at an instance level.

• We collect a real-world log dataset of Hadoop,
and apply SwissLog to detect and localize anoma-
lies. Moreover, we evaluate SwissLog on real-world
datasets and synthetic datasets. The results prove
the effectiveness and robustness of SwissLog. The
source code of SwissLog 1 has also been released for
reproducible research.

Extended from its preliminary conference version [1],
this paper makes several major enhancements including the
application of inter-component log correlation, IDs relation
construction for unstructured interleaved logs in the dis-
tributed system, the heuristic-based anomaly localization in
instance-level, the design and implementation of a novel
online log parsing method, the advanced time embedding,
new experimental comparison on latest log parser both in
effectiveness and efficiency, a new real-world dataset to
confirm the effectiveness of SwissLog, and code release of
SwissLog for reproducible research.

2 MOTIVATION

2.1 Relation Between Identifier Pairs

application

blk

appattempt container

Fig. 1. An example of correlative relation between ID pairs

Each ID identifies an abstracted concept or a concrete
resource instance, thus certain relationships (e.g., subordi-
nate, dependent) between IDs during system execution. The
log printer usually outputs these IDs in corresponding log
messages. So with these IDs, we can reconstruct the inter-
component interactions from logs. We can introduce a work-
flow construction method to profile the distributed system
and group log data from different components by known
IDs. An example of the correlative relation between ID pairs
is presented in Fig. 1. These ID pairs are examples from
the task-based distributed system, Hadoop. When a task
is executed in Hadoop, Yarn creates an application request
for the resource manager. The resource manager allocates
computing resources as containers, which is different from
containers in Docker, to this request. Also, Hadoop stores
files as block replicas (blk) using Hadoop Distributed File
System (HDFS). If the container 123 goes wrong, an applica-
tion attempt (appattempt) launch for the container attempt.
We can also check the log messages from the resource
manager and node managers by grouping the keyword
“container 123” to figure out the root cause. Hence, building
a workflow for IDs is an effective method to localize faults
in a fine-grained manner based on log messages.

2.2 Diverse Anomalies
It is intuitive to observe system status and inspect potential
anomalies from log data. One of the normal sequence is
shown in Fig. 2(a). We can observe that the beginning of
a normal sequence is to allocate and receive blocks. After
a series of operations, this block is eventually added to

1. https://github.com/IntelligentDDS/SwissLog

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 03,2022 at 06:18:14 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

09:37:53 INFO Allocate block
09:37:54 INFO Receiving block
09:37:54 INFO Receiving block
09:37:54 INFO Receiving block

09:38:49 WARN Redundant addStoredBlock

09:59:38 INFO Receiving block
09:59:38 INFO Allocate block
09:59:39 INFO Receiving block
09:59:39 INFO Receiving block

10:00:02 INFO AddStoredBlock

09:59:38 INFO Receiving block
09:59:38 INFO Allocate block
10:01:42 INFO Receiving block
10:01:42 INFO Receiving block

10:02:18 INFO AddStoredBlock

09:59:38 INFO Receiving block from ip
09:59:38 INFO Allocate block
09:59:39 INFO Receiving block from ip
09:59:39 INFO Receiving block from ip

10:00:02 INFO AddStoredBlock

timestamp verbosity level log content

(a) Normal sequence (b) Sequence order change

(c) Log time interval change (d) Changing events

Fig. 2. Four types of log sequences with different changes.

the set of stored blocks, which means the end of a cycle.
A large-scale system inevitably encounters faults, part of
them manifested in log pattern changes. We target two
types of log changes in practice, namely log sequence order
change and log time interval change, as shown in Fig. 2(b)
and Fig.2(c). We omit some unimportant log messages and
only show the key information (i.e. time, verbosity level,
simplified log content).

2.2.1 Log sequence order change
An abnormal sequence against the normal one in Fig. 2(a)
is depicted in Fig. 2(b), where the abnormal log messages
are highlighted in yellow. In this case, the system received a
redundant addStoredBlock request, causing the log sequence
order change. Therefore, sequential log anomalies can be
generally observed from their abnormal sequence order.
Prior works [4], [5], [7], [9], [10], [20] mostly focus on
sequential log anomalies and recognize them by detecting
abnormal log sequence order.

2.2.2 Log time interval change
Another kind of anomaly is log time interval change, possi-
bly caused by performance issues, whose example is shown
in Fig. 2(c). In contrast to abnormal sequence order, blocks
with performance issues usually keep the same sequence
order as the normal one. However, performance issues slow
down the execution time of specific tasks according to their
faulty components. For example, the receiving block in line
3 has a 3000-millisecond latency which is caused by the net-
work congestion. The performance issue here is manifested
in the log time interval change. Such performance issues
are like buried land mines that may trigger catastrophic
outages. Therefore, the topic of detecting performance issues
gains lots of attention recently [14], [21]–[24]. But the exist-
ing approaches employ static analysis to find performance
bugs or an intrusive method to detect them. Either they
are difficult to detect performance issues at runtime or
they slow down system performance. If we detect potential
performance issues by mining time interval changes in log
data, the above problems are accordingly solved.

2.3 Changing Events
Modern software systems that need an automated log pro-
cessing tool are probably under active development and

maintenance. Kabinna, et al. [13] examined the stability of
logging statements (i.e., the line printing log in source code)
via an empirical study. They find that 20-45% of the logging
statements change throughout the whole lifetime. Zhang,
et al. [10] also conducted a similar empirical study on Mi-
crosoft Service X. As reported, up to 30.3% logs are changed
in the latest version. Two main possible factors that cause
log changes are: 1) Developers add new log statements to
source codes. 2) Developers add a few new features and
modify the content of log statements. Extra words are thus
attached to log statements while not changing their mean-
ing. Fig. 2(d) shows a common case of changing events.
String “from ip” is added to the log statement while it keeps
the original meaning. Such changes make the log key-based
anomaly detection [4]–[7] approaches perform unsatisfac-
torily since they consider a changed logging statement as
a new template. The previous model is thus required to
retrain when new templates arrive. Currently, the state-of-
the-art method to detect anomalies in changing events is
LogRobust [10].

On the basis of the observation in a real-world pro-
duction environment, we propose SwissLog, a robust and
unified deep learning-based log anomaly detection and
localization tool. It adopts the typical idea to correlate inter-
leaved logs with the same IDs and introduces the relation
between ID pairs construction. Then it uses the correlated
log data to detect sequential anomalies and potential per-
formance issues and reports the faulty instances in a fine-
grained manner.

3 DESIGN OF SWISSLOG

We first begin with an overview of SwissLog which is pre-
sented in Fig. 3. SwissLog comprises two phases, namely the
offline processing phase and the online processing phase. In
the offline phase, SwissLog first constructs ID relation graph
(R) graph (¶). Then, SwissLog adopts a novel log pars-
ing method and extracts multiple templates by tokenizing,
dictionarizing, and clustering history log data (·). These
templates are kept as natural sentences instead of event ids.
Then the grouped log sequence is transformed into semantic
information and temporal information. SwissLog uses BERT
encoder to encode semantic information F into embedding
Econtext and projects temporal information ∆T onto em-
bedding Etime (¸). The concatenation of semantic embed-
ding Esemantic and time embedding Etime as input is fed
into Attn-based Bi-LSTM to learn the features of normal,
abnormal and performance-anomalous log sequence (¹).
At runtime, when a new log arrives, SwissLog correlates
those log messages with the same IDs (º) and instantiates
R graph as Ri graph (»). Then it goes through the log
parsing step (¼), sentence embedding step and is fed into
the pre-trained model from the offline phase. If an anomaly
occurs, SwissLog will alarm (½) and get into the anomaly
localization process. Finally, SwissLog analyzes the faulty
instance and reports the corresponding instance ID (¾).

We next introduce the design of SwissLog including
relation construction (Sec. 3.1), log parsing (Sec. 3.2), sen-
tence embedding (Sec. 3.3), Attn-based Bi-LSTM (Sec. 3.4),
anomaly detection (Sec. 3.5), anomaly localization (Sec. 3.6).

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 03,2022 at 06:18:14 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

History Log

New Log

offline

online

identifier1

identifier3

identifier2

Constructing !Graph

instance 1

instance 3

instance 2

Constructing
!" Graph

❶ Log Parsing

Tokenize

Dictionarize

Clustering

❷

Grouping by
identifiers

identifier1

Log Parsing❺

Log templates

&'"()

*

+,

TM

TM

BERT

Projection

identifier2

identifier3

! Graph

!

Anomaly Detection Anomaly Localization

instance 1

instance 3

instance 2

Data and Model

Attn-based Bi-LSTM

LSTM

LSTM

Attention

Pretrained model

Sentence Embedding❸ ❹

❻ ❼ ❽ ❾

Sentence Embedding

Fig. 3. The overview of SwissLog

3.1 Relation between ID pairs Construction
Nowadays, workflow reconstruction from log data has been
widely studied. lprof [25] uses static analysis to find the
code execution path containing the log printing statements.
Stitch [26] extracts IDs from log messages and builds System
Stack Structure graphs to capture the hierarchical relation-
ship between object types, where each ID is of a type.
IntelLog [8] further constructs the hierarchical graph from
mining log messages and builds the relation between enti-
ties.

In this paper, we choose Stitch (more details refer to the
original paper [26]) to construct the ID relation graph, which
denotes as R. Noting that constructing R graph is not one
of our novel parts, and we apply it to localize anomalies. R
graph is a directed acyclic graph (DAG), where each node
represents an ID and each edge captures the hierarchical
relation between ID pairs. There are four possible relation
between ID pairs: i) empty; ii) 1:1; iii) 1:n, and iv) m:n. The
empty relation means that two IDs have no dependency.
The relation 1:1 indicates that one may be another alias,
which refers to that they can be used interchangeably in
some way. The relation 1:n refers that the object dispatches n
objects with different IDs. For example, the system allocates
multiple containers for an application. The relation between
application and container is thus 1:n. While the relation
m:n indicates that resources related to m IDs are reused for
handling n tasks. Our study utilizes the relation 1:n and m:n
to localize anomalies. For the self-explanation of this paper,
we give an example to show how to construct the R graph.

We first use a small set of logs shown in Fig. 4
collected from Hadoop to demonstrate the R graph
construction process. The left column represents the
collected component while the right side is the de-
tailed log content with colored IDs. For example,
Line 1 is a log message from resourcemanager.log,
and it shows that the application01 is related to
appattempt01_01 and container01_01. Meanwhile,
namenode.log records that, system allocates blk_01 and
blk_02 to application01 to store data. So we can derive
that the relation between ID pairs application and blk
is 1:n. In this way, we can construct a R graph from Fig. 4.

The R graph of the above raw log messages (Fig. 4) is

ResourceManager

NameNode

Storing Attempt: application01, AttemptId:
appattempt01_01, MasterContainer: container01_01

Block* allocate blk_01 for /tmp/logs/application01

ResourceManager Assign container01_02 to attempt_m_01

Application Launch container01_02 and attempt_m_01

NodeManager attempt_m_01 using containerId: container01_02

ResourceManager Assign container01_03 to attempt_r_01

Application Launch container01_03 and attempt_r_01

NodeManager attempt_r_01 using containerId: container01_03

DataNode Block* allocate blk_01 for attempt_m_01

DataNode Block* allocate blk_02 for attempt_r_01

NameNode Block* allocate blk_02 for /tmp/logs/application01

1

2

3

4

5
6

7

8

9

10

11

Fig. 4. An example of log snippet that contains multiple set of IDs in
Hadoop

{application}

{blk}

{container}

{attempt_r}

{attempt_m}

{appattempt}

S^3 graph

{application}

{blk}

{container}

{attempt_r}

{attempt_m}

{appattempt}

1:1
1:n

Fig. 5. The R graph of Hadoop log snippet in Fig. 4

shown in Fig. 5. The red dotted line denotes the relation 1:1
while the black arrow line represents the relation 1:n. We
store the static R mined in the offline phase. When a new
log e arrives in the online phase, SwissLog constructs an
instantiated Ri graph, where each node is an ID instance. If
the set of ID types in e matches the ID type of one node inR
graph, it will instantiate a node N . After that, SwissLog first
checks if N matches any of the existingR nodes. Otherwise,
it instantiates a new instance Ri graph.

With an instantiated Ri graph, we can traverse it to lo-
calize the anomalous instance and aid operators to identify
the precise root cause. The heuristic algorithm that traverses
the graph is illustrated in Sec. 3.6 in detail. Furthermore, we
explain how it works and discuss a concrete case in Sec. 4.9.

3.2 Log Parsing

Log parsing, the critical stage before executing the down-
stream log analysis tasks, has been widely studied for many

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 03,2022 at 06:18:14 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Log1

Step 1: Preprocess, Tokenize
and Dictionarize

Log1: Received block blk_560063894682806537 of size 67108864 from /10.251.194.129

{‘Received’, ‘block’, ‘bl
k_560063894682806537’,
‘of’, ‘size’, ‘67108864’,
‘from’, ‘/10’, ‘251’, ‘19

4’, ‘129’}

dword={‘Received’, ‘block’, ‘of’,
‘size’, ‘from’}

Step 2: Cluster
Logs by Wordset

!"!#…

!$
!%
…

Key: dword1

Key: dword2

[val, non-val, val, non-
val, <*>]

[<*>, b, c, <*>]

Step3: Mask Variables with LCS

!$ = [a, b, c, d]

!% = [b, b, c, e]

!& = [a, b, c, e]

!' = [e, b, c, f]

D HC

A E F

B G

TID1 TID2

E

TID3

Step 4: Merge Logs
using Prefix Tree

{‘ABC’, ‘ABD’, ‘E’,
‘FGH’}

query

Wordset cluster LCS result

… template=
“Received
block <*>
of size <*>
from <*>”

C1

C2

Fig. 6. The workflow of log parsing

years (more details refer to Related Work in Sec. 6). Previ-
ous studies generally introduce many parameters such as
message-type threshold in Spell [27], similarity threshold,
and merge threshold in Drain [28]. Such parameters are
tuned after multiple trials. We expect to propose a log pars-
ing method robust to most common logging systems with-
out parameter tuning. Event-based log messages are usually
adopted to report system events with natural language. We
observe that event-based log messages in Fig. 6 are readable
because most of the words in it are valid words, which can
be looked up in a dictionary. Such log messages with the
same valid words can be visually treated as one template.
Inspired by this observation, a dictionary-based approach
naturally parses these event-based log messages. Here we
propose an online log parser based on a dictionary, which
can achieve high accuracy and comparable efficiency. In the
following parts, we illustrate the log parser in SwissLog step
by step and give an online log parsing case study.

3.2.1 Step 1: Preprocess, Tokenize, and Dictionarize

In the first step, we preprocess the arriving log entries.
The preprocessing step is simple but effective for log
parsing. Developers only need to program some regu-
lar expressions to replace common variables (e.g., IP ad-
dresses: 192.168.0.1, Day: Mon/Monday) and special vari-
ables in systems. For example, we apply the regular expres-
sion “\d+\.\d+\.\d+\.\d+\.” to match IP addresses; apply
“blk -?\d+” to find the block id and “container \d+” to find
the container id in Hadoop; and “core\.\d+” to find the core
id in BGL.

For each log entry e, we define a slice of log entry as
token. How to tokenize a complete log entry into appropriate
tokens is a critical problem in the dictionary-based approach
since the parsing result largely depends on it. In addition
to using whitespace, the logging system is more likely to
use special delimiters such as colon, and quotation marks to
separate strings. For better tokenization, we thus utilize five
special delimiters, namely {, . ; : ”} attained from empirical
study and whitespace to tokenize log entries. To improve
the quality of templates, we also replace those digit tokens
with wildcards.

Then we introduce a dictionary to dictionarize all to-
kens. Given a dictionary D = {w1, w2, ..., wn}, such that
every word wi can be identified as a valid word. After
tokenizing, we first check if each token of log entry e is

in the dictionary D. If yes, we put the token into wordset.
An example is shown in Fig. 6 Step 1. When a raw log
message “Received block blk 560063894682806537 of size
67108864 from /10.251.194.129” arrives, it will be separated
into 11 tokens. SwissLog looks up the dictionary D for every
token, then ‘Received’, ‘block’, ‘of’, ‘size’, ‘from’ are identified
as valid words. Particularly for log-specific concatenated
words like “PowerDown”, we import an external package
wordninja [29] to split it into “Power” and “Down” based on
the unigram frequencies in English Wikipedia. Finally, we
obtain the wordset dword containing valid words.

As for the dictionary, developers are able to construct
a dictionary from a public corpus (like [30] as in RQ1,
which is a large-scale corpus containing 5.2 million English
sentences); or customize a dictionary for their systems. The
results in RQ1 confirm that the dictionary constructed from
one large-scale public corpus can cover most words in
different logging systems. In addition, developers can add
particular domain knowledge on-demand when the logging
systems are updated.

3.2.2 Step 2: Cluster Logs by Wordset
Logs with the same wordset are possibly generated from one
log statement. When a new wordset dword arrives, SwissLog
looks for the matched group for it. If a group is matched,
SwissLog puts the preprocessed log entry into it. Otherwise,
SwissLog creates a new cluster for wordset dword. Assume
that dword1, dword2, dword3 are the wordset of log entries
e1, e2, e3 in Fig. 6, respectively. Since the log entries e1 and
e2 have different wordset, SwissLog creates the new cluster
C1 and C2 for them separately. Wordset dword3 is identical
with dword2, so log entry e3 is consequently categorized
into cluster C2.

Sometimes, a valid word occurs multiple times in one
log entry. For example, “120 bytes sent, 80 bytes received”.
The word bytes occurs twice in this log entry, which is
easily confused with those log entries with only one bytes.
Taking the word occurrence into account, we especially use
count set fword to store wordset occurrence. Hence, only
when the wordset dword and occurrence fword are identical,
can the two log entries be categorized into the same cluster.

3.2.3 Step 3: Mask Variable with LCS
The masking layer is to distinguish the variable part within
one cluster. Generally, common sequences of log entries in

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 03,2022 at 06:18:14 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

the same cluster can be regarded as the constant parts, while
the changing part can be viewed as the variable parts. Next,
we introduce token-level Longest Common Sequence (LCS)
to help us mask all variable parts in a cluster with wildcards.

LCS is to find the longest common sequence among
a sequence set. We first define token-level subsequence.
Suppose Σ is a universe of tokens. Given any sequence
α = {a1, a2, ..., am}, such that ai ∈ Σ. Then a subsequence
of α is defined as {ai, ai+1, ..., aj}, where i ∈ Z+ and
1 ≤ i ≤ j ≤ m. A common subsequence is a subse-
quence of both sequence α1 and α2. Given four log entries
e2, e3, ek, em in the clusterC2 (as shown in Step 3 of Fig. 6), a
common subsequence between e2 and ek is {a, b, c}. Finally,
we obtain {b, c} as the token-level LCS of e2, e3, ek, em.

After clustering by wordset, the preprocessed log entries
e1 and e4 are in the cluster C1. Assume that the log entry e1
is “Received signal *, code=*, errno=*, address=0x000001b0”
and log entry e4 is “Received signal *, code=*, errno=*,
address=0x000001f2”. The cluster stores all tokens, contain-
ing valid words and non-valid words (e.g., errno). Then
we apply token-level LCS algorithm to those log entries
in cluster C1. Finally, {‘Received’, ‘signal’, ‘code’, ‘errno’,
‘address’} can be found as LCS of cluster C1, and we replace
the remainder parts by wildcards. Noting that non-valid
words can also be treated as constant parts if they are the
common subsequence in all log entries in the cluster. There-
fore, SwissLog shows a good robustness to those words out-
of-vocabulary in logging systems.

3.2.4 Step 4: Merge Logs using Prefix Tree

Template:
input_userauth_request: invalid user <*>

𝒆𝟓	(in	C3):		input_userauth_request: invalid user test
𝒆𝟔	(in	C4):	 input_userauth_request: invalid user test9
𝐞𝟕	(in	C4):	 input_userauth_request: invalid user chen
𝒆𝟖	(in	C5):	 input_userauth_request: invalid user support

valid
words

non-valid
words

Fig. 7. A snippet of OpenSSH log data

After executing step 3, we attain rough templates from
different clusters. Here we will encounter two cases. The
first case is that variable parts only contain valid words. For
example, “Container * transitioned from NEW to LOCALIZ-
ING” and “Container * transitioned from LOCALIZING to
SCHEDULED”. Container state changes from one to another
may come from the same log printing statement but they
have different physical meanings. Therefore, we tend to split
them in our study.

The other important case that the variables in the
groundtruth template contain both valid words and non-
valid words (val and non-val in Fig. 6) should be carefully
considered. An example shown in Fig. 7 can well present
this issue. Log entries e5-e8 are excerpted from real-word
OpenSSH log data [31]. We can observe that the last word
are test (valid word), test9 (non-valid word), chen
(non-valid word), support (valid word). Compared with
dword5, dword4 involves valid words test, hence log entry
e5 and e6 are grouped into clusterC3 andC4. But intuitively,
they should be clustered into one template and the last word
should be the variable part in groundtruth. The prefix tree
has been applied in log analysis before [27], [28], [32], here

we employ it so as to merge non-valid words and valid
words in the second case.

The Prefix Tree, an ordered tree data structure, is often
used to store a dynamic set. The root of the prefix tree points
to an empty string and all the descendants of a node in the
prefix tree have a common prefix string with that node. Step
4 in Fig. 6 shows an example of a prefix tree structure. Keys
are listed in the nodes and final string values are below
them. Given a set of strings strs = {ABC,ABD,E, FGH},
they are indexed by the prefix tree. String ABD traverses the
whole tree starting from the root to check if there exists a
common prefix. Then it finds ABC, so their leaf nodes point
to the same parent node B. While string E and FGH branch
out because they have no common prefix.

The input of step 4 are the masked templates attained
from different clusters. One wordset corresponds to one
template. We first sort all wordset in alphabetical order.
Specially, we place the wildcard as the first rank before
all alpha orders. It helps the prefix tree to distinguish the
second case and merge valid words into wildcards. In this
way, the example shown in Fig. 7 can be eventually clustered
into one template.

3.2.5 Online Log Parser
If the logging system is evolving due to active development
and maintenance, we also propose an online version log
parser to update templates. The requirements of online log
parsers are 1) Efficient. The log parsing speed should catch
up with the log generating speed. 2) Accurate. Parsing
results should be accurate and provide good input for
downstream log analysis tasks. In this part, we present an
online version log parser.

preprocess

C1 template 1
output 1

C2

C3

template 2

template 3 output 2

Cluster Mask Merge

dictionary
cache

new
log entry

update

Fig. 8. Online log parser of SwissLog

The whole process of the online log parser is shown in
Fig. 8. When a new log entry arrives, it first goes through
the preprocessing layer. Although we introduce a dictionary
containing 10k words, most of the words may not occur in
this logging system. For example, only 69 valid words are
found in 10m HDFS logs. Therefore, we apply a dictionary
cache, which stores those valid words that have occurred, to
enhance the efficiency of the dictionarizing process.

Then the log entry is allocated to the matched clus-
ter according to its wordset. Each cluster maintains one
template in the masking layer. The masking layer applies
LCS between the new log entry and the existing template.
If the template is updated, the merging step would re-
construct the prefix tree following the steps in Sec. 3.2.4.
Finally, we get the output from the merged prefix tree.
In practice, LCS is a high-cost process in log parsing.
Therefore, we also introduce a cut-off algorithm to avoid
some unnecessary masking. Consider the cluster C3 where
dword = {‘Received′, ‘block′, ‘of ′, ‘size′, ‘from′} and ac-
cording template3=“Received block * of size * from *”. We can

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 03,2022 at 06:18:14 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

observe that the template3 is minimal as the template3 only
contains valid words. It is impossible to mask more variable
parts in the same clusters. Such templates are named mature
templates, which are colored with yellow in Fig. 8. Once the
template is mature, we will jump the masking layer and the
merging layer and directly get the final output (following
the red dotted line in Fig. 8).

3.2.6 Time Complexity Analysis

To satisfy the efficient requirements of the online log parser,
we analyze the time complexity of the log parser in Swiss-
Log. Supposed that m, n, and s are the number of message
types, raw log messages, and the length of a log entry
respectively. Here we first analyze time complexity for one
log entry. Step 1 tokenize and preprocess is executed in a
streaming manner, so its complexity is O(1). Step 2 costs
O(s ∗ logd) to lookup dictionary, where d is the size of
the dictionary and it is stored as a tree structure in a
computer. Supposed that c is the number of clusters, step
2 costs O(logc) to search the matched group. In the step
itmask layer, supposed that c is the number of clusters.
Finding LCS between two sequences costs O(s2), then to
find common sequences using LCS costs O(s2). In Step 4,
before constructing a prefix tree, we need to sort all log
entries to ensure the effectiveness of log parsing and it costs
O(logm). Then constructing a prefix tree also costs O(m).
The complexity of step 4 is O(m + logm). Therefore, the
worse complexity of log parser in SwissLog without cache
mechanisms is near O(s∗ logd+ logc+s2 +m+ logm). With
cache mechanisms, we can largely reduce the time complex-
ity toO(s∗logd+logc). In practice, the above parameters are
much smaller than log size, which are obviously constant,
so the time complexity is near O(n).

3.3 Sentence Embedding

After log parsing, one log entry is eventually stored as the
matched log template with only its constant parts. Prior
works adopt log keys to embed sentences with the matched
log template keys but they lose valuable semantic informa-
tion inside the natural language texts. Besides the seman-
tic information, SwissLog additionally introduces temporal
information as features to make it capable of capturing
more kinds of faults. Although the goal of SwissLog is
to localize anomalies in systems with IDs, it is also able
to detect faults in those systems without IDs. Therefore,
a sequence linked with IDs or split by sliding windows
is transformed into semantic information T and temporal
information ∆T . Then we encode two kinds of information
with the following methods.

3.3.1 Semantic Embedding

Case 1: “Expected quotacontroller.Sync to still be running but it is
blocked. %v”,err

Case 2: “`{"metadata":{"ownerReferences":[{"apiVersion":"%s","kind":
"%s","name":"%s","uid":"%s","controller":true,"blockOwnerDeletion":
true}],"uid":"%s"}}`” ,m.controllerKind.GroupVersion(), m.controllerK
ind.Kind, m.Controller.GetName(), m.Controller.GetUID(), rs.UID)

Fig. 9. Two log cases extracted from Kubernetes

Log formats are under active evolution. Yet, the key
meaning of changing log statements stays unchanged as
we discussed in Sec. 2.3. Sentence embedding is therefore
introduced to encode templates into vectors to preserve
the key meaning of log messages. Word2Vec [33] has been
widely used in the existing approaches to embed words
into vectors. But it only performs the limited utility meeting
the case in Fig. 9. There are two log cases extracted from
Kubernetes source codes. Both cases 1 and 2 contain the
word block. block in case 1 is a verb which means to
prevent something from happening, developing, or making
progress. While block in case 2 is a noun which represents
that there exists a data block to be processed. It produces the
same word embedding with Word2Vec for the word block.
It will probably confuse downstream works and lead to false
alarming. To overcome the challenges of polysemous words
and changing events in log data, we need an advanced word
embedding approach.

The pre-trained language representation gains consider-
able progress in the NLP field, especially BERT developed
by Google. Google released the pre-trained language model
which has trained on Wikipedia corpus and Book corpus.
The public corpus does cover some special semantics and
domain knowledge in computer science such as admin and
root. Compared to other embedding methods, the large pre-
trained language model provides a sufficient word database
to encode words more precisely. Our work targets readable
event-based log messages, so that language model pre-
trained on public corpus is able to capture their meanings.
As described in the initial paper of BERT [19], there are two
usages based on specific downstream tasks: fine-tuning and
feature extraction. We adopt the latter to get the semantic
embedding.

Log template ATok 1 Tok 2[CLS]

E[CLS] E1 E2 EM
Embedding

Tok M

1

11

12

Semantic
Representation
𝑬𝒔𝒆𝒎𝒂𝒏𝒕𝒊𝒄

TM TM TMTM

TM TM TMTM

TM TM TMTM

Mean

Fig. 10. The structure of BERT

Fig. 10 shows a simplified structure of BERT. As we only
use the feature extraction part of BERT, the rest of BERT will
not be shown in this paper. Log template A is first tokenized
into M tokens as listed in Fig. 10 (Tok means Token). BERT
particularly adds a [CLS] token at the beginning of the
sentence, marking the starting position of a sentence. The
embedding layer generates an embedding vector Ei involv-
ing token embedding, sentence embedding, and transformer
positional embedding for each token including [CLS], where
i refers to the ith word in the sentence. Then embedding
vectors Ei are fed into transformer encoders (TM in Fig.
10) as model inputs. A self-attention layer is particularly
added in the transformer encoder to acquire other word
information in log messages. Therefore, when processing a
log message, the attention mechanism builds a correlation
among all other words in this sentence. After that, the

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 03,2022 at 06:18:14 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

output of self-attention is transferred to two feed-forward
layers to learn the further position and word vector relation.

SwissLog leverages an off-the-shelf service bert-as-
service [34] which uses BERT as a sentence encoder and
runs it as a service. Google Research released pre-trained
models on the website [35]. SwissLog selects the BERT base
model involving a 12-layer of transformer encoders and 768-
hidden units of each transformer for semantic embedding.
Each output per token from each layer can be used as a
word embedding. The first layer is close to the initial word
embedding while the last layer may be biased to the training
of downstream tasks. Choosing a word embedding from
these is then a trade-off. Xiao, et al. [34] researched this
problem and suggested generating word embedding in the
last second layer. Hence, we take the average of the hidden
state of the encoding layer on the time axis to get the final
semantic embedding Esemantic.

3.3.2 Time Embedding
The existing approaches either perform static analysis to
find performance bugs or an intrusive method to detect
performance issues. Log time interval anomalies, referring
to the anomalous elapsed time, are probably caused by
latent performance issues. As shown in Fig. 2(c), timestamps
are recorded in each log message in most logging systems.
Hence, it is possible to use the timestamp to calculate
elapsed time between two log messages. In a stable system,
executing common program paths between two log state-
ments costs a relatively steady time, thus we introduce the
time interval information into anomaly detection.

We calculate the time difference ∆t between two log
messages e1 and e2, and then obtain a temporal differential
sequence ∆T = {∆t1,∆t2, ...,∆ti, ...}, where i refers to the
time axis in time series. Additionally, minus one is used to
pad the beginning of the time series. For example, we obtain
temporal sequence ∆T = {−1, 0, 3, 0, ...} in seconds in Fig.
2(c). Intuitively, we can observe that ∆t is closely related
to the former event e1. For example, the IO task shows a
smaller ∆t while the scheduling task shows a greater ∆t.
Even in the normal operation, the time interval vibrates in a
task-related time range. But the attention model in Sec. 3.4
assigns a lower weight to such task-related time interval.
Therefore, SwissLog is also robust to logs generated from
various task types. Also, we standardize all temporal data
by removing the mean and scaling to unit variance so as to
receive trainable data.

However, 1-dimension temporal data exhibits limited
information. It is better to extend 1-dimension temporal data
to a higher dimension embedding. Li, et al. [36] proposed a
time-dependent event representation method. Inspired by
their work, we encode ∆t using soft one-hot encoding.

The first step is to project the scalar value ∆t onto a d-
dimension vector space. As presented in Eq. 1, we multiply
∆t with a randomly-initialized weight vector W and then
add a randomly-initialized biases vector b, where p is the
projection size. After the above linear transformation, we
apply a softmax function to catch the importance vector s
of the obtained projection vector. The function softmax(·)
is used to re-scale a tensor, making its elements lie in the
range [0, 1] and sum to 1 along with a selected dimension.

si = softmax(∆tiW + b),where W ∈ Rp, b ∈ Rp (1)

Then we weight all rows in the randomly-initialized embed-
ding matrix Es with vector values in s = {s1, s2, ..., sn−1}.
Finally, we get the time embedding vector Etime.

Etime = sEs,where Es ∈ Rp×d (2)

3.4 Attn-based Bi-LSTM

After sentence embedding, each log message is trans-
formed into a semantic vector Esemantic and a time em-
bedding vector Etime. We obtain the concatenation V =
concat(Esemantic,Etime), so each log sequence is repre-
sented as a list of vectors (like [V1,V2, ...,VT]). Taking such
vectors as input, SwissLog adopts the Attn-based Bi-LSTM
neural network in Fig. 11 for detecting diverse anomalies.

LSTM LSTM LSTM

LSTM LSTMBackward

Forward

Input
sequence

LSTM

FC FC FCAttention

𝒉"𝒉"#$𝒉$

𝛼$ 𝛼"#$ 𝛼"

𝑝𝑟𝑒𝑑 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾′ 56𝛼7𝒉7)

𝑽$ 𝑽"#$ 𝑽"
Fig. 11. The architecture of Attn-Bi-LSTM.

The LSTM network, a variant of Recurrent Neural Net-
work (RNN), is capable of capturing contextual informa-
tion for sequential data. Incorporating gating mechanisms,
LSTM can have the ability to remove or add information
to the cell state and finally decide what information to go
through. It allows neural networks to dynamically exhibit
temporal behavior. The LSTM network consists of three
layers: input layer, hidden neurons layer, and output layer.
At each time step, LSTM calculates the new cell state ct
and new hidden state ht using the input state Vt and
transferred hidden state ht−1. Bi-LSTM is an extension of
LSTM. It particularly adds a hidden neuron layer in a
backward direction and calculates each hidden state ht at
time t through concatenating from both directions as input
to output layers.

Like verbosity levels in log statements, different log
messages show different importance in a log sequence. To
mitigate the impact of noisy or unimportant log statements,
attention mechanisms are therefore introduced to Bi-LSTM
to assign different weights to different log statements. Noisy
or unimportant log statements will tend to be given low
attention. The attention function αt at time t is implemented
with a fully connected layer (i.e., FC layer in Fig. 11), which
performs the following calculation,

αt = tanh(W ′α
t · ht). (3)

Here, W ′α
t denotes the trainable weight matrix of the at-

tention layer at time t. The function tanh(·) is kind of an
activation function. Then, all the hidden states multiply
their corresponding αt and are further summed to get a
summarized hidden state vector. Finally, a prediction output
is calculated by applying a softmax layer to the summarized

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 03,2022 at 06:18:14 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

hidden state vector. The computation is formulated in Eq. 4,
with W ′ representing the softmax layer weight.

pred = softmax(W ′ · (
T∑
t=0

αt · ht)) (4)

At the training stage, we calculate the cross-entropy as loss
function and use the Adam optimizer [37] to train networks.
The cross-entropy is formulated in Eq. 5, where y(i) denotes
the one-hot representation of the label (normal or abnormal)
of the ith log sequence and ŷ(i) refers to its prediction.

H
(
y(i), ŷ(i)

)
= −

2∑
j=1

y
(i)
j log ŷ

(i)
j . (5)

3.5 Anomaly Detection
In the offline phase, we obtain a pre-trained Attn-based
Bi-LSTM model for anomaly detection using history logs.
When a set of new log messages arrives, it first goes through
log parsing and sentence embedding. Then the obtained
vectors as input are fed into the pre-trained model. Finally,
the Attn-based Bi-LSTM can detect if an anomaly occurs.
Pay attention to that when SwissLog makes decisions based
on a session of log messages correlated by a common ID
such as block ID. Therefore, an anomaly can be robustly re-
ported until the session is closed. In other words, SwissLog
works in a near real-time mode like LogRobust [10].

3.6 Anomaly Localization
During detection, we tag the detected instance IDs as
anomalous instances. We have already constructed an in-
stantiated DAG Ri graph in Sec. 3.1. Only after there are
no updates on the Ri graph, it will launch the anomaly
localization progress. It is intuitive that if an anomaly occurs
in the low-level instances, it will propagate to high-level
instances. Following this intuition, we design a heuristic
algorithm to localize anomalies in instance granularity.

SwissLog first obtains a set of anomalous instances
A = {ID1, ID2, ...} in the Ri graph. We name the node
with zero in-degree as root and nodes with zero out-degree
as leave nodes. SwissLog scans all ID in setA: i) if ID is a leaf
node, SwissLog stops searching and return the anomalous
ID. ii) if ID is not a leaf node, SwissLog searches its children
nodes and check if it is anomalous. If yes, SwissLog removes
the ID out of A. Otherwise, continue searching. SwissLog
eventually returns the set of anomalous instances, thus
achieving the instance-level anomaly localization.

4 EXPERIMENTAL EVALUATIONS

In this section, we evaluate the effectiveness and robustness
of SwissLog for diverse anomalies by answering the follow-
ing questions:

• RQ1: How effective and robust is the proposed log
parser?

• RQ2: How efficient is the proposed online log
parser?

• RQ3: How effective is the BERT encoder on anomaly
detection? Do other log parsers perform as well as
the proposed log parser using BERT encoder?

• RQ4: How robust is SwissLog on those log data with
changing events?

• RQ5: Can SwissLog detect log time interval changes?
How sensitive is SwissLog to log time deviations?

• RQ6: How much overhead is introduced by the
anomaly detection part in both offline phase and
online phase?

• RQ7: How to localize anomalies using SwissLog?

All experiments in this paper are conducted on a server
equipped with two 24-core CPU, 128GB RAM, and one
NVIDIA GeForce GTX 1080 Ti GPU.

4.1 Experiment Setups

In this paper, we evaluate the proposed approach on the
following datasets.

4.1.1 Test Environment Setup
Hadoop [38] is a well-known open-source and task-based
software for reliable, scalable, distributed computing. IDs
inside Hadoop help developers to search the execution
paths. Our testbed built on Hadoop (version 3.1.4) is a
5-node cluster that contains 4 slaves and 1 master. The
topology of our testbed is shown in Fig. 12. We run Hadoop
jobs like WordCount (counting words in files) and Sort
(sorting words in files) to generate workload to simulate
the real-world traffic. According to our experiments, both
WordCount and Sort are CPU-sensitive and IO-sensitive
jobs, so they are easily affected by the testbed resource
environment. Namenode runs on the master node, manages
the file system namespace, and maintains the file system
tree. It is mainly responsible for checking the allocation
and completion of the block, collecting the states of each
slave node after a certain interval, and outputting the log
when the state changes. DataNodes in slaves read and write
HDFS data to local file systems. Yarn is adopted in Hadoop,
in which the master is resource manager, responsible for
the resource (e.g. container) management and scheduling
of the whole cluster; the slave is node manager, which is
responsible for resource management and task start of a
single node. We collect all logs on nodes by filebeats [39],
which is a lightweight log shipper. Next, the log data are
stored in an elasticsearch cluster.

filebeats
Elastic Search

Master
Namenode

Resource manager

Slave1
Datanode

Node
Manager

Slave2
Datanode

Node
Manager

Slave3
Datanode

Node
Manager

Slave4
Datanode

Node
Manager

slave cluster

Log analysis
server

Hadoop cluster

filebeats

Fig. 12. The topology of Hadoop testbed

4.1.2 Chaos Engineering
Due to the limited amount of faults during normal exe-
cution, we choose to conduct chaos engineering on our
testbed. Chaos engineering is a simple but effective way

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 03,2022 at 06:18:14 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3162857, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

to generate faults. In our study, we use chaosblade [40],
an open-source experimental injection tool developed by
Alibaba, to create chaos. Our study injects faults both proac-
tively and passively.

TABLE 1
Injected faults and related methods, details and their impacts

Faults Type Methods Seq Perf
Drop heartbeat Passive ! %

Packet receive delay Active ! !

Block receive delay Active ! !

CPU full load Passive ! %

JVM CPU full load Passive ! !

Network delay Passive ! !

Network drop Passive ! %

Disk read burn Passive ! %

Disk write burn Passive ! %

We inject nine types of faults and present their informa-
tion in Tab. 1. The column “Seq” and “Perf” means that the
injected fault caused anomalous log changes in sequence
or anomalous log time interval changes. For example, we
increase CPU usage to 100%, which is in a passive way to
generate chaos. Such CPU full load only generates abnormal
log sequences but no log time interval anomalies. The other
example is a packet delay, which is injected in an active
way. We delay the call of the packet receive function, thus
showing a high latency in receiving data. Such delays can
be observed as log time interval anomalies. We ran Hadoop
in different time periods and collected data for eleven days.
During execution, we randomly inject various types of faults
in Tab. 1 into Hadoop to create chaos, and each fault lasts
five minutes, resulting in generating error log messages.

4.1.3 Anomaly Labeling
We collect log messages from different components in
Hadoop, including datanode logs, namenode logs, and so
on. Here we select the crucial IDs as examples to correlate
logs, namely block ID. We then select a labeling strategy
to label log sequential anomalies and log time interval
anomalies.

TABLE 2
Detected true problems in Hadoop

Anomaly description Occurrences
Replica already exist exception 7983
Fail to transfer block 6294
IO operation got exception 1464
Premature EOF from inputStream 591
Socket timeout exception 134
Closed by interrupt exception 115
Pending reconstruction monitor time
out 21

Replica not found 9
Join on writer thread time out 4
Fail to delete replica, replicaInfo not
found 5

File not found, blockid is not valid 1

Labeling log sequential anomalies. Range-based label-
ing, namely labeling all log samples during the failure time
as anomalies, is a widely used way to distinguish injected
anomalies in metrics. But in log messages, anomalies are not
always reflected in all injected faults. For example, we have
injected CPU full load into Hadoop. It is intuitive to observe
that CPU usage climbs up to 100% during the injection. But

due to the CPU scheduling mechanisms, not all applications
are affected during the injection. So we carefully find 11 true
problems in HDFS (Tab. 2) that occur after chaos engineer-
ing and manually label them as anomalies. For example,
network delay causes anomaly “Fail to transfer block * to
*” which totally occur 6,294 times in our collected datasets.
We label all blocks containing anomalies in Tab. 2 as log
sequential anomalies.

Labeling log time interval anomalies. We calculate time
differences ∆T for all blocks and find that receiving block
operation is easily affected by active injection. So we label
those blocks that are obviously slower than others as log
time interval anomalies.

4.1.4 Datasets
TABLE 3

The Details of Log Datasets

Log Type #Messages #Temp Seq Perf
HDFS [41] 11,175,629 30 ! %

Blue Gene /L [42] 4,747,963 377 ! %

Android [41] 30,348,042 76,923 % %

Hadoop-blk 2,949,569 109 ! !

Real-world Datasets. Logpai [43] is a log parser bench-
mark that adopts 16 real-world log datasets ranging from
distributed systems, supercomputers, operating systems,
mobile systems, server applications, to standalone soft-
ware including HDFS, Hadoop, Spark, Zookeeper, BGL,
HPC, Thunderbird, Windows, Linux, Android, HealthApp,
Apache, Proxifier, OpenSSH, OpenStack, and Mac. The
above log datasets are provided by LogHub [31]. Each
dataset contains 2,000 log samples with its ground truth
tagged by a rule-based log parser. Besides sampled datasets,
we select datasets collected from three representative sys-
tems to evaluate the proposed approach. The details are
shown in Tab. 3.

HDFS log dataset is collected from a cluster on Amazon
EC2 platform with 203 nodes [4], containing 11,175,629
raw log messages. The abnormal behaviors in HDFS were
manually labeled by studying HDFS code and by consulting
with Hadoop experts, including sequential order anomalies
like the anomaly “Replica immediately deleted” and some
exception logs like “Receive block exception”. More details
refer to the original paper [4].

BGL dataset is a supercomputing system log dataset col-
lected by Lawrence Livermore National Labs (LLNL) [44].
The anomalies in BGL are manually determined by its
system administrators. The log messages in these anoma-
lies probably contain the description of exceptions. A log
example is that “ciod: Error creating node map from file
[...]”. More details refer to the original paper [44].

The Android dataset provided by Loghub [31] records
Android framework states and we only use the Android
dataset to evaluate the log parser part.

We also collect a new log dataset from a 5-node Hadoop
cluster deployed in our testbed, and details are shown
in (Sec. 4.1.3). Dataset grouped by block ID is named as
Hadoop-blk. Hadoop-blk contains 2,949,569 raw log mes-
sages with sequential anomalies labels and log time interval
anomaly labels. We use the Hadoop-blk dataset to confirm
the ability of SwissLog to detect log sequential anomalies
and log time interval anomalies.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 03,2022 at 06:18:14 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3162857, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

Synthetic HDFS Data. To evaluate SwissLog, we synthe-
size new test datasets by simulating the real-world situation
discussed in Sec. 2. Two possible types that may occur are
injected in HDFS log data illustrated as below:

• Changing events. Only unimportant words are in-
serted or removed, without changing the key mean-
ing of sentences. Therefore, the labels of changing
log data stay unchanged. We apply this injection
with a specific ratio ranging from 5% to 30% to the
original HDFS log data. Also, we tag the changed log
message as a new log template key.

• Log time interval anomalies. Only those latent per-
formance issues that do not change the log sequence
order are considered. We keep the same log sequence
order and apply the time interval latency injection
to mimic CPU hog, memory hog, disk write burn,
and network delay with a ratio 5% into those logs
whose original time interval is less than 2. We label
the injected sessions as log time interval anomalies.

For simplicity, we name the dataset injected with chang-
ing events as TestingEvent and log time interval anomalies
as TestingPerf.

4.2 Experiment Evaluations
4.2.1 Evaluation Metrics
We leverage the widely used metrics, namely Precision,
Recall, and F1-score to measure the effectiveness of anomaly
detection in SwissLog. Besides, the parsing accuracy (PA)
metric is introduced to qualify the effectiveness of an auto-
mated log parser. Compared to previous metrics, evaluation
using PA is more rigorous because partially matched tem-
plates are also considered incorrect. The detailed definitions
of them are as follows, where TP, FP, FN represent True
Positive, False Positive, and False Negative respectively.

• Parsing Accuracy: PA =
count(correct event ID group)
count(all event ID group) . The ratio of correctly

parsed log messages over the total number of log
messages.

• Precision: P = TP
TP+FP . The percentage of correctly

detected anomalies amongst all detected anomalies.
• Recall: R = TP

TP+FN . The percentage of correctly
detected anomalies amongst all real anomalies.

• F1-Score: F1 = 2∗P∗R
P+R . The harmonic mean of Preci-

sion and Recall.

4.2.2 Implementation and Parameters Setting
6,000 normal and 6,000 abnormal blocks from real-world
datasets are randomly sampled for training. The neural
network is trained using Adam optimizer [37]. We use a
weight decay of 0.0001 and set the initial learning rate to
0.001. We set the hidden dim to 128. The training epoch is
30 and the mini-batch size is set to 32. We use cross-entropy
as the loss function. We implement SwissLog with Python
3.7, Pytorch 1.3.

4.3 RQ1: The Effectiveness and Robustness of Log
Parser
Our dictionary-based log parser requires a small size and
effective dictionary. Developers can construct a dictionary

from public corpora. Here we select one open-source corpus
including 5.2 million sentences, which is accessible on [30].
After splitting this corpus with the space delimiter, we col-
lect 588,054 distinct words. Noting that not every occurred
word is valid (e.g., location name), we set an occurrence
threshold to filter common valid words. We first conduct
the statistics on these distinct words and observe that those
words only occur once or twice among these distinct words
occupy around 62%. After multiple trials, we set a relatively
excellent threshold that hits the balance between efficiency
and effectiveness. The dictionary finally remains only 18,653
common words. Our experiments confirm that such a dic-
tionary from a public corpus can cover almost all the valid
words in logging systems. In the evaluation, we will use
these 18,653 common words as the dictionaryD to recognize
valid words.

To answer RQ1, we utilize a sampled dataset and a large
dataset to figure out the effectiveness and robustness of
SwissLog. The sampled dataset is quick and effective to test
the effectiveness and robustness of log parsers. LogPai [43]
provide an easy-to-run benchmark spanning 16 datasets
from different systems and implement 14 log parsers in-
cluding offline log parsers (i.e., SLCT, AEL, IPLoM, LKE,
LFA, LogSig, LogCluster, LogMine, and MoLFI) and online
log parsers (i.e., SHISO, LenMa, Spell, Drain), which is
open-source on Github 2. We evaluate the effectiveness
and robustness of SwissLog on the LogPai benchmark and
additionally evaluate Logram 3 [45], which also works based
on dictionary. The results are shown in Tab. 4. Due to the
limited space, we only present the state-of-the-art (SOTA)
result in LogPai (i.e, the best score of the specific dataset
shown in the LogPai benchmark [43]). In particular, the bet-
ter result among SOTA in LogPAI, Logram, and SwissLog is
highlighted in bold font with a gray block.

Overall, we observe that SwissLog shows almost the best
accuracy in all datasets including the acceptable accuracy in
Mac logs and comparable good accuracy in HPC logs. It also
presents the excellent robustness of our dictionary-based
log parser. Even more, SwissLog can parse HDFS, BGL,
Windows, Apache, OpenSSH datasets with 100% accuracy.
Note that we only utilize 2,000 samples for testing, thus
a 100% accuracy is possible to achieve. The average of
SwissLog is up to 0.962, which is much more than other
log parsers by 10%. Indeed, parsing accuracy evaluates the
ratio of correctly parsed groups but does not evaluate the
accuracy of variables extraction. Hence, we manually check
the parsed templates and observe that almost all variables
in groundtruth templates can be recognized in SwissLog.
Logram applies the n-gram dictionaries and automatically
sets the threshold for different datasets. But the results
show that it achieves a relative log accuracy among these
datasets because it tends to overparse events (e.g., templates
are full of variables). From this remarkable result, we can
indicate that the dictionary-based method is close to the
visual reflection of humans, thus the better results.

However, SwissLog shows an unsatisfactory perfor-
mance on the Mac logs. Consider three groundtruth tem-
plates of Mac logs shown in Fig. 15. Kernel records the

2. https://github.com/logpai/logparser
3. https://github.com/BlueLionLogram/Logram

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 03,2022 at 06:18:14 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12
TABLE 4

Comparisons among different log parsers of Parsing Accuracy on Different Log Datasets
Dataset HDFS Hadoop Spark Zookeeper BGL HPC Thunderbird OpenStack Mac

Accuracy
SwissLog 1.000 0.992 0.997 0.985 0.970 0.910 0.992 1.000 0.840

SOTA in LogPAI 1.000 0.957 0.994 0.967 0.963 0.903 0.955 0.871 0.872
Logram 0.809 0.451 0.357 0.724 0.587 0.911 0.554 0.816 0.568

Dataset Windows Linux Andriod HealthApp Apache Proxifier OpenSSH Average

Accuracy
SwissLog 1.000 0.869 0.954 0.901 1.000 0.990 1.000 0.962

SOTA in LogPAI 0.997 0.701 0.919 0.822 1.000 0.967 0.925 0.865
Logram 0.0.694 0.140 0.906 0.267 0.313 0.0.504 0.611 0.575

103 104 105 106
0.0

0.2

0.4

0.6

0.8

1.0

Pa
rs

in
g

Ac
cu

ra
cy

Log Size (entries)

 SwissLog
 Drain
 AEL
 Spell
 IPLoM

(a) HDFS

103 104 105 106
0.0

0.2

0.4

0.6

0.8

1.0

Pa
rs

in
g

Ac
cu

ra
cy

Log Size (entries)

 SwissLog Drain
 AEL Spell
 IPLoM

(b) BGL

103 104 105 106
0.0

0.2

0.4

0.6

0.8

1.0

Pa
rs

in
g

Ac
cu

ra
cy

Log Size (entries)

 SwissLog Drain
 AEL Spell

(c) Android
Fig. 13. Comparisons among different log parsers of parsing accuracy on different volumes of logs

104 105 106 107

100

101

102

103

104

R
un

tim
e

(s
)

Log Size (entries)

 SwissLog Drain
 Spell SHISO
 LenMa

(a) HDFS

104 105 106
10-1

100

101

102

103

104

R
un

tim
e

(s
)

Log Size (entries)

 SwissLog Drain
 Spell SHISO
 LenMa

(b) BGL

104 105 106 107
10-1

100

101

102

103

104

Sw
is
sL
og

Log Size (entries)

 SwissLog Drain
 Spell SHISO
 LenMa

(c) Android
Fig. 14. Comparisons among different log parsers of runtime on different volumes of logs

PM response took <*> ms (<*>, powerd)
PM response took <*> ms (<*>, QQ)
PM response took <*> ms (<*>, WeChat)

<*>

Fig. 15. An example of Mac log templates

response time of different tasks. They are clustered into
one template in SwissLog since “powerd” and “wechat”
are non-valid words. At first glance, it is not hard for us to
classify these three templates into one category, in that the
difference is the service name, powerd (power management
daemon process), QQ, WeChat. In this case, according to
the different characteristics of tasks, they should be divided
into three templates. However, in other cases, where we
can simply treat them as the variable part, three templates
should be merged into one template. We need to adjust the
dictionary used in preprocessing step according to different
template discriminants. In this case, we can add the word
“powerd” and “wechat” to the dictionary, then SwissLog
will not merge these templates.

Besides the sampled dataset, we further evaluate Swiss-
Log towards three large datasets. The comparison of parsing
accuracy is shown in Fig. 13. The horizontal axis represents
log size which increases in logarithm and the vertical axis
denotes parsing accuracy over different amounts of log
statements. We compare SwissLog with the best four log
parsers in LogPai benchmark [43], namely Drain, AEL,
Spell, and IPLoM. It is worth noting that IPLoM is excluded
from the Android dataset since it consumes too much time
to finish parsing the data.

From Fig. 13, we observe that the effectiveness of Swiss-
Log outperforms other log parsers on the HDFS and An-
droid datasets while it is slightly higher than others on

the BGL dataset. When the volume of logs increases, the
parsing accuracy of SwissLog drops very slightly. Hence,
we can indicate from the above results on the sampled and
large datasets that SwissLog has excellent effectiveness and
robustness on different volumes and different types of log
entries.

Next, we need to figure out the effectiveness of log
parsers towards precise downstream anomaly detection task
(the anomaly detection experimental results refers to RQ2).
We select the top 2 log parsers in LogPai benchmark [43],
namely AEL and Drain, to parse the HDFS dataset in Tab. 3
into log templates. Then these log templates are fed to BERT
to acquire the semantic embedding.

TABLE 5
Ablation Results on Log Parsers

LogParser Precision Recall F1-Score
Drain 0.95 0.96 0.96
AEL 0.96 0.97 0.97

SwissLog 0.97 1.00 0.99

Tab. 5 presents the ablation results on different log
parsers. Compared with other log parsers, SwissLog
achieves the best score of 0.99 in F1-Score. The biggest
difference between SwissLog and other approaches is that
SwissLog extracts more valuable valid words which provide
wealthy information for sentence embedding. Drain and
AEL tend to overparse logs as variable parts so that the
log templates lose lots of valuable semantic information.
For example, “... Exception: Interrupted receiveBlock” and
“... Exception: Broken pipe” are pieces of two log messages.
Since Drain merges similar templates in a log bin, Drain
is likely to merge these two log templates with different

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 03,2022 at 06:18:14 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3162857, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

meanings into one log template (i.e., Exception: *) as long
as their similarity is higher than the similarity threshold.
AEL also faces the same challenges. It tends to misparse two
log messages like “PacketResponder ...” and “writeBlock ...”
into one log template when it merges log messages within
the categorized log bin.

The intuition behind the dictionary-based log parser
is that constant parts probably contain valid words while
variable parts are likely to involve non-valid words. So
SwissLog cannot parse correctly if the variable parts always
contain valid words. For example, if the value of variable
username only contains ‘guest’ and ‘user’, SwissLog could
mistake them into two templates. For further improvement,
we can introduce a human-in-the-loop procedure to merge
these templates into one template with human supervi-
sion. More specifically, highly similar templates are recom-
mended to operators to decide to merge or not.

4.4 RQ2: The Efficiency of Online Log Parser
Efficiency plays an important role in online log parser. The
speed to parse logs should be faster than the speed that
the system generates logs. To evaluate the efficiency of our
online version log parsers, we compare other online log
parsers (i.e., Drain, Spell, SHISO, LenMa) on three large
datasets involving HDFS, BGL, and Android. Large log sizes
can test the scalability of online log parsers and large log
template sizes in Android can figure out if template size
will affect the parsing efficiency. All log parsers including
SwissLog are fed with log messages one by one, and they
incrementally update templates as the log size grows.

The results of efficiency evaluation are presented in Fig.
14. The horizontal axis refers to log size in logarithm scale
and the vertical axis refers to the time cost in different online
log parsers. Since LenMa costs too much time in the large-
scale BGL dataset and Android dataset, the results of LenMa
are not shown. We can observe that SwissLog achieves a
relatively excellent efficiency and Drain spent the least time
on parsing HDFS and BGL. Both of SwissLog and Drain
follow a near-linear growth rate as the log size grows. The
reason is that the time complexity of Drain is O((l + cs)n),
where l is the depth of DAG. The fixed-depth prefix tree
largely advances the efficiency but also leads to accuracy
degradation. Indeed, a small gap in efficiency can be ignored
in practice. Therefore, we can confirm that SwissLog can
achieve relatively high efficiency in practice.

4.5 RQ3: The Effectiveness of Semantic-based Model
In this part, we intend to evaluate the effectiveness of the
semantic-based model in SwissLog. We specially select two
kinds of datasets: with IDs (HDFS) and without IDs (BGL).
We construct sessions by correlating logs with IDs if so, while
using a sliding window if not. Consequently, we conduct
experiments on original datasets HDFS and BGL with two
kinds of labels, namely normal sequence, and sequential log
anomalies. For the HDFS dataset, we correlate log messages
with the same block id named session in advance. For the
BGL dataset, we apply a sliding window with a length of 20
entries to construct a sequence session.

We adopt the proposed log parser of SwissLog to extract
log templates. Then we employ two supervised method (i.e.,

 SVM

(a) HDFS (with IDs)

 SVM

(b) BGL (without IDs)
Fig. 16. Comparisons among different anomaly detection approaches
on HDFS (with IDs) and BGL (without IDs)

LogRobust [10], SVM), three unsupervised methods (i.e.,
IM [5], DeepLog [7], LogAnomaly [9], PCA [4]), and Swiss-
Log to detect anomalies. DeepLog [7] is a log key-based
anomaly detection model and it leverages LSTM to learn
the pattern of normal sequence. LogRobust [10] encodes
log templates using Word2Vec and leverages Attn-based
Bi-LSTM to learn and detect anomalies. LogAnomaly [9]
accurately extracts the semantic and syntax information
from log templates. IM [5] mines the invariants among log
events from log event count vectors and identifies those log
sequences that violate the invariant relationship as anoma-
lies.

The comparison results of evaluation metrics
Precision/Recall/F1-Score on different datasets are shown in
Fig. 16. A lower Precision means that more anomalies cannot
be detected while a higher Recall means more manual works.
Compared with other competitive approaches, SwissLog
with Attn-based Bi-LSTM achieves a better balance between
Precision and Recall. It achieves a very high F1-Score up
to 0.99 and 0.99 in HDFS and BGL, respectively. This is
because Attn-based Bi-LSTM can capture the log sequential
order precisely so that log sequential order anomalies like
“replica immediately deleted” in the HDFS dataset can be
detected precisely. BERT further provides enriched semantic
information so as to detect those anomalies that contain
exception messages. The detection capability of SwissLog
covers almost all anomalies mentioned in HDFS and BGL
datasets.

4.6 RQ4: The Robustness on Changing Log Data
As we discussed in Sec. 2, changing events inevitably occur
in modern software systems under active development and
maintenance. In this part, we evaluate the effectiveness of
the semantic-based anomaly detection model on changing
log data. Two competitive approaches, namely DeepLog
and LogRobust are chosen as the baselines. DeepLog lever-
ages log key to identify templates while SwissLog and
LogRobust utilize sentence embedding. We use the model

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 03,2022 at 06:18:14 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3162857, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

trained by the original dataset to predict the TestingEvent
dataset. Since the injected events are changed, we tag them
as new templates in DeepLog. The experimental results on
TestingEvent are shown in Fig. 17.

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
F1

-S
co

re

Injection Ratio (%)

 SwissLog
 LogRobust
 DeepLog

Fig. 17. F1-Score on the dataset TestingEvent

In Fig. 17, the horizontal axis denotes the injection ra-
tio and the vertical axis denotes the F1-Score of different
anomaly detection models. We can observe that the F1-Score
of SwissLog, LogRobust, and DeepLog with injection ratio
5% are 0.96, 0.93, 0.78 respectively. Semantic-based models
(i.e., LogRobust, SwissLog) achieve a better F1-Score than
log key-based models (i.e, DeepLog). The reason is that the
log key-based model treats those changing events as new
templates, which probably results in false alarms. Semantic-
based models utilize sentence embedding to encode tem-
plates, which extend the 1-dimension sentence array to a 2-
dimension sentence embedding matrix. Hence, sentence em-
bedding brings robustness to changing log data as expected.
As the injected ratio increases, the F1-Score of LogRobust
starts to drop while SwissLog still maintains a high F1-
Score. For example, under the injection ratio of 30%, the
F1-Score of SwissLog is higher than 0.9, but LogRobust can
only achieve 0.84. Compared to a 2-dimension unordered
sentence embedding array in LogRobust, BERT encoders in
SwissLog capture the contextual information in templates
and encode changing log data with similar vectors. Hence,
SwissLog with BERT encoders is almost not affected by
changing events, showing good robustness.

4.7 RQ5: The Effectiveness and Sensitivity of Time Em-
bedding
SwissLog targets diverse anomalies including log sequen-
tial anomalies and log time interval anomalies. To answer
RQ5, we need to verify the effectiveness of time embed-
ding in SwissLog using synthetic HDFS dataset TestingPerf
and real-world dataset Hadoop-blk. We compare SwissLog
with those models using different time embedding: 1) 1-
dimension raw time (i.e., Raw time in Tab. 6). 2) The mean
of Esemantic and Etime (i.e., Mean in Tab. 6). The compar-
ison among them is shown in Tab. 6. We can observe that
SwissLog with the proposed time embedding achieves 0.92
in Precision while others are less than 0.7. Raw time shows
the worst results 0.70 in F1-Score since it only contains raw
information without preprocessing. The mean embedding
loses part of semantic information and temporal informa-
tion, therefore it obtains 0.76 in F1-Score. According to the
result, the effectiveness of time embedding is confirmed.

Intuitively, the higher dimension d of time embedding
may lead to the accurate prediction at the cost of training

TABLE 6
Results on different operation for time embedding

Time embedding Precision Recall F1-Score
Raw time 0.68 0.71 0.70

Mean 0.67 0.94 0.76
SwissLog (d=768) 0.92 0.99 0.95

TABLE 7
Results on different dimension for the proposed time embedding

Model Precision Recall F1-Score
SwissLog (d=2) 0.95 0.99 0.97
SwissLog (d=5) 0.98 0.99 0.99
SwissLog (d=10) 0.96 1.00 0.98
SwissLog (d=50) 0.95 1.00 0.97
SwissLog (d=100) 0.97 1.00 0.98
SwissLog (d=768) 0.92 0.99 0.95

and predicting time. Hence, we attempt to figure out the
impact of dimension d and hit a good balance between effec-
tiveness and efficiency. We conduct experiments on dataset
HDFS under different dimensions d of time embedding and
present the results in Tab. 7. We can observe that dimension
d has a very limited impact on the results. All models with
different dimension achieve more than 0.95 in Precision and
almost 1.00 in Recall. Yet, as the dimension d grows, the
elapsed time will also increase. Since our goal is to detect
anomalies as much as we can, we select dimension d = 5 as
our model parameter where the model can achieve 0.99 in
F1-Score. When applying the time embedding for logs from
a new system, we also recommend to conduct experiments
on a small set of new logs and derive the best dimension d.

1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

F1
-S
co

re

cnt

(a) Injected seconds=1

1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

F1
-S
co

re
cnt

(b) Injected seconds=2

Fig. 18. F1-Score on TestingPerf

The sensitivity to time violation is crucial in detect-
ing log time interval anomalies. Here we inject additional
1-second and 2-second latency (i.e., the latency between
two consecutive log messages) to mimic log time interval
anomalies, where the count of injected faults ranges from
1 to 5. As shown in Fig. 18, when the injected number
of log time interval anomalies and the injected latency
increase, SwissLog predicts more accurately in log time
interval anomalies. It is reasonable that SwissLog shows an
unsatisfactory score in count 1 and 2. If SwissLog is sensitive
to all time violations, it will report a large volume of alarms
resulting in unnecessary effort to analyze anomalies. When
the injected number is bigger than 2, SwissLog can achieve
a high F1-Score which is more than 0.9. The results reveal
the sensitive response of SwissLog to time violation.

To further confirm the effectiveness of time embedding
in practice, we conduct experiments on a real-world dataset
Hadoop-blk. Here we label sequential anomalies and log
time interval anomalies as anomalies in other methods. We
can observe from Fig. 19 that SwissLog is able to detect
diverse anomalies especially for log time interval anoma-
lies and achieves the highest F1-Score 0.97. Other methods,
namely PCA, LogRobust, SVM, DeepLog and IM, can only

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 03,2022 at 06:18:14 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

 SwissLog

Fig. 19. The Results of anomaly detection on real-world datasets
Hadoop-blk

detect sequential anomalies, so they show poor performance
on identifying log time interval anomalies.

4.8 RQ6: The overhead of Anomaly Detection Part
TABLE 8

The offline training time and online inference time of HDFS dataset
among different models

Model Training time (ms/seq) Inference time (ms/seq)
SwissLog 41.67 10.64
LogRobust 9.63 4.48
DeepLog 2.84 2.36

IM 14.85 2.9 * e−5

PCA 8.64 * e−4 8.19 * e−2

SVM 6.86 * e−3 2.16 * e−3

Apart from the experiments on the effectiveness and ro-
bustness of SwissLog, we additionally evaluate the training
time of the anomaly detection model in the offline phase and
the inference time in the online phase on the HDFS dataset.
We adopt the metric milliseconds per sequence (ms/seq) to
measure the runtime of SwissLog.

We present a runtime comparison results of anomaly
detection part among deep learning-based model (DL, i.e.,
SwissLog, LogRobust, DeepLog) and non deep learning-
based model (non-DL, i.e., IM, PCA, SVM) in Tab. 8. The
training time refers to the training cost in the offline phase
while the inference time means the detection time in the
online phase. Since DL model needs to train via multiple
epochs, we only show the runtime of one epoch here. We
can observe that DL models are much slower than non-DL
models because of the high complexity of DL models and
the insufficient resources of our experimental environments.
The training time of the proposed model is 4x higher than
others. It is acceptable since the overhead in the offline train-
ing phase will not affect the runtime of anomaly detection in
the online phase. The online inference time of the proposed
model is around 2x higher than LogRobust. Reasonably,
our model is a three-classification task while LogRobust
is a two-classification task, so learning and predicting an
additional class may introduce more time.

In practice, a large-scale system can generate more than
50 GB of logs per hour [3], namely 120 million log lines
(i.e., 6 million log sequences if one sequence contains 20 log
lines). It requires around 1000 minutes according to Tab. 8
due to the limited computation power and device memory
under the environment of one Nvidia GeForce GTX 1080
Ti GPU. The online detection time largely depends on the
provisioned resources, and we have additionally performed
SwissLog in parallel under the environment with 4 Nvidia
Tesla V100 GPUs. The results show that we only spend
around 50 minutes processing such a huge volume of log
data.

4.9 RQ7: Detect and Localize Anomalies in Hadoop

To further illustrate the process of anomaly detection and
localization, we apply SwissLog to give a case study in a
real-world system, Hadoop. TheR graph of Hadoop cluster
is shown in Fig. 20. There are totally six types in Hadoop.
Relation between types is linked with arrow lines, where
the relationship 1:1 is colored by a red dotted line and the
relationship 1:n is colored by a black line. For example, an
application generates multiple blocks, so their relationship
is 1:n. In our study, the relationship 1:1 is removed.

{application}

{blk}

{container}

{attempt_r}

{attempt_m}

{appattempt}

S^3 graph

{application}

{blk}

{container}

{attempt_r}

{attempt_m}

{appattempt}

1:1
1:n

1:1
1:n

Fig. 20. The subgraph R graph of Hadoop

{application_01}

{blk_01}

{container_01}

{attempt_m_01}}

{attempt_r_01}

{container_02}

{appattempt_01}

{container_03}

{blk_02}

{blk_03}

Fig. 21. The simplified Ri graph of Hadoop

Next, we give an anomaly case in the real world. First, a
set of incoming logs gradually initiates the R graph as Ri
graph. In practice, application 01 totally generates 14 blocks
and 16 containers. Due to the limited space, we only show
the simplifiedRi graph including 3 blocks, 3 containers, one
appattempt, one attempt r, and one attempt m in Fig. 21.

First, SwissLog detects anomalies in log data grouped
by block ID and labels blk 01 as an anomalous block. After
that, an exception is caught in blk 03 so SwissLog also labels
blk 03 as an anomalous block. Finally, a killing signal is
caught by SwissLog in container 02, which is tagged as a
faulty container. The anomalous instances set is, therefore,
A = {blk 01, blk 03, container 02} and all the faulty in-
stances in A are colored by red in Fig. 21. Then we apply
the heuristic searching algorithm to the Ri graph. Instance
node blk 01, blk 03, and container 02 are leaf nodes in Ri
graph, consequently, SwissLog reports the anomalous in-
stances blk 01, blk 03, and container 02. So we can localize
anomalies in instance-level in Hadoop (blk and container in
this case). Such information can largely help developers to
analyze the root cause. For example, we can observe that
not all blocks and containers encounter anomalies here. We
can indicate that it might be a node failure in slave clusters.
With the correlated logs of blk 01, blk 03, and container 02
in SwissLog, we can find that a network exception occurs in
slave 2. Hence, SwissLog can help us quickly localize and
analyze root causes when meeting anomalies.

5 DISCUSSION

Threats To Validity. We discuss threats in three aspects: 1)
The log parser of SwissLog is based on a dictionary. How-
ever, 18,653 common words in our filtered dictionary cannot
cover all of the valid words in logs, especially those words

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 03,2022 at 06:18:14 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3162857, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

of domain knowledge. A portion of terminology, such as
“Hadoop”, is not included in them. It is quite challenging to
find a suitable dictionary for all software systems generally.
Instead, customizing a particular dictionary for a software
system accordingly is a better choice. For example, it is
easy to collect specific valid words by analyzing a small
set of log data in the offline phase. 2) Unstable performance
in practice. Although the time interval of the normal se-
quence seems unchanged, different tasks still have various
execution times under different environments. Developers
need to retrain the model once the system environment
changes. 3) Unstable relation construction. We utilize Stitch
to construct relations in the Hadoop case, but it shows
unstable performance in other systems. The manual check
is required to ensure the accuracy of R graph.

Limitations. We discuss two major limitations here: 1)
SwissLog is limited to the anomalies manifested in log data.
On one hand, SwissLog cannot detect those anomalies (e.g.,
high CPU usage) exposed on KPI data instead of log data.
On the other hand, SwissLog uses log time interval change
to dig out potential performance issues as many as possi-
ble, but may not all of them. Because not all performance
anomalies are correlated with logs. 2) SwissLog is limited to
those continually changing log statements while their key
meanings stay unchanged. If the changed logging statement
alternates its meaning or the incoming log message is quite
different from the previous ones, the pre-trained SwissLog
may fail to capture the meaning, leading to bad results. So
in such cases, SwissLog should be retrained.

6 RELATED WORK

Workflow Construction. Non-intrusive workflow construc-
tion is the mainstream way to reconstruct the workflow of
a targeted system. CloudSeer [6] construct workflow and
monitor it from interleaved logs. lprof [25] uses static anal-
ysis to find IDs that can identify logs of different requests
from the same component. Stitch [26] also provides a non-
intrusive and builds a dependency graph as a S3 graph
based on finding IDs in logs. The S3 graph presents the
relationships between IDs such as one to one, one to more.
Rather than focusing on the coarse-grained IDs, IntelLog [8]
is able to provide abundant workflow information such as
entity names to users. It utilizes NLP-based approaches
to construct hierarchical workflow graphs to present the
relation between entities. Besides leveraging log data, LR-
Trace [46] also profiles actual resource consumptions of an
application at runtime in a fine-grained manner.

Log Parsing. Log parsing is the fundamental step of log
analysis works that have been widely studied. Xu, et al. [4]
and Nagappan, et al. [47] parsed logs by generating regular
expressions based on source codes. However, not all projects
are open-source online in practice. Moreover, existing log
parsing approaches can be divided into several categories.
1) Similarity based clustering: LKE [48], LogSig [49], Log-
Mine [50], SHISO [51] and LenMa [52] compute distances
between two log messages or their signature and then
cluster them based on similarity. Similarity based clustering
methods generally require a preset threshold to determine
whether the templates belong to one cluster. Parameter tun-
ing is labor-intensive, time-consuming, and non-universe.

2) Frequency based clustering: a set of constant items occurs
frequently in logs, so mining the frequency of items is a
straightforward way to parse logs automatically. SLCT [53],
LFA [54] and LogCluster [55] firstly record frequency of
items and then group them into multiple groups. 3) Heuris-
tics by searching tree: Drain [28] and Spell [27] utilize a
tree structure to parse log into multiple templates. Drain
leverages fixed-depth prefix tree to split log messages into
different nodes. Each layer of the prefix tree is one feature
extracted from logs such as the length feature, first token
feature. 4) Dictionary-based: Logparse [56] and Logram [45]
shows the possibility on parsing logs with dictionary. Both
of them construct a dictionary from existing templates.
Logparse learns the features of template words and variable
words, then they build a word classifier to classify log
messages. Logram leverages n-gram dictionaries instead
of single tokens to split the constant n-gram and variable
n-gram. 5) Deep learning based: NuLog [57] proposed a
neural log parsing based on a self-attention model and
formulates the parsing task as masked language modeling
(MLM). However, deep learning based log parsing methods
are inefficient. They require much more resources than other
log parsers to execute.

Anomaly Detection. Existing anomaly detection ap-
proaches mainly focus on sequential log anomalies. They
can be mainly separated into data mining methods and deep
learning methods.

Data mining methods include supervised learning meth-
ods and unsupervised learning methods. 1) Supervised: by
training labeled log data, supervised methods (e.g., decision
tree [58], support vector machines [59], regression-based
technique [60]) can learn the fixed pattern of different
labeled log. Consequently, they generally achieve a higher
score than unsupervised methods. But it is time-consuming
to label a large volume amount of historical data for train-
ing. Moreover, they cannot detect a black swan, which
may not be involved in historical data. 2) Unsupervised:
unsupervised methods take unlabeled history data to train.
This kind of method generally constructs a normal space
and an abnormal space for normal sequence and abnormal
sequence, respectively [4], [5]. The strength of unsupervised
methods is unnecessary to label log data. But similar to
supervised methods, a black swan is also hard to detect.

With the prevalence of deep learning, anomaly detection
models based on deep learning are widely studied [7], [9],
[10], [20]. Deep learning methods go through parsing log,
model training, and model predicting. 1) Log key-based
models: log key-based models first parse log statements into
templates and tag them with log keys. Du, et al. [7] adopted
LSTM while Vinayakumar et, al. [20] trained stacked-LSTM
to model the sequential patterns of normal and abnormal
sessions. However, when source codes update for a new ver-
sion, the old-trained log key-based model will treat them as
new templates which leads to unsatisfactory performance.
2) Semantic-based models: As log data contains wealthy
semantic information of system states, NLP techniques are
utilized to analyze log data. Meng, et al. [9] trained LSTM
considering the synonyms and antonyms with word vec-
tors. However, it also takes the log count vector as inputs
that are not robust to the changing log data. Zhang, et al. [10]
leveraged Attention-Based Bi-LSTM to detect anomalies.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 03,2022 at 06:18:14 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3162857, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 17

But Word2Vec and TF-IDF ignore the contextual information
in sentences. In our work, we use BERT to capture the
contextual semantic meaning in sentences.

7 CONCLUSION AND FUTURE WORK

Aiming at tackling the challenges of complex log depen-
dencies, changing events, and log time interval anomalies
in practice, we propose SwissLog in this paper, a robust
anomaly detection and localization tool for interleaved un-
structured logs. SwissLog targets diverse anomalies includ-
ing log sequential anomalies and log time interval anoma-
lies, and achieves the instance-grained anomaly localization.
We have conducted experiments on real-world datasets and
synthetic datasets to evaluate the effectiveness, efficiency,
and robustness of SwissLog. The results show that our
approach outperforms others. In the future, we plan to
apply SwissLog to more kinds of systems and design a
flexible incremental updating mechanism to adapt to new
log anomaly patterns.

ACKNOWLEDGMENT

The research is supported by the National Key Research and
Development Program of China (2019YFB1804002), the Key-
Area Research and Development Program of Guangdong
Province (No. 2020B010165002), the National Natural Sci-
ence Foundation of China (No. 61802448, No. U1811462),
the Basic and Applied Basic Research of Guangzhou (No.
202002030328), and the Natural Science Foundation of
Guangdong Province (No. 2019A1515012229). The corre-
sponding author is Pengfei Chen.

REFERENCES

[1] X. Li, P. Chen, L. Jing, Z. He, and G. Yu, “Swisslog: Robust and
unified deep learning based log anomaly detection for diverse
faults,” in 2020 IEEE 31st International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2020, pp. 92–103.

[2] “Alibaba cloud reports io hang error in north china,”
https://equalocean.com/technology/20190303-alibaba-cloud
-reports-io-hang-error-in-north-china, 2019, [Online].

[3] H. Mi, H. Wang, Y. Zhou, M. R.-T. Lyu, and H. Cai, “Toward fine-
grained, unsupervised, scalable performance diagnosis for pro-
duction cloud computing systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 6, pp. 1245–1255, 2013.

[4] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in SOSP’09:
Proc. of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles. ACM, 2009, pp. 117–132.

[5] J.-G. Lou, Q. Fu, S. Yang, J. Li, and B. Wu, “Mining program
workflow from interleaved traces,” in SIGKDD’10: Proc. of the 16th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2010, pp. 613–622.

[6] X. Yu, P. Joshi, J. Xu, G. Jin, H. Zhang, and G. Jiang, “Cloudseer:
Workflow monitoring of cloud infrastructures via interleaved
logs,” ACM SIGARCH Computer Architecture News, vol. 44, no. 2,
pp. 489–502, 2016.

[7] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly de-
tection and diagnosis from system logs through deep learning,” in
SIGSAC’17: Proc. of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2017, pp. 1285–1298.

[8] A. Pi, W. Chen, S. Wang, and X. Zhou, “Semantic-aware work-
flow construction and analysis for distributed data analytics sys-
tems,” in Proceedings of the 28th International Symposium on High-
Performance Parallel and Distributed Computing, 2019, pp. 255–266.

[9] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun et al., “Loganomaly: Unsupervised detection of
sequential and quantitative anomalies in unstructured logs.” in
IJCAI’19: Proc. of the 28th International Joint Conference on Artificial
Intelligence, 2019, pp. 4739–4745.

[10] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie,
X. Yang, Q. Cheng, Z. Li et al., “Robust log-based anomaly detec-
tion on unstable log data,” in ESEC/FSE’19: Proc. of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, 2019,
pp. 807–817.

[11] L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and
W. Zhang, “Plelog: Semi-supervised log-based anomaly detection
via probabilistic label estimation,” in 2021 IEEE/ACM 43rd Inter-
national Conference on Software Engineering: Companion Proceedings
(ICSE-Companion). IEEE, 2021, pp. 230–231.

[12] D.-Q. Zou, H. Qin, and H. Jin, “Uilog: Improving log-based
fault diagnosis by log analysis,” Journal of computer science and
technology, vol. 31, no. 5, pp. 1038–1052, 2016.

[13] S. Kabinna, C.-P. Bezemer, W. Shang, M. D. Syer, and A. E. Hassan,
“Examining the stability of logging statements,” Empirical Software
Engineering, vol. 23, no. 1, pp. 290–333, 2018.

[14] C. Lou, P. Huang, and S. Smith, “Understanding, detecting and
localizing partial failures in large system software,” in NSDI’20:
Proc. of the 17th USENIX Symposium on Networked Systems Design
and Implementation, 2020, pp. 559–574.

[15] “Gocardless service outage on october 10th, 2017,”
https://gocardless.com/blog/incident-review-api-and-dashb
oard-outage-on-10th-october, 2017, [Online].

[16] “Office 365 update on recent customer issues,” https://blogs.of
fice.com/2012/11/13/update-on-recent-customer-issues/, 2017,
[Online].

[17] “Google compute engine incident 17008,” https://status.cloud.g
oogle.com/incident/compute/17008, 2017, [Online].

[18] “Twilio billing incident post-mortem: Breakdown, analysis and
root cause.” https://bit.ly/2V8rurP, 2013, [Online].

[19] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[20] R. Vinayakumar, K. Soman, and P. Poornachandran, “Long
short-term memory based operation log anomaly detection,” in
ICACCI’17: 2017 International Conference on Advances in Computing,
Communications and Informatics. IEEE, 2017, pp. 236–242.

[21] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintala-
pati, and R. Yao, “Gray failure: The achilles’ heel of cloud-scale
systems,” in HotOS’17: Proc. of the 16th Workshop on Hot Topics in
Operating Systems, 2017, pp. 150–155.

[22] P. Huang, C. Guo, J. R. Lorch, L. Zhou, and Y. Dang, “Capturing
and enhancing in situ system observability for failure detection,”
in OSDI’18: Proc. of the 13th USENIX Symposium on Operating
Systems Design and Implementation, 2018, pp. 1–16.

[23] D. J. Dean, H. Nguyen, X. Gu, H. Zhang, J. Rhee, N. Arora,
and G. Jiang, “Perfscope: Practical online server performance
bug inference in production cloud computing infrastructures,” in
SOCC’14: Proc. of the ACM Symposium on Cloud Computing, 2014,
pp. 1–13.

[24] D. J. Dean, H. Nguyen, P. Wang, X. Gu, A. Sailer, and A. Kochut,
“Perfcompass: Online performance anomaly fault localization and
inference in infrastructure-as-a-service clouds,” IEEE Transactions
on Parallel and Distributed Systems, vol. 27, no. 6, pp. 1742–1755,
2015.

[25] X. Zhao, Y. Zhang, D. Lion, M. F. Ullah, Y. Luo, D. Yuan, and
M. Stumm, “lprof: A non-intrusive request flow profiler for dis-
tributed systems,” in 11th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 14), 2014, pp. 629–644.

[26] X. Zhao, K. Rodrigues, Y. Luo, D. Yuan, and M. Stumm, “Non-
intrusive performance profiling for entire software stacks based on
the flow reconstruction principle,” in 12th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 16), 2016,
pp. 603–618.

[27] M. Du and F. Li, “Spell: Streaming parsing of system event logs,”
in ICDM’16: Proc. of the 16th International Conference on Data Mining.
IEEE, 2016, pp. 859–864.

[28] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log
parsing approach with fixed depth tree,” in ICWS’17: 2017 IEEE
International Conference on Web Services. IEEE, 2017, pp. 33–40.

[29] “wordninja,” https://github.com/keredson/wordninja, 2021,
[Online].

[30] “English corpus,” https://storage.googleapis.com/nlp chinese c
orpus/translation2019zh.zip, 2021, [Online].

[31] S. H. Pinjia He, Jieming Zhu and M. R. Lyu, “Loghub: A large
collection of system log datasets for ai-powered log analytics,”

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 03,2022 at 06:18:14 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3162857, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 18

in ESEC/FSE’19: Proc. of the 27th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2019.

[32] W. Meng, Y. Liu, F. Zaiter, S. Zhang, Y. Chen, Y. Zhang, Y. Zhu,
E. Wang, R. Zhang, S. Tao et al., “Logparse: Making log parsing
adaptive through word classification.”

[33] Q. Le and T. Mikolov, “Distributed representations of sentences
and documents,” in ICML’14: Proc. of the 31st International Confer-
ence on Machine Learning, 2014, pp. 1188–1196.

[34] H. Xiao, “bert-as-service,” https://github.com/hanxiao/bert-as-s
ervice, 2018.

[35] “Bert pretrained models,” https://github.com/google-research/
bert, 2021, [Online].

[36] Y. Li, N. Du, and S. Bengio, “Time-dependent representation for
neural event sequence prediction,” arXiv preprint arXiv:1708.00065,
2017.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[38] “Hadoop,” https://hadoop.apache.org/, 2021, [Online].
[39] “filebeats,” https://www.elastic.co/beats/filebeat, 2021, [On-

line].
[40] “chaosblade,” https://github.com/chaosblade-io, 2021, [Online].
[41] “Loghub datasets,” https://zenodo.org/record/3227177, 2021,

[Online].
[42] “Bluegene/l message types,” https://www.usenix.org/cfdr-dat

a#hpc4, 2019, [Online].
[43] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools

and benchmarks for automated log parsing,” in ICSE(SEIP)’19:
Proc. of the 41st International Conference on Software Engineering:
Software Engineering in Practice. IEEE Press, 2019, pp. 121–130.

[44] A. Oliner and J. Stearley, “What supercomputers say: A study of
five system logs,” in DSN’07: Proc. of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE,
2007, pp. 575–584.

[45] H. Dai, H. Li, C. S. Chen, W. Shang, and T.-H. Chen, “Logram:
Efficient log parsing using n-gram dictionaries,” IEEE Transactions
on Software Engineering, 2020.

[46] A. Pi, W. Chen, X. Zhou, and M. Ji, “Profiling distributed systems
in lightweight virtualized environments with logs and resource
metrics,” in Proceedings of the 27th International Symposium on High-
Performance Parallel and Distributed Computing, 2018, pp. 168–179.

[47] M. Nagappan, K. Wu, and M. A. Vouk, “Efficiently extracting
operational profiles from execution logs using suffix arrays,” in
ISSRE’09: Proc. of the 20th International Symposium on Software
Reliability Engineering. IEEE, 2009, pp. 41–50.

[48] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection
in distributed systems through unstructured log analysis,” in
ICDM’09: Proc. of the 9th IEEE International Conference on Data
Mining. IEEE, 2009, pp. 149–158.

[49] M. Mizutani, “Incremental mining of system log format,” in
SCC’13: 2013 IEEE International Conference on Services Computing.
IEEE, 2013, pp. 595–602.

[50] H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and A. Mueen,
“Logmine: Fast pattern recognition for log analytics,” in CIKM’16:
Proc. of the 25th ACM International on Conference on Information and
Knowledge Management. ACM, 2016, pp. 1573–1582.

[51] K. Q. Zhu, K. Fisher, and D. Walker, “Incremental learning of
system log formats,” ACM SIGOPS Operating Systems Review,
vol. 44, no. 1, pp. 85–90, 2010.

[52] K. Shima, “Length matters: Clustering system log messages using
length of words,” arXiv preprint arXiv:1611.03213, 2016.

[53] R. Vaarandi, “A data clustering algorithm for mining patterns
from event logs,” in IPOM’03: Proc. of the 3rd IEEE Workshop on
IP Operations & Management. IEEE, 2003, pp. 119–126.

[54] M. Nagappan and M. A. Vouk, “Abstracting log lines to log event
types for mining software system logs,” in MSR’10: Proc. of the 7th
IEEE Working Conference on Mining Software Repositories. IEEE,
2010, pp. 114–117.

[55] R. Vaarandi and M. Pihelgas, “Logcluster-a data clustering and
pattern mining algorithm for event logs,” in CNSM’15: Proc. of the
11th International Conference on Network and Service Management.
IEEE, 2015, pp. 1–7.

[56] W. Meng, Y. Liu, F. Zaiter, S. Zhang, Y. Chen, Y. Zhang, Y. Zhu,
E. Wang, R. Zhang, S. Tao et al., “Logparse: Making log parsing
adaptive through word classification,” in 2020 29th International
Conference on Computer Communications and Networks (ICCCN).
IEEE, 2020, pp. 1–9.

[57] S. Nedelkoski, J. Bogatinovski, A. Acker, J. Cardoso, and O. Kao,
“Self-supervised log parsing,” arXiv preprint arXiv:2003.07905,
2020.

[58] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer,
“Failure diagnosis using decision trees,” in ICAC’04: Proc. of the
first International Conference on Autonomic Computing. IEEE, 2004,
pp. 36–43.

[59] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “Failure prediction
in ibm bluegene/l event logs,” in ICDM’07: Proc. of the 7th IEEE
International Conference on Data Mining. IEEE, 2007, pp. 583–588.

[60] M. Farshchi, J.-G. Schneider, I. Weber, and J. Grundy, “Experience
report: Anomaly detection of cloud application operations using
log and cloud metric correlation analysis,” in ISSRE’15: Proc. of
the 26th International Symposium on Software Reliability Engineering.
IEEE, 2015, pp. 24–34.

Xiaoyun Li is currently pursuing the Ph.D.
degree with the School of Computer Sci-
ence and Engineering, Sun Yat-sen University,
Guangzhou, China. She received her BE degree
from Sun Yat-sen University, in 2019. Her cur-
rent research areas include log analysis and AI-
driven operations.

Pengfei Chen is currently an associated pro-
fessor in the School of Computer Science and
Engineering of Sun Yat-sen University. Mean-
while, he is a Ph.D. advisor. Dr. Chen gradu-
ated from the department of computer science
of Xi’an Jiaotong University with a Ph.D. de-
gree in 2016. Now, he is interested in distributed
systems, AIOps, cloud computing, Microservice
and BlockChain. Especially, he has strong skills
in cloud computing. So far, Dr. Chen has pub-
lished more than 50 papers in some international

conferences including IEEE INFOCOM, WWW, ACM/IEEE CCGRID,
ICSOC, IEEE ICWS, IEEE ICPADS and journals including IEEE TDSC,
IEEE TNNLS, IEEE TR, IEEE TSC, IEEE TETC, IEEE TCC. He serves
as of program committee member of multiple conferences and reviewers
of some internal journals such as IEEE Transactions on Cybernetics,
Information Science, and Neurocomputing.

Linxiao Jing received the B.E. degree from
School of Computer Science and Technology,
Xidian University, Xi’an, China, in 2019. He is
currently pursuing M.E. degree with the School
of Computer Science and Engineering, Sun Yat-
sen University, Guangzhou, China. His current
research areas include cloud computing and AI-
driven operations.

Zilong He received his BE degree and MS de-
gree from Sun Yat-sen University, China, in 2019
and 2021. He is now a phd student at School
of Computer Science and Engineering of Sun
Yat-sen University, China. His current research
areas include anomaly detection algorithms, AI
driven operations.

Guangba Yu received his master degree from
Sun Yat-Sen University, China, in 2020. He is
now a phd student at School of Computer Sci-
ence and Engineering with Sun Yat-Sen Uni-
versity, China. His current research areas in-
clude distributed system, cloud computing, and
AI driven operations.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 03,2022 at 06:18:14 UTC from IEEE Xplore. Restrictions apply.

