
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

A Spatiotemporal Deep Learning Approach for
Unsupervised Anomaly Detection in Cloud Systems

Zilong He , Pengfei Chen , Xiaoyun Li, Yongfeng Wang , Guangba Yu, Cailin Chen,

Xinrui Li, and Zibin Zheng , Senior Member, IEEE

Abstract— Anomaly detection is a critical task for maintaining
the performance of a cloud system. Using data-driven methods
to address this issue is the mainstream in recent years. However,
due to the lack of labeled data for training in practice, it is
necessary to enable an anomaly detection model trained on
contaminated data in an unsupervised way. Besides, with the
increasing complexity of cloud systems, effectively organizing
data collected from a wide range of components of a system and
modeling spatiotemporal dependence among them become a chal-
lenge. In this article, we propose TopoMAD, a stochastic seq2seq
model which can robustly model spatial and temporal dependence
among contaminated data. We include system topological infor-
mation to organize metrics from different components and apply
sliding windows over metrics collected continuously to capture
the temporal dependence. We extract spatial features with the
help of graph neural networks and temporal features with long
short-term memory networks. Moreover, we develop our model
based on variational auto-encoder, enabling it to work well
robustly even when trained on contaminated data. Our approach
is validated on the run-time performance data collected from two
representative cloud systems, namely, a big data batch processing
system and a microservice-based transaction processing system.
The experimental results show that TopoMAD outperforms some
state-of-the-art methods on these two data sets.

Index Terms— Cloud computing, neural networks, unsuper-
vised anomaly detection, variational auto-encoder (VAE).

I. INTRODUCTION

W ITH the rapid development of cloud technology,
the complexity and scale of cloud systems are continu-

ally increasing, which gives rise to frequent system accidents
and the downgraded performance. To ensure the performance
and reliability of a cloud system, operators need to monitor
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Fig. 1. Example of multivariate time series with topological information.

its state continuously. Metrics, such as CPU usage, num-
ber of I/O requests per second, network throughput, and so
on, can provide significant insights into the running state
of a cloud system, which helps the anomaly detection and
troubleshooting.

To reduce the cost of system accidents with the use of
metrics we collect, anomaly detection on these metrics is
first performed. Since metrics collected are time series data,
an efficient and accurate algorithm for anomaly detection on
time series is needed. So far, with the trend of developing
artificial intelligence for IT operations [1], there have been
plenty of works conducted on anomaly detection for time
series with the use of AI technology. Some of them perform
anomaly detection on univariate time series [2]–[6]. While
with the increasing complexity of cloud systems, more and
more metrics can be collected and utilized to model a system
state [7]. As a result, methods only designed for univariate
time series inevitably reveal their weakness. There also exist
some methods which take multivariate time series as input
[8]–[12], but they only concatenate different time series
directly without effective organization. In a complex cloud
system, more information about the collected metrics can
be obtained and utilized to help organize these metrics. For
example, the topology (see Fig. 1) originated from the system
can help gain a graph-based representation of the system
state, which we also denote as a topological multivariate time
series below. Especially, in a microservice system, it becomes
more critical to leverage the topological information. However,
the problem of how to effectively construct and further perform
anomaly detection for such graph-based representations still
remains unsettled.

A deep neural network is a powerful tool for model-
ing dependence in data with complex structure. Therefore,
its application for anomaly detection has attracted many
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researchers’ attention in recent years. Recent research [3],
[12]–[14] discovers that a variational auto-encoder (VAE) [15]
shows superiority for the task of anomaly detection. There-
fore, we develop an anomaly detector based on the design
of a VAE. Beyond its advantages declared in the previous
literature, we also demonstrate its effectiveness for training
on contaminated data (i.e., data including normal data and
abnormal data) without reliance on labels.

In this article, we propose a topology-aware multivariate
time series anomaly detector (TopoMAD), which combines
graph neural networks [16], [17], long short-term memory
(LSTM) [18], [19], and VAE [15] to perform unsupervised
anomaly detection for a cloud system. We evaluate our model
using metrics collected from an environment running big
data batching systems, such as Hadoop and Spark, with fault
injections and metrics collected from a microservice-based
application, where faults are injected occasionally.

The contributions of TopoMAD are summarized as follows.
1) TopoMAD introduces an unsupervised anomaly detec-

tion approach, which considers the topological informa-
tion originated from a cloud system. We combine this
topological information with metrics collected from a
cloud system to construct a graph-based representation
for anomaly detection.

2) TopoMAD glues graph neural networks and LSTM
as the basic structure of VAE to perform anomaly
detection in a topological time series. We make use of
state-of-the-art graph neural networks, such as graph
convolution network (GCN) [16] and graph attention
network (GAT) [17] to extract information from the
metrics organized in a predefined topology, together with
LSTM to extract information from sliding windows over
time. The spatiotemporal information extracted by graph
neural networks together with LSTM, can help improve
the anomaly detection performance in cloud systems.

3) TopoMAD makes use of VAE [15], a stochastic model,
to perform anomaly detection for a cloud system in a
fully unsupervised way. Instead of making an assump-
tion of data we use, we train our model on all data we
collect, no matter it is normal or abnormal. Moreover,
we propose an unsupervised threshold selection method
and examine this method based on our model.

4) We open-sourced two data sets,1 including metrics col-
lected from an environment running big data batching
systems and metrics collected from a running microser-
vice system. These data sets can be used to reproduce
the results of this article or to motivate further research.

This article is organized as follows. The related work
is introduced in Section II. In Section III, we present the
preliminaries of each main technique in TopoMAD. Section IV
outlines and specifies our approach. In Section V, we evalu-
ate our approach using data collected from two application
scenarios. Section VI concludes this article.

II. RELATED WORK

A. Unsupervised Anomaly Detectors
Enormous methods of unsupervised anomaly detection have

been developed in the past years. In this section, we categorize

1https://github.com/QAZASDEDC/TopoMAD

them into traditional approaches and deep learning-based
approaches.

Traditional approaches [20] include statistical approaches,
such as Gaussian-based model, classification-based
approaches, such as one-class support vector machines
(OC-SVMs) [21], nearest neighbor-based approaches, such as
local outlier factor (LOF) [22], and so on. Usually, a traditional
anomaly detector is associated with an assumption about the
normal data, and its effectiveness will degrade when the data
cannot fit in the corresponding assumption.

Compared with traditional approaches, deep learning-based
models are better at modeling complex dependence in
data, and thus, gain a lot of attention. For example, deep
auto-encoder [23] can be used to perform dimension reduc-
tion by utilizing its multiple nonlinear transformations. For
anomaly detection, the reconstruction error of an observation
is used as its anomaly score. For anomaly detection on
time series, Donut [3] leverages VAE [15] to model the
reconstruction probability [13] of univariate time series and
perform anomaly detection based on this measure. LSTM-AD
[8] learns a prediction model using stacked LSTM networks,
and the prediction error is used as the measure of an anomaly.
LSTM-ED [9] proposes an LSTM-based seq2seq auto-encoder
that learns to reconstruct normal multivariate time series and
uses the reconstruction error to detect anomalies. Deep struc-
tured energy-based models (DSEBMs) [10] connects an EBM
with a regularized auto-encoder to model the data distribution,
and the energy score or the reconstruction error is used to
perform anomaly detection. For sequential data, a recurrent
formulation of EBMs can be employed. Though some of these
approaches have tackled the problem of modeling complex
temporal dependence for time series, we still need an approach
to effectively model the spatiotemporal dependence for data
which are collected from a specific topology continuously.

B. Anomaly Detection in Cloud Systems

In Section II-A, we have given a brief introduction about
those general unsupervised anomaly detectors. Most of them
have been used in cloud systems [3], [24], [25]. In this section,
we shall focus on some other aspects of anomaly detection in
cloud systems.

1) Anomaly Types: According to some work [26]–[31],
anomalies in cloud systems can be categorized into two types,
including external impairments and internal application faults.
External impairments refer to unexpected overloads, such as
a memory hog, induced by another co-located application or
infrastructure failures, such as disk failure, network disconnec-
tion, OS crash, and so on. Internal application faults denote
anomalies caused by the misconfiguration or software bugs of
the corresponding running application. Different causes can
result in different symptoms. Multiple work [26], [29], [30]
has been conducted on the analysis of failure characteristics
in cloud systems. For example, Zhou et al. [29] investigate
application faults in microservice systems with different root
causes and the debugging practice for them.

2) Anomaly Indicators: There are multiple types of indica-
tors which can reveal the state of a cloud system and further
help detect and analyze anomalies. Examples of these types
include metrics [3], [5], [32], [33], logs [34]–[37], and system
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calls [38], [39]. The anomaly detection process varies accord-
ing to different types of indicators. In this article, we focus
on anomaly detection in cloud systems with the use of system
metrics. System metrics, such as resource utilization and I/O
response time, are widely used as anomaly indicators in cloud
systems and have proved their effectiveness in plenty of
works [5], [28], [32], and [40]. Also, there exist works which
succeed in finding new effective anomaly indicators in some
specific scenarios, such as queue lengths of microservices used
in [40].

3) Temporal Model: Many indicators presented in
Section II-B2 can be aggregated as time-series data by
applying a sliding window, which helps reveal the system’s
local state in time. Some work [41] calculates statistical
features (such as mean, standard deviation, and gradient)
of data in the sliding window as temporal features. There
also exists complex but more powerful temporal modeling
techniques, such as time series decomposition [32], spectral
residual [6], and some deep learning-based methods [3],
[8]–[10] mentioned in Section II-A.

4) Spatial Model: Copious literature on system performance
diagnosis involves constructing a graph-based representation
for a system. Some of them [11], [42]–[44] analyze metrics
collected from a system in a pairwise way and construct an
invariant graph which takes each metric as a node. On the
other hand, some work [27], [45], [46] treat each of the
system components as a node with multiple attributes and
employ edges to represent the connectivity between system
components. In this article, we prefer the latter way because
analyzing metrics pairwise is time consuming and infeasible
for anomaly detection in real time when more and more
metrics are collected from cloud systems.

5) Threshold Selection: To apply an unsupervised anomaly
detector to practice, a corresponding threshold is a necessary
and influential hyperparameter. Threshold selection is integral
to anomaly detection in cloud systems. Some work [11], [12],
[47] has provided some practices for threshold selection. For
instance, peaks-over-threshold (POT) [12] utilizes the extreme
value theory [2] to perform automatic threshold selection.
As for dynamic threshold calculation, nonparametric-dynamic-
thresholding (NDT) [47] selects a threshold from the set
� = μ(es) + zσ(es) with μ(es) and σ(es) as the mean and
standard deviation of anomaly scores over a sliding window
and z chosen from a range between two and ten to maximize
an equation predefined by us.

C. Graph Neural Networks for Spatiotemporal Modeling

Learning patterns from spatiotemporal graphs is
increasingly important in many applications. Many current
approaches [48] apply graph neural networks together with
RNN and CNN to simultaneously consider spatial and
temporal relations. For instance, diffusion convolutional
recurrent neural network (RNN) [49] replaces the matrix
multiplications in GRU [50] with a diffusion convolution
operation to accomplish the task of traffic forecasting.
CNN-GCN [51] overcomes this problem through a complete
convolutional structure which interleaves 1-D-CNN with
GCN. ST-GCN [52] extends a temporal flow as graph edges
and then extracts both temporal and spatial features using a

unified GCN to perform human action recognition. Inspired
by these models, we develop TopoMAD to include and
extract topological information with the help of graph neural
networks to perform unsupervised anomaly detection in cloud
systems.

III. PRELIMINARIES

A. Cloud System Topologies

To illustrate what is the topological information originated
from the system, we first define nodes and edges in cloud
system topology and expound their characteristics.

1) Nodes: We have mentioned in Section II-B that each
system component is treated as a node in the cloud system
topology. The definition of a system component can vary
depending on the different granularity of division. Examples of
a course-grained division might be the role-based (e.g., master
or slave) division in Hadoop and the service-based division
in a microservice system, while examples of a fine-grained
division might be the node-based division in Hadoop and
the pod-based division in a Kubernetes driven microservice
system. In a fine-grained topology, several nodes (e.g., pods)
that can be grouped into one node (e.g., services) in a
course-grained topology can share the same set of edges with
similar behaviors.

2) Edges: Multiple relationships of system components can
be chosen to be an edge. For example, components that
locate in the same physical machine can share an edge,
components whose load are balanced can share an edge,
components that have the same update setting can share an
edge, and so on. Most of these relationships are dynamic.
In this article, we define there is an edge between two system
components if they interact with each other. According to this
definition, we can construct the topology in advance based
upon some tracing-based analysis [53], [54] or network traffic
correlation-based analysis [27], [55]–[57]. These methods are
important complements to our approach.

B. Problem Statement

We list the notations used in this article with their descrip-
tions in Table I. Anomaly detection for a topological mul-
tivariate time series is to determine whether an observation
Xt is an anomaly or not. We divide this objective into two
steps. First, we calculate an anomaly score S(Xt |Xt−W :t−1, E)
for Xt considering its recent history Xt−W :t−1 and its topol-
ogy E . Then, we obtain an anomaly result by comparing
S(Xt |Xt−W :t−1, E) with a threshold τ , which is selected in
an unsupervised manner. If the score is higher than τ , an alert
will be triggered.

C. Basics of Graph Neural Networks

Graph neural networks are modern deep learning techniques
designed for graph data. They are helpful when we need
to model the spatial dependence in metrics collected from
different components with connectivity and extract information
from the topology. In this article, we apply two representative
graph neural networks, namely, GCN [16] and GAT [17],
as the basic layer in an LSTM cell to capture the spatial
dependence in the topology. In the following, we will introduce
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TABLE I

NOTATIONS AND DESCRIPTIONS

the layerwise propagation rules of these two techniques in
detail.

GCN [16] proposes a graph convolution layer which accepts
an N × F matrix X (l) containing features of each node and the
adjacency matrix A of the topology as inputs. It propagates
forward with the following rule:

X (l+1) = D̃− 1
2 ÃD̃− 1

2 X (l)W(l). (1)

Here, Ã = A + I denotes the adjacency matrix with inserted
self-loops. D̃ is its diagonal degree matrix with D̃ii = ∑

j Ãi j

and W(l) ∈ RF×F �
is a layer-specific trainable weight matrix.

An activation function can also be applied to the result Xl+1

to introduce nonlinearity.
GAT [17] is similar to GCN. It utilizes attention mech-

anisms [58], [59] to fuse the neighboring nodes and then
learn hidden representations for each node in a graph. After
inputting X (l) = {X (l)

1 , X (l)
2 , . . . , X (l)

N }, new hidden representa-
tions can be computed as follows:

X (l+1)
i = 1

K

K∑
k=1

∑
j∈Ni

αk
i, j W

k X (l)
j (2)

where the attention coefficients αi, j are computed as

αi, j = exp
(
LeakyReLU

(�a�[
Wxi � Wx j

]))
∑

k∈Ni
exp

(
LeakyReLU

(�a�[Wxi � Wxk]
)) . (3)

Here, W ∈ RF �×F and �a ∈ R2F �
are trainable parameters.

K denotes the number of independent attention mechanisms
executed and Ni denotes the first-order neighbors of node
i (including node i ). LeakyReLU(·) is kind of an activation
function. Nonlinearity can also be introduced here by applying
an activation function to the output.

D. Basics of Long Short-Term Memory Networks

Recurrent neural networks (RNNs) are discrete-time
state–space models which can recursively process an input
sequence and model its temporal dependence. Since a simple
RNN has limited ability to learn the long-term dependence
in a sequence, LSTM was invented to address this problem.
Using gating mechanisms, LSTM can decide whether to forget
or update certain information in the transferred cell state ct−1

considering the input state xt and transferred hidden state ht−1,
and then calculates new cell state ct and new hidden state ht .

There have been some methods which apply RNN, includ-
ing LSTM on graph-structured data. For example, Liang
et al. [60] utilize confidence-driven search to specify the
node updating sequence for a graph and then it sequentially

update the states of all nodes with LSTM. Peng et al. [61]
partition a document graph into two directed acyclic graphs
and constructs the LSTMs accordingly. In the constructed
LSTM, different precedents of a unit are calculated via full
parametrization or edge-type embedding and then summed to
obtain the output, states, and gates. Jain et al. [62] parame-
terize a spatiotemporal graph with a factor graph [63] and
then represent each factor with an RNN. Compared with these
methods, we directly replace the linear layers in LSTM with
state-of-the-art graph neural layers to perform spatiotemporal
learning. A more detailed description is given in Section IV-D.

E. Basics of Variational Auto-Encoder

VAE [15] is a deep probabilistic graphical model. It is a
powerful tool for modeling the relationship between observed
variables x and their corresponding latent variables z with
reduced dimension. VAE assumes that x can be generated
through a process which first samples z from some prior
distribution pθ (z) and then samples x from pθ(x |z), which is
derived from a neural network with parameter θ . Since pθ (z|x)
is intractable, VAE introduces a recognition model qφ(z|x) to
approximate it. Parameters φ and θ can be trained through
maximizing the variational lower bound L(θ, φ; x) [(4)] on the
marginal likelihood with stochastic gradient variational Bayes
estimator [15]

L(θ, φ; x) = −DKL
(
qφ(z|x)�pθ (z)

) + Eqφ(z|x)(log(pθ(x |z))).
(4)

A typical choice for pθ (x |z) or qφ(z|x) is a multivariate
Gaussian with a diagonal covariance structure, whose mean
and the covariance matrix is derived by neural networks. And
in general, a standard normal distribution N (0, I ) is chosen
for the prior of z.

For the purpose of anomaly detection given a specific
input x , reconstruction probability Eqφ(z|x)(log(pθ(x |z))) [13]
is adopted and calculated using Monte Carlo integration [64]
as follows:

Eqφ (x|z)(log(pθ (x |z))) = 1

L

L∑
l=1

log
(

pθ

(
x |z(l)

))
(5)

where L denotes the number of samples and z(l),
l = 1, 2, . . . , L are sampled from qφ(z|x).

IV. METHODOLOGY

In this section, we will introduce our motivation and
then elaborate on the overall structure and other details of
TopoMAD.

A. Motivation

There are two key ideas in TopoMAD, namely, the inclusion
of topological information to represent a system state and
the unsupervised setting at the stage of model training and
threshold selection.

Nowadays, most popular cloud systems can be recognized
as distributed systems with multiple interconnected com-
ponents. The components mentioned here might be virtual
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machines, microservices, and so on. When we focus on a cer-
tain component in these systems, we can find the behavior of a
component can be analyzed through the following two factors.
One factor is the task the component is responsible for and
currently performing. Metrics of the component can provide
insights into this factor. Considering a single-selected metric
can provide metric-level information while considering mul-
tiple metrics of the component can provide component-level
information. The other factor is the interacting relationship
of the components. Considering this can provide topological
information because behaviors of a component can be induced
by requests or return values of other components. The inte-
gration of topological information and component-level infor-
mation of each component forms system-level information,
which can provide a more comprehensive insight into the
whole running system.

Previous research based on deep learning usually neglects
the topological information. They either focus on anomaly
detection on each particular component or even each particular
metric of the whole system individually, or totally ignore the
intrinsic communicating behaviors within a system and treat
the whole system as a cumbersome component. We argue that
paying attention to detecting anomalies at the system level with
topological information, rather than only at the component
level or metric level is worth considering. First, the decision of
whether a component is in an abnormal state needs to consider
its connected components sometimes. Second, training and
maintaining an individual model for each component will
become more and more labor intensive as the cloud system
enlarges its complexity. Third, roughly treating the whole
system as a cumbersome component loses insight into its inner
topology and might, thus, raise the difficulty of modeling its
normal behavior.

Including the topological information to represent a system
state and utilizing graph neural networks to learn spatial
dependence of metrics with the help of this topological infor-
mation can bring three benefits. First, feature extractors of
graph neural networks are shared amongst the same kind of
metrics from different components, which helps catch similar
pattern amongst the same metric type with unified feature
learning. Second, the role of a particular component can be
defined by its connections with other components through
a graph neural operation, which provides convenience for
performing end-to-end learning on patterns and behavior of all
components from a system. Third, the topological information
can guide models to concentrate attention on interactions of
components with a direct connection in reality, which helps
prevent overfitting of our model.

TopoMAD follows an unsupervised setting, which means
that labels of data keep unavailable throughout the stage of
model training and threshold selection. As a result, we can-
not deliberately select normal data to be the training data
set. In this case, a stochastic model, such as VAE, has
superiority over a deterministic model, such as auto-encoder.
Auto-encoder can be thought as a model which learns deter-
ministic mappings from input data to their corresponding
latent variables; therefore, when training data includes anom-
alies, auto-encoder can also learn to reconstruct them well,
which increases the difficulty of detecting the same kind

Fig. 2. Overall structure of TopoMAD.

of anomalies in the testing phase. By contrast, variational
auto-encoder learns the distribution of the latent variables
instead of the latent variables themselves. The first RHS
term −DKL(qφ(z|x)�pθ(z)) in the training objective [i.e., (4)]
makes input data “compete for” a suitable latent space by
driving qφ(z|x) close to a standard normal distribution. As a
result, anomalies, which occur infrequently, will tend to lose
the competition and result in a low reconstruction probability
even when they have appeared in the training data.

Threshold selection is an essential phase of anomaly detec-
tion in practice. However, quite a few methods, such as [3]
and [9] neglect this phase and only enumerate all thresholds
to gain the best F1 score and use it as the performance metric
of an anomaly detector. We argue that the best F1 score is
not a good measure of the performance of an unsupervised
anomaly detection model, because the performance achieved
denoted by the best F1 score is impractical and unachievable
without the support of labels. Therefore, we advise using an
unsupervised way to select a threshold before evaluating model
performance.

B. Overall Structure

Fig. 2 displays the overall structure of TopoMAD. Data
collected is processed to gain a tensor X recording metrics
collected from each node and an array E which describes
the system topology by recording its edges. In the stage of
model training, the model is trained with historical data in
an offline batch processing way. After the model is trained
properly, we select a threshold according to the distribution
of anomaly scores of the training data. Then, in the stage
of online anomaly detection, the anomaly score of a new
observation is calculated using this properly trained model.
If the anomaly score of observation is higher than the threshold
we select, an alert will be triggered.

C. Data Integration and Preprocessing

Fig. 3 shows an example of an observation from a Hadoop
cluster with one master node and four slave nodes. An example
of the corresponding input data of Fig. 3 is visualized in Fig. 4.

During data preprocessing, we transform different metrics
collected from different nodes through data standardization
and then apply sliding windows of length W over these
observations. As for the edge set array E , we do not consider
the construction of a dynamic topology in this article because
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Fig. 3. Graph-based representation of metrics collected from a Hadoop
cluster.

Fig. 4. Example of the input data in Fig. 3.

a real-time topology can change with high frequency owing to
load balance or other reasons. It is hard to assign a real-time
topology to each time step of the collected metrics.

D. Building Block: GraphLSTM

Before presenting the network architecture of our model
proposed in TopoMAD, we first introduce the basic build-
ing block to concurrently model the spatial and temporal
dependence in the input data. We name this building block
GraphLSTM for its nature as a combination of graph neural
networks and LSTM. Specifically, we replace fully connected
layers in LSTM with graph neural layers, such as GCN [16]
and GAT [17] to build a GraphLSTM cell. Fig. 5 shows the
inner structure of GraphLSTM.

All the states and gates in GraphLSTM are graph-based rep-
resentations containing features of each node and a topology
denoted by an input edge set array E . When a new input Xt

from a time series X arrives at time t , GraphLSTM updates
the cell state ci

t and calculates the new hidden state hi
t of a

certain node i in a topology considering the input XNi
t and past

states cNi
t−1, hNi

t−1 of itself and its neighbors. The computations
conducted by GraphLSTM can be formulated as (6) in the
following, where “∗G” denotes the graph neural operator and
“∗” denotes the Hadamard product:

ft = sigmoid
(
W f ∗G

([
ht−1, xt

]
, E

) + b f
)

it = sigmoid
(
Wi ∗G

([
ht−1, xt

]
, E

) + bi
)

gt = tanh
(
Wg ∗G

([
ht−1, xt

]
, E

) + bg
)

ct = ft ∗ ct−1 + it ∗ gt

ot = sigmoid
(
Wo ∗G

([
ht−1, xt

]
, E

) + bo
)

ht = ot ∗ tanh(ct ). (6)

E. Network Architecture

In this section, we will introduce the detailed neural network
architecture of the model proposed in TopoMAD. Fig. 6 shows
a visualization of our model at the stage of inference.

Fig. 5. Inner structure of GraphLSTM.

Fig. 6. Overall graphical model of TopoMAD at the stage of inference.

Fig. 7. Overall graphical model of TopoMAD at the stage of training.

The overall network is a stochastic seq2seq
auto-encoder [65]. Let t0 = t − W + 1 and
Xt0:t = {Xt0 , Xt0+1, . . . , Xt−1, Xt } denote an input sequence
and E denote an input edge set array. The encoder computes
the distribution parameters of q(zt |Xt0:t) after iteratively
feeding every time step of Xt0:t into it. GraphLSTM is
used as part of the encoder to capture the spatiotemporal
dependence among nodes and long time. After consuming the
entire input sequence, we get a summarized fixed-dimension
tensor ht which is further passed to a couple of multilayer
perceptrons to estimate the parameters μ(Xt0:t ) and σ(Xt0:t )
of q(zt |Xt0:t ) = N (μ(Xt0 :t), σ (Xt0 :t)). Multilayer perceptrons
here are learned individually for each node. Likewise, similar
architecture is adopted as the decoder to reconstruct the
sequence in reverse order, and the states of the decoder
are initialized using the final states of the encoder. During
training, the input for the decoder per time step comes
from the original input sequence with probability λ or the
reconstructed sequence with probability 1 − λ (see Fig. 7),
namely, a scheduled sampling process [66]. In our model,
λ is initialized to be 1 and will reduce by half at the end

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on April 25,2021 at 00:35:04 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HE et al.: SPATIOTEMPORAL DEEP LEARNING APPROACH FOR UNSUPERVISED ANOMALY DETECTION IN CLOUD SYSTEMS 7

of an epoch if the validation loss does not decrease. While
during inference, the input for the decoder per time step
always comes from its preceding reconstruction (see Fig. 6).
Specifically, at time step t − 1, we use the mean value, μ(zt),
of p(Xt |zt ) = N (μ(zt), σ (zt )) as the input for the decoder.

F. Offline Model Training

Let φ denote the encoder network parameters and θ denote
the decoder network parameters. Similar to VAE, our model
is trained by optimizing the variational lower bound on the
marginal likelihood. Given a topological time series Xt0 :t ,
where t0 = t − W + 1 denotes the beginning of the sliding
window, the loss function is derived as follows:
L(

θ, φ; Xt0:t
) = −DKL

(
qφ

(
zt |Xt0:t

)�pθ (zt )
)

+ Eqφ(zt |Xt0 :t)
(
log

(
pθ

(
Xt0:t |zt

)))

= −DKL
(
qφ

(
zt |Xt0:t

)�N (0, I )
)

+ 1

L

L∑
l=1

t∑
j=t0

log
(

pθ

(
X j |z(l)

t , X j+1:t
))

. (7)

Here, L denotes the sampling number to estimate the expec-
tation. In this article, we set L = 1 since it has been reported
in [15] that one sample is sufficient as long as the minibatch
size is large enough. The pseudocode for training the model
GraphLSTM-VAE in TopoMAD is shown in Algorithm 1 in
Appendix A of the supplementary material.

G. Computing Anomaly Scores

As shown in Section III-E, the reconstruction probability
Eqφ (zt |Xt0:t )(log(pθ (Xt |zt ))) can be immediately calculated at
time t and used to indicate whether Xt is anomalous. We fol-
low it and use its additive inverse as the anomaly score of an
observation Xt to make a higher anomaly score imply a more
anomalous observation. The temporary anomaly score at time
t is formulated as follows:

tempSt = −Eqφ(zt |Xt0 :t)(log(pθ(Xt |zt))). (8)

It has been reported by [3] that anomalous observations
usually occur continuously. In practice, it is acceptable to
trigger an alert within a short delay. We allow the anomaly
score of an observation Xt to be adjusted according to some
of its succeeding observations. As a stochastic sequence-to-
sequence model, the model in TopoMAD not only learns
to reconstruct Xt but also learns to reconstruct W − 1
observations preceding to Xt , which provides convenience for
us to update the anomaly score of an observation Xt . The
final anomaly score St for an observation Xt is formulated as
follows:

St = − 1

L ∗ D

D−1∑
d=0

L∑
l=1

log
(

pθ

(
Xt |z(l)

t+d , Xt+1:t+d

))
(9)

where L denotes the sampling number and D denotes the
number of times we calculate or update an anomaly score
(i.e., the tolerance of detection delay).

In some cases, a relative low reconstruction probability of
a particular component in a system is enough to draw our

attention. Therefore, we also calculate an anomaly score from
a component perspective as follows:

St = − max
0≤i<N

1

L ∗ D

D−1∑
d=0

L∑
l=1

log
(

pθ

(
Xi

t |z(l)
t+d , Xt+1:t+d

))

(10)

where N denotes the number of components in the system and
Xi

t denotes the metrics of component i at time t .
For online anomaly detection, whether to trigger an alert

at time t is decided based upon tempSt , which can be imme-
diately calculated at time t and D − 1 consecutive updated
anomaly scores preceding to it. When one of these anomaly
scores is higher than the threshold, an anomaly is detected.
Algorithm 2 in Appendix A of the supplementary mater-
ial shows the pseudocode of our online anomaly detection
algorithm.

H. Threshold Selection

An anomaly score can reveal how anomalous an observation
is, but in practice, a threshold is still needed to trigger an alert
and instruct operators to take actions.

We propose a threshold selection method based on an
assumption that anomaly scores of normal data locate in an
area with a high density, while anomaly scores of abnormal
data locate in an area with a low density. The distance of
these two areas is relatively long. Specifically, we define the
distance of two anomaly scores sets S<τ and S>τ separated by
a threshold τ as follows:
d(S<τ , S>τ ) = min(S>τ ) − max(S<τ )

min(S>τ ) + max(S<τ ) − 2 ∗ min(S<τ )
(11)

where max(S) denotes the maximal element in S, and min(S)
denotes the minimal element.

Based upon this assumption, we select a threshold which
maximizes the distance [11)] between the two sets cut from
the training data set by this threshold from a range provided
by an operator. The pseudocode of the threshold selection
algorithm is demonstrated in Algorithm 3 in Appendix A of
the supplementary material.

If operators want the selected threshold to adapt to the
dynamic changes in the system, they can use the automatic
threshold selection method on newly collected data and update
the selected threshold routinely to maintain its effectiveness.

V. EXPERIMENT VALIDATION

In this section, we conduct experiments to validate our
model and answer the following questions.

1) Can TopoMAD outperform other approaches in anomaly
detection for topological multivariate time series col-
lected from a cloud system?

2) How does each component of TopoMAD affect the
performance?

3) How effective is the topology?
4) How can we interpret the results of TopoMAD?
5) How is the robustness of TopoMAD?
6) How is the efficiency of TopoMAD?
7) How effective is our unsupervised threshold selection

method in TopoMAD? Can it recommend a relatively
better threshold?
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TABLE II

FEATURES OF OUR TWO DATA SETS

A. Data Sets

To demonstrate the effectiveness of our model, we conduct
experiments using two data sets, of which one is collected from
an environment running a big data batch processing system
(MBD), and the other is from a microservice-based transaction
processing system (MMS). The features of these two data sets
are shown in Table II.

We obtain the data set MBD from a cluster containing
five nodes with one master and four slaves. During the
experiments, we continuously generate multiple random work-
loads with random parameters using HiBench [67], a big
data benchmark published by Intel. At the same time, ran-
dom faults, including external impairments and application
faults, are injected irregularly with random parameters. The
injected external impairments include system resource hog
(high CPU/memory/disk-IO load), network failure (delay or
packets loss), and the application faults are simulated through
injecting some delays or exceptions into Hadoop distributed
file system (HDFS) (causing symptoms similar to HDFS-448
[68] and HDFS-8160 [69]). We monitor and collect 26 metrics
per node, including CPU idle, CPU I/O wait, CPU softirq,
CPU system, CPU user, disk I/O wait per second, disk I/O
in progress per second, disk used percentage, disk read speed,
disk write speed, kernel entropy, load1, load5, load15, memory
active, memory available percentage, memory cached, memory
dirty, memory free, memory used percentage, network bytes
received rate, network bytes sent rate, network TCP time wait,
number of processes blocked, number of running processes,
and the total number of processes. These metrics are selected
for two reasons. First, they are representative system metrics
used in a series of previous works [12], [27], [32], [43], [46],
and we try to cover many types, ranging from CPU, memory,
disk, and network to processes, as we can to gain a thorough
insight into the running state of the system. In addition,
these metrics are easy to acquire using tools, such as Perf,
Telegraf [70], Amazon CloudWatch [71], and so on. These
metrics are collected for three days and constitute the data set
MBD with anomalies labeled on the basis of the injection log.
We can refer to Fig. 3 for the topology input of this data set.
There is no doubt that other performance metrics can be fed
into our algorithm.

With respect to the data set MMS, we adopt
Hipster-Shop [72], a web-based e-commerce microservice
benchmark where users can browse hipster goods, add them
to the cart and purchase them. This benchmark is deployed
in a Kubernetes [73] cluster with 12 VMs. A load generator
is included in Hipster-Shop to mimic visits to the website.
Moreover, we inject anomalies with random parameters, such
as CPU/disk-IO hog, network delay, and container hang to
some pods during the experiments. Metrics, including CPU
usage, memory usage, network receive rate, network transmit
rate, pod latency, pod workload, and pod success rate, are

Fig. 8. Pod-level topology of the Hipster-Shop where pods belonging to the
same service are plotted with the same color.

collected from each pod and recorded in the data set MMS.
Then anomalies are labeled according to the fault injection
log. The pod-level topology, which can be used to construct
a graph-based representation for metrics in this data set,
is demonstrated in Fig. 8.

B. Performance Metrics

All the anomaly detectors we evaluate in this article can
return an anomaly score for each observation, and therefore,
we consider using the average precision (AP) of the abnormal
class as the performance metric to compare them. AP is con-
sidered more suitable than Area Under the receiver operating
characteristic Curve (AUC) when dealing with a highly skewed
data set [74], which means the normal data dominates the
whole data set. It can be calculated as follows:

P = T P

T P + F P
, R = T P

T P + F N

AP =
∑

i

(Ri − Ri−1)Pi , m AP =
∑

APC

N(Classes)
(12)

where T P , F P , and F N refer to true positive, false positive,
and false negative, respectively, and Pi and Ri denote the
precision and recall at the i th threshold. The mean of AP
from all classes is known as mAP.

F1 score, the harmonic mean of precision and recall, is also
widely used as a performance metric for anomaly detection
when the observations have been classified into normal or
abnormal with a threshold. It can be calculated as follows:

F1 = 2 · P · R

P + R
. (13)

We use the F1 score to compare the effectiveness of different
threshold selection methods.

C. Experiment Setup

We compare our model in TopoMAD with seven baseline
anomaly detectors, including a Gaussian-based anomaly detec-
tor, OC-SVM [21], LOF [22], a simple auto-encoder [23],
LSTM-AD [8], LSTM-ED [9], and RNN-EBM [10], which
have been introduced in Section II-A. Since the anomaly detec-
tion for metrics with the help of topological information is
kind of an unprecedented attempt, for other anomaly detectors,
we conduct experiments in the following two ways. The first
way is to concatenate all metrics from different components
into one huge vector and use this vector as the input of the
evaluated anomaly detector. The second way is to perform

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on April 25,2021 at 00:35:04 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HE et al.: SPATIOTEMPORAL DEEP LEARNING APPROACH FOR UNSUPERVISED ANOMALY DETECTION IN CLOUD SYSTEMS 9

Fig. 9. AP of TopoMAD and other baseline anomaly detectors on MBD.

anomaly detection on each component one by one and use
the average anomaly score of all components as the anomaly
score of the whole cloud system.

We employ Pytorch and Pytorch Geometric [75] to imple-
ment the model in TopoMAD and its variants. Then, we train
them and other baseline anomaly detectors on a server with
four NVIDIA Tesla P100-SXM2 GPUs.

Hyperparameters are chosen based on Bayesian optimiza-
tion [76], [77]. Since a lightweight model is usually preferred
when performing anomaly detection in cloud systems, we will
not consider using a wide and deep network architecture in
our experiments of deep learning-based methods. For both
data sets, we set the time window size as 10, which spans
5 min in MBD and 10 min in MMS. We set the hidden
dim per component as 3, the number of recurrent layers per
GraphLSTM cell as 2, the learning rate 10−4, the batch size is
32, and the sampling number for VAE as 20 at the inference
stage. If the choice of graph neural layer in GraphLSTM is
GAT, the number of heads is set to 8, and the dropout rate is
set to 0.4. The tolerance of delay is set to 5 min. We calculate
anomaly scores from a component perspective [(10)] for
both data sets. During experiments, the input for traditional
anomaly detectors is each individual observation, while the
input for deep leaning-based anomaly detectors in each sliding
window applied over the observations. In particular, for a
simple auto-encoder which is not customized for time series
data, we flatten the time series as its input, just like [3] does.

Detecting anomalies in cloud systems should work online.
Moreover, the performance data are collected continuously.
Therefore, we take the former two days of data for training
with the rest one day for testing. Experiments on each data
set using each anomaly detector are repeated five times, and
the average results are recorded for comparison.

D. Overall Performance

In this section, we will answer the question “Can Topo-
MAD outperform other approaches in anomaly detection for
topological multivariate time series collected from a cloud
system?” Figs. 9–12 show comparisons (including AP and
mAP) between our models in TopoMAD with other baseline
anomaly detectors trained in two ways mentioned earlier. It can
be seen that the model in TopoMAD outperforms or matches
all baseline anomaly detectors. In the following, we will
discuss some baseline anomaly detectors individually in detail.

In our experiments, the performance of traditional anomaly
detectors varies a lot from each other. This is mainly because
the performance of a traditional anomaly detector highly
depends on the corresponding assumption of data distribution.
When the corresponding assumption of a traditional anomaly
detector is violated, its performance will seriously downgrade.

Fig. 10. AP of TopoMAD and other baseline anomaly detectors on MMS.

Fig. 11. mAP of TopoMAD and other baseline anomaly detectors on MBD.

Fig. 12. mAP of TopoMAD and other baseline anomaly detectors on MMS.

For instance, LOF behaves well on the data set MMS while
it shows a poor performance on the data set MBD. This is
because we routinely scale the load generator when collecting
the data of MMS, and the workload is relatively stable under
the same level of workload. As a result, normal observations
of MMS tend to locate in a dense neighborhood area. As for
the data set MBD, there are multiple workloads with random
parameters running in the cluster, leading to more complex
workload features. Therefore, when used in data set MBD,
LOF does not behave and in the data set MMS.

The overall results of the evaluated algorithms seem not
very high in our experiments. Two reasons account for this
phenomenon. First, we inject faults with different kinds and
severities to the system. Some faults result in a very subtle
impact on our system. In Fig. 13, we show the performance
of TopoMAD using MMS with more severe faults (e.g., higher
network delays). When TopoMAD is evaluated in data with
severer faults, the result will be better. Second, there exist
some fluctuations which are not caused by the injected faults
in the collected metrics. These fluctuations do not last for a
long time and might be induced by dynamic changes in the
running environment. They are common in reality. However,
these fluctuations are usually detected as anomalies with an
unsupervised anomaly detector because they indeed occur
less frequently and deviate far from normal data. In practice,
if operators treat this kind of fluctuations as false alerts, they
can set some rules to filter the alerts (e.g., only a corresponding
alert lasts long enough will it be sent to the operators) or train a
supervised anomaly detector to discriminate these fluctuations
from real anomalies. In the following, we shall focus on the
comparison among different anomaly detectors.
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Fig. 13. Performance of TopoMAD on MMS under different levels of sever-
ities. A higher level of severity results in anomalies with larger deviations.

Deep learning-based models are good at modeling complex
dependencies embedded in data, but this advantage can turn
into a disadvantage when these deep anomaly detectors are
trained on contaminated training data. With this problem
out of consideration when performing unsupervised anomaly
detection, attempts to improve model fitting capacity are very
likely to backfire. For MBD, LSTM-ED performs the best
among all baseline anomaly detectors. For MMS, if we utilize
the concatenate policy, RNN-EBM achieves the best result
among all baseline deep anomaly detectors, and if we apply
the one-by-one policy, a simple auto-encoder is the best in all
baseline deep anomaly detectors.

LSTM-AD achieves the worst result in all deep
learning-based models evaluated. As a prediction-based
model, LSTM-AD heavily relies on the fact that the time
series should be predictable; therefore, it is not surprising
that LSTM-AD performs the worst when our data sets do
not satisfy this setting. By contrast, the assumption that
observations are reconstructable is weaker and more reliable.
Other deep learning-based models we evaluate, including
auto-encoder, LSTM-ED, RNN-EBM, and TopoMAD are
based upon this more reliable assumption, and thus, perform
better than LSTM-AD in our two data sets.

LSTM-ED is a reconstruction-based model, and our model
in TopoMAD can be seen as its extension with consideration
of topological information and contaminated training data.
In addition to the lack of these considerations, the sub-
optimal performance of LSTM-ED is also caused by the
discrepancy between input distribution at training and testing
phases because the decoder in LSTM-ED uses ground truth
observations as input at the training stage while reconstructed
observations at the inference stage. To show the comparison
between LSTM-ED and TopoMAD more clearly, we provide
a case study in Appendix B of the supplementary material.

As shown in Section V-C, we evaluate the baseline anomaly
detectors using two training policies, namely, a concatenate
policy and a one-by-one policy. For MBD, nearly all base-
line models achieve better performance using the concatenate
policy (note that deep anomaly detectors with the concatenate
policy have higher space and time complexity than TopoMAD
and those with the one-by-one policy and we will discuss
this more specifically in Section V-I). Nevertheless, no matter
which policy they utilize, TopoMAD remains considerable
superiority over them. In Section IV-A, we claim three benefits
of TopoMAD, namely, the unified feature learning, the con-
venience for end-to-end learning and the ability to prevent
overfitting. These three benefits are based upon the comparison
between our model and other methods trained using the two
policies declared earlier.

Fig. 14. ROC curves on both data sets, MBD and MMS. (a) MBD. (b) MMS.

Fig. 15. AP of model variants on two data sets.

Finally, the ROC curves of anomaly detectors with top three
performances on each data set are displayed in Fig. 14 to show
the performance tradeoff of different models more distinctly.
From the ROC curves on MBD, we can see that the false
positive rate of TopoMAD is lower compared with the other
two baseline models under a relatively low threshold. As for
MMS, the performance of TopoMAD is similar to LOF and
steadily better than RNN-EBM under different thresholds.

E. Effects of Major Components

In this section, we will answer the question “How does
each component of TopoMAD affect the performance?”
The results are displayed in Fig. 15. We include the mAP
of LSTM-ED here because our model is kind of its exten-
sion. We select the best performance metric gained by
LSTM-ED among two policies mentioned above to display
here. “GCN ONLY” and “GAT ONLY” denote model variants
of TopoMAD gained by removing its variational component
which degrades our model into a deterministic model. “LIN-
EAR + VAE” denotes a model variant gained by replac-
ing the GraphLSTM in TopoMAD with a simple LSTM,
which loses sight of the topological information. “GCN +
VAE” and “GAT + VAE” denote model variants with two
different choices of graph neural layers when implementing
GraphLSTM in TopoMAD.

1) Effect of the Inclusion of Graph Neural Networks: The
objective of including graph neural networks in TopoMAD is
to extract features from neighbors of each component. We can
see in Fig. 15 that “GCN ONLY” and “GAT ONLY” are
superior to LSTM-ED, and “GCN + VAE” and “GAT + VAE”
outperform or match “LINEAR + VAE” in both data sets.
That is, no matter in a deterministic model or in a stochastic
model, utilizing graph neural networks to explicitly model the
spatial dependence among components in a cloud system is
beneficial.

2) Effect of VAE: It can be seen in Fig. 15 that “LINEAR +
VAE,” “GCN + VAE,” and “GAT + VAE” all outperform
their corresponding deterministic variants. The superiority of
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TABLE III

DIFFERENT TOPOLOGY INPUTS’ AP ON TWO DATA SETS

VAE as an anomaly detector over a simple auto-encoder has
been demonstrated in [13], which can be concluded as the
benefits of representing latent variables and reconstructions as
stochastic variables and using probability measures as anomaly
scores. In addition, we have also illustrated VAE’s superiority
when model training is performed on all data (also denoted as
contaminated data) in Section IV-A. Therefore, we recommend
VAE instead of a deterministic auto-encoder when performing
unsupervised anomaly detection.

F. Impact of the Topology Input

In this section, we will answer the question “How effective
is the topology?” We validate the rationality of our definition
of topology input by comparing our method with the perfor-
mance gained by inputting a random edge set array.

The results in Table III demonstrate that the topology input
also plays an important role in the superior performance of
TopoMAD. However, a misconfiguration of the topology input
does not harm so much. This is because we maintain individual
parameters for different nodes outside the GraphLSTM (as
described in Section IV-E, multilayer perceptrons outside the
GraphLSTM are learned individually for each node), allowing
TopoMAD to focus on the learning of each node one by one
after processing the topological information. With this design,
the output of our model will not be highly dependent on
the topology input and yet can gain benefit from it. Thus,
our model can also work even when it is confused by a
misconfiguration of the topology input. The second reason
is that actually components in a system have all kinds of
connections with each other and our idea is only to construct a
simplification of all these connections. From this point of view,
we cannot say an edge we define between the two components
is wrong. What we can say is that it does not represent a direct
relation. Yet a better way to construct an effective graph-based
representation for a cloud system deserves further research.

G. Interpretability of TopoMAD

In this section, we will answer the question “How can we
interpret the results of TopoMAD?” We will take advantage
of the visualization of hidden representations calculated by
TopoMAD to explain why it tends to give an anomalous
observation a higher anomaly score. In Fig. 16, we show
the 3-D hidden representations of each node calculated by
TopoMAD with the anomalous observations in red and the
normal observations in blue.

From Fig. 16, we can find that there is an overlap between
the hidden representations of anomalous observations and
normal observations. The hidden representations are used
as the input of the decoder to reconstruct the observations.
Because normal data occur more frequently, TopoMAD can
capture the normal pattern in the training data and reconstruct
normal data very well. Meanwhile, because most anomalous

Fig. 16. Three-dimensional hidden representations of each node calculated
by TopoMAD for MBD.

TABLE IV

AP OF TOPOMAD UNDER DIFFERENT ANOMALY RATIOS

Fig. 17. Convergence of TopoMAD on both data sets. (a) MBD. (b) MMS.

data share similar hidden representations with normal data,
the decoder cannot learn to reconstruct them well, resulting in
their higher anomaly scores. Su et al. [12] also draw a similar
conclusion about how VAE-based anomaly detectors work.

H. Robustness of TopoMAD

In this section, we will answer the question “How is the
robustness of TopoMAD?”

First, we evaluate our model under different degrees of
data contamination to figure out the relationship between the
performance of TopoMAD and the data anomaly ratio. The
training data sets with different anomaly ratios are generated
through sampling normal data in the original data set until it
reaches a corresponding anomaly ratio. Table IV displays the
performance of TopoMAD under the anomaly ratios of 10%,
15%, and 20%.

From Table IV, we can see that the performance of Topo-
MAD will not degrade too much with the increase of the
anomaly ratio. This is because the hidden representation
calculated by VAE for an observation is a stochastic variable.
Even when the anomaly ratio is relatively high, it is still far
lower than the normal data ratio. As a result, it is difficult
for the decoder to learn to reconstruct the anomaly well when
in each epoch, and the calculated latent is sampled from a
normal distribution and can be quite different from the latent
calculated for this observation in previous epoches.

In addition, we present the convergence of TopoMAD under
different anomaly ratios in Fig. 17. It can be seen that Topo-
MAD can still converge stably at high anomaly proportions.
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TABLE V

TIME COMPLEXITY OF DEEP LEARNING RECONSTRUCTION-BASED
ANOMALY DETECTION METHODS

TABLE VI

SPACE COMPLEXITY OF DEEP LEARNING RECONSTRUCTION-BASED

ANOMALY DETECTION METHODS

Last but not least, we discuss the robustness of TopoMAD
with regard to initializations. Under the condition of multiple
random initializations, the performance of TopoMAD varies.
The worst AP TopoMAD achieves on MBD is 0.381, and that
on MMS is 0.399. The worst performance of TopoMAD can
still remain superiority over all baseline models in MBD and
baseline models except for LOF in MMS.

I. Efficiency of TopoMAD

In this section, we will answer the question “How is the
efficiency of TopoMAD?”

Usually, there are a huge amount of data we can collect
from a large-scale cloud system, and the computational cost
of an anomaly detector will inevitably increase with the
enlargement of the cloud system. In the following, we will
first give a theoretical analysis about the time complexity
and the space complexity of TopoMAD and other deep
learning reconstruction-based anomaly detection methods. In
Tables V and VI, we present the complexity of a single layer
in fully connected feed-forward neural networks-based models
(FC), RNNs-based models, and TopoMAD when dealing with
data with the window size W , the node number |V |, the edge
number |E |, the number of features per node F , and the hidden
dim per node F �. Note that |E | 	 |V |2 usually holds true in a
cloud system topology. From Tables V and VI, we can see that
the time complexity and the space complexity of TopoMAD
are only higher than those of the RNNs-based models trained
in a one-by-one way. Besides, there exists some work [78]
which can help improve efficiency when training large graph
neural networks.

In addition to a theoretical analysis, we also conduct exper-
iments to evaluate the execution time of TopoMAD under
topologies of varying complexities. We generate synthetic data
sets using the data set MMS by doubling the number of pods
from each service. The metrics of newly generated pods are
copied from the original data set. The window size and the
hidden dim are fixed to 1 during the experiments. Table VII
shows the execution time of TopoMAD for testing the entire
testing data set. The growth rate of the execution time is
acceptable for anomaly detection in cloud systems.

TABLE VII

EXECUTION TIME OF TOPOMAD WITH REGARD TO TOPOLOGIES
OF DIFFERENT SCALES

Fig. 18. Distribution of anomaly scores on MMS.

Fig. 19. F1 scores of different threshold selection methods on both data sets.

J. Effect of Our Threshold Selection Method

In this section, we will answer the question “How effective
is our unsupervised threshold selection method in Topo-
MAD? Can it recommend a relatively better threshold?”
We compare our unsupervised threshold selection method with
two unsupervised threshold selection methods POT [12] and
NDT [47] and a supervised one which enumerates thresholds
to achieve the best F1 score in the training data set with the
help of labels. The objective of our method is to recommend
a relatively good threshold right after the training stage, and
therefore, we assume that the testing data set remains unseen
until a threshold is selected. For the supervised method here,
a threshold which can achieve the best F1 score in the training
data set is selected and applied to the testing data set. For
POT, we evaluate hyperparameters used in [12] and display
the best result achieved. For NDT, we select the historical
window size from 15 min, 30 min, 1 h, and 2 h according to
the performance they achieve.

Operators can narrow the search range of thresholds by
observing the distribution of anomaly scores on the training
data set. To give an example, we show anomaly scores of
the training data of MMS in Fig. 18, where the x-axis denotes
anomaly scores of observations, and the y-axis denotes random
numbers which help flatten out the displayed anomaly scores
so that we can recognize their density. The corresponding
threshold can be selected from a roughly narrowed range
where the density of anomaly scores begins to decrease (such
as 5∼50 here).

The F1 scores obtained are displayed in Fig 19. We can
see that the performance of our method is even slightly higher
than the supervised one (the best threshold on the training data
set does not always guarantee to be the best on the testing
data set). This demonstrates that an unsupervised threshold
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selection method can also gain a relatively good threshold.
Considering the lack of operational data with labels, in reality,
we recommend selecting a threshold in an unsupervised way.

K. Discussions

1) Assumptions of Unsupervised Anomaly Detectors: Due
to the lack of labeled data for training, the effectiveness
of an unsupervised anomaly detector relies heavily on its
assumption. As introduced in Section II-A, assumptions of
traditional anomaly detectors include stochastic model-based
assumptions, density-based assumptions, classification-based
assumptions, and so on. As for deep learning-based anomaly
detectors examined in this article, putting aside their superi-
ority in modeling dependence in data with complex structure,
their assumptions are actually quite simple. What they assume
is that normal data are easier to generate than abnormal
data. This generation process can be further subdivided into
reconstruction based or prediction based. The quality of an
assumption is determined by the data rather than the assump-
tion itself; therefore, it is no wonder a simple traditional
model can achieve same or even superior performance com-
pared with some state-of-the-art deep learning-based models,
as visualized in Figs. 9 and 10. Integration of the capacity
of modeling dependence in data with complex structure in
deep learning-based models and a diversity of assumptions in
traditional models is worth of a try, which is denoted as a deep
hybrid model in [79].

2) Anomaly Localization: Once an anomaly is detected,
system operators usually need to locate the real root causes
of this anomaly. To locate an anomaly, operators can take the
anomaly scores of all components generated by TopoMAD as
the input of some anomaly localization algorithms, such as
CauseInfer [27] and microscope [80]. For example, when an
anomaly in a microservice system is detected by TopoMAD,
operators can locate the anomaly using the cause inference
algorithm proposed in microscope [80], which traverses across
the service topology to find the root cause.

VI. CONCLUSION

Since anomaly detection is essential to operate a cloud
system, this article proposes a topology-aware multivariate
time series anomaly detector, namely, TopoMAD for unsu-
pervised anomaly detection. To achieve that, we propose a
novel architecture of a neural network by integrating the
technologies of graph neural networks, LSTM and VAE. Our
approach can robustly and effectively model the complex
spatiotemporal dependence in contaminated data. The time
complexity of TopoMAD is quantitatively analyzed, which
shows that TopoMAD is efficient to analyze a large-scale
cloud system. Moreover, a threshold selection algorithm is
also proposed to help optimize TopoMAD. The experimental
results conducted on two real-world data sets demonstrate our
model’s superior performance over other baseline anomaly
detectors.

In future works, we will focus on the following.
1) Research in online learning techniques for TopoMAD.
2) The choice of metrics which are better at exposing the

failure of a cloud system.

3) Research in combining some other state-of-the-art deep
anomaly detectors to gain a better performance.
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