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Abstract

Modern cloud native applications are generally built with a microservice architecture.

To tackle various performance problems among a large number of services and

machines, an end-to-end tracing tool is always equipped in these systems to track

the execution path of every single request. However, it is nontrivial to conduct root

cause analysis of anomalies with such a large volume of tracing data. This paper

proposes a novel system named TraceRank to identify and locate abnormal services

causing performance problems with dis-aggregated end-to-end traces. TraceRank

mainly includes an anomaly detection module and a root cause analysis module. The

root cause analysis procedure is triggered when an anomaly is detected. To fully

leverage the information provided by the tracing data, both the spectrum analysis

and the PageRank-based random walk methods are introduced to pinpoint abnormal

services. The experiments in TrainTicket and Bookinfo microservice benchmarks and

a real-world system show that TraceRank can locate root causes with 90% in

Precision and 86% in Recall. TraceRank has up to 10% improvement compared with

several state-of-the-art approaches in both Precision and Recall. Finally, TraceRank

has good scalability and a low overhead to adapt to large-scale microservice systems.
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1 | INTRODUCTION

Recently, microservice has become a popular architecture to construct cloud native systems. In a microservice system, applications are

decomposed into small, autonomous, single responsible, and loosely coupled services communicating via network messages. The microservice

architecture has advantages of a diversity of technologies, such as resilience, scalability, reliability, reusability, and agility.1–3 On the other hand,

lots of unexpected problems may occur with the increase of service scale and complexity of service dependencies, which may have a strong

impact on user experience. According to one report,4 the WeChat system of Tencent contains 3000 microservices distributed on 20,000 virtual

servers. It is extraordinarily difficult to find a tiny root cause from such a large-scale system. Moreover, by the reason of agile development and

the usage of DevOps tools, code submission and version updates can be up to dozens of times within a single day,5–7 which highly increases the

probability of potential faults. Hence, it is a difficult task for operators to identify the root cause.

Numerous studies have been done on root cause analysis (RCA). FChain8 pinpoints faults based on the changed propagation patterns of

anomalies. CauseInfer9 and Sieve10 build causality graphs of system components and then conduct RCA. Besides, lots of efforts take advantage

of log data and metrics to locate root causes of system problems.11–14 However, RCA is still a difficult problem due to the complex service

dependencies and the dynamic run-time environment of microservice systems.
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Recently, much work has been done on resolving the fault localization problem in microservice systems by using distributed tracing.

Distributed tracing (e.g., Opentracing* and Jaeger†) is being integrated into modern microservice systems as a fundamental tool for understanding

and solving program bugs.15 A trace captures the execution path and process time about how a single request traverses the system.16 Figure 1

illustrates a trace of a request traversing BookInfo microservice system.‡ In this paper, we define dis-aggregated tracing data as the separate trace

providing an in-depth view into the execution of a single request. We define aggregated tracing data as the analysis data (e.g., success rate and

average latency per minute of a service) collected and aggregated from a set of traces.

Current tracing systems are primarily designed to present detailed information about a single trace like Figure 1. Engineers need to manually

look through a large number of traces to localize the root causes. To accelerate the process of root cause localization in microservice systems,

MicroRCA,7 Automap,17 MS-rank,18 MEPFL,19 and Microscope20 have proposed interesting graph, statistic, or deep learning based approaches.

However, most of the above approaches conduct RCA with the aggregated end-to-end tracing data. They usually extract service dependency

graph from traces and then localize the root causes of microservice systems based on the overall change of some metrics, which extracted from

the traces (e.g., average latency per minute). The above methods are efficient and scalable because they only use coarse-grained telemetric

information from the aggregated tracing data. But they are ineffective in localizing partial and intermittent faults. In such scenarios, only part of

the traffic is affected,21 and the anomalies are concealed in the aggregated data. For example, the average latency of a service may be normal

even when some error requests have covered it.

If we mine the fine-grained information from each trace in a dis-aggregated manner, we can discover the anomalous behavior of the partial

affected requests distinctly. The challenges on leveraging traces in a dis-aggregated manner to conduct RCA include the following: (i) the complex

service topology makes the process of fault propagation unpredictable, (ii) the root cause is difficult to localize due to fault propagation, and

(iii) the traces are generated in large volumes. Moreover, analyzing traces manually is of low efficiency and depends heavily on domain

knowledge.

The most relevant work to ours is TraceAnomaly.22 TraceAnomaly proposed an unsupervised deep learning algorithm which can learn the

complex trace patterns in a service and accurately detect trace anomalies. However, TraceAnomaly is not scalable in the large complex

microservice systems composed of tens of thousands of services with several terabytes of tracing data generated per day.4 The high-volume and

high-dimensional input data make the deep learning approach extremely time-consuming. Moreover, the rapid updates of microservice systems

incur more retraining cost and weaken the applicability of TraceAnomaly. To overcome the aforementioned challenges and drawbacks of existing

work, this paper introduces TraceRank, a novel approach that localizes root causes with dis-aggregated traces. TraceRank combines a random walk

algorithm with a spectrum-based method to analyze traces. The main idea of TraceRank is to leverage the clues provided by a collection of normal

and anomalous traces and the service call graph to locate the root causes. To achieve that, TraceRank queries traces from the trace database

(e.g., Elasticsearch§) and detects anomalies by monitoring the latency of services in real time. An analyzer module with a personalized PageRank-

based random walk algorithm23 gives an initial ranked root cause list. Then, a spectrum-based method24 is used to calibrate the initial ranked list

in order to locate root causes precisely. The experiments in TrainTicket and Bookinfo microservice benchmarks and a real-world application show

that TraceRank can locate root causes with 90% in Precision and 86% in Recall. TraceRank has up to 10% improvement compared with several

state-of-the-art approaches in both Precision and Recall. Finally, TraceRank has good scalability and a low overhead to adapt to large-scale

microservice systems.

The contributions of this paper are threefold:

• We mine the abundant insightful information that is buried in the dis-aggregated tracing data and leverage the clues provided by normal and

abnormal traces to conduct RCA.

• We propose a novel RCA approach in microservice environments by combining the PageRank-based random walk and spectrum analysis. This

approach can always locate the root cause service at the first rank.

F IGURE 1 A trace of Bookinfo from Jaeger. Each of the time range is known as a span, which represent the starting/ending time of services
being performed. The latency of each service can be obtained by ending time � staring time. The process time represents the amount of time
where a span is definitely not waiting on a child span to finish
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• We design and implement a prototype, namely, TraceRank, to infer the root causes in microservice systems with high precision and recall as

well as good scalability and low overhead.

The rest of this paper is organized as follows. In Section 2, we present the background on related techniques. Section 3 elaborates the details

of TraceRank. In Section 4, we evaluate TraceRank with two widely used microservice benchmarks and a real-world application. We discuss the

threats to validity of TraceRank facing more complicated workloads in Section 5. Section 6 presents the related work, and Section 7 concludes

this paper.

2 | BACKGROUND

In this section, we discuss the relevant technologies ranging from end-to-end tracing, spectrum-based fault localization (SBFL), and PageRank

algorithm, which comprise our core algorithm of RCA in microservice environments.

2.1 | End-to-end tracing

Due to the complex dependencies of microservice systems, end-to-end tracing is always enabled to help people understand and diagnose prob-

lems. Dapper25 proposed by Google is a seminal work on end-to-end tracing. It defines a tracepoint as a span and tag timestamps for four crucial

activities on each span, namely, server send, client receive, client send, and server receive (SS,CR,CS,andSR), which is shown in Figure 2. A unique ID

is assigned to each request and span, respectively. Moreover, the newly spawned span has a parent span assigned a parent ID. With these IDs,

we can correlate the spans into an end-to-end tracing path. An end-to-end tracing system comprises an instrumented client that collects and

sends spans, a span collector gathering span data, a back-end storage as the persistent data storage, and APIs and UI dashboard for users to query

traces. Moreover, a number of implementations of end-to-end tracing including X-Trace,26 Dapper,25 and Stardust27 have been proved that they

are low overhead and can be used continuously in production systems.

Figure 2 shows the tracing process of a request from a client to a server. In this figure, when a client service instance sends a request to the

server service instance (i.e., cs), we will get a new record in the trace with a new endpoint whose value is “cs” and the timestamp is Tcs. When the

server service instance receives this request (i.e., sr), the request is processed at the server end. After that, the server service instance will send

the response back to the client service instance (i.e., ss), then the span will get two new endpoints whose value are “sr” and “ss” with timestamps

Tsr and Tss, respectively. When the client service instance receives the response from the server service instance (i.e., cr), the span will get another

endpoint whose value is “cr” with a timestamp Tcr. Therefore, we can get the latency of each service by calculating Tcs � Tcr. Besides, the

processing time of a service can be measured by subtracting the latency of its direct callee from its latency.

Although end-to-end tracing can provide essential information to find anomalies in microservice systems, it is still extraordinarily difficult to

precisely locate root cause services. The primary reason is that the complex-dependent relationships among microservice systems all bury the real

F IGURE 2 An example of end-to-end tracing between services
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root causes. Figure 3 shows the complex service dependencies of Amazon and Netflix, respectively. There is no doubt that it is difficult to find

the root causes of performance problems in such dependencies.

2.2 | Spectrum-based fault localization

SBFL is a widely used technique in the software testing domain.24,29–32 When given a program and some failing and passing test cases,

SBFL collects test coverage information for each program element e first. The SBFL technique mainly takes four critical statistics: ef, ep, nf,

np, where ef and ep are the total numbers of failing and passing tests covering the program entity e, while nf and np are the numbers of

failing and passing tests that do not cover the program entity e, respectively. Then, it calculates a list of suspicious scores for all program

entity based on the coverage information using various SBFL formulae (e.g., Ochiai).29 The suspicious score indicates how likely a program

entity is to be faulty.

2.3 | PageRank algorithm

PageRank23 is a famous algorithm to analyze web links, which originally targets improving the quality and speed of web search. The intuition

behind PageRank is to rank the importance of each website based on its internal links. The transition matrix describes the links among websites,

and the additional teleportation vector is designed in case that some websites have no outbound links. The PageRank algorithm can be described

as follows:

x
!¼ d �Px!þð1�dÞ � v! ð1Þ

where x
!

presents the ranking score, P is the transition matrix weighted by the damping parameter d, and v
!

denotes the additional

teleportation vector. Beyond ranking websites, PageRank is adopted in RCA of IT systems. For example, Kim et al33 proposed a PageRank-based

approach to find root causes of anomalies in service-oriented architectures due to the similarity between the service dependencies and

website links.

2.4 | Motivation

In this section, we present a motivating example. Assume there is a simple microservice system whose service dependency graph is shown in

Figure 4, with the average request latency of each service. The latency of each service visited by different requests is also presented in Table 1.

F IGURE 3 Service dependencies of Amazon and Netflix28

4 of 21 YU ET AL.



Service D is the root cause in this example. A bug in service D caused delays to increase by 90 ms. In this example, due to the fault propagation,

the anomaly of service D propagates to service C and service A. Considering the interference due to co-location, service E is also influenced with

a probability, whereas service B is normal.

According to the aggregated end-to-end tracing data, the average latency of services A, C, D, and E all increased. The current RCA approaches

based on aggregated data may be misled by these spikes. They draw a wrong conclusion that service E is the culprit. However, from the

perspective of dis-aggregated traces, we can find that the latency of services A, C, and E increase only when the requests pass through service D,

but not otherwise. Therefore, we propose to use dis-aggregated traces to localize root causes in microservice systems.

The spectrum-based approach uses test coverage as input to localize program faults. The idea of the spectrum-based approach can be

transformed and applied in microservice systems with a concept mapping. The concept of “program entity” in the software testing domain could

be replaced by “service,” and the concept of “test case” could be replaced by “trace”. Thus, we can conclude some inferences based on the trace

coverage as follows:

1. {trace 1} ! {services A and B are normal}

2. {trace 2} Δ {services A, C, and E are normal}

3. {trace 1, trace 2, trace 4} Δ {service D is abnormal}

4. {trace 1, trace 3, trace 4} Δ {services C and D may be abnormal}

where “Δ” means “infer”. The services involved in the anomalous traces are the candidates of root causes. With the normal traces, we filter

out candidates involved and narrow down the scope of investigation. As shown in inference 3, by analyzing the coverage of traces 1, 2, and 4, the

spectrum-based approach can easily find the root cause service D. This inference procedure benefits from the clues provided by the normal and

abnormal traces.

However, if we replace trace 2 with trace 3 like inference 4, we find that services C and D get the same suspicious score in the spectrum-

based approach. This is because services C and D have the same coverage information in inference 4. In such a situation, we need other

approaches like PageRank to calibrate the results obtained by the spectrum-based approaches. If a suspicious service is confirmed by these two

methods, we regard it as the root cause. Therefore, we propose a novel approach by combining the SBFL and randown walk algorithm, which will

be stated in detail in the following sections.

F IGURE 4 Service dependency graph of microservice system in the example of motivation

TABLE 1 Visited services and latency of each trace

Service Latency

Trace Anomaly A (ms) B (ms) C (ms) D (ms) E (ms)

1 False 114 38 — — —

2 False 121 — 55 — 23

3 True 240 50 150 100 —

4 True 270 45 170 90 40

5 True 230 — 200 120 50

YU ET AL. 5 of 21



3 | SYSTEM DESIGN

3.1 | System overview

In this section, we show an overview of TraceRank. As demonstrated in Figure 5, TraceRank requires end-to-end tracing data as input. TraceRank

continuously queries traces within a sliding time window (set by anomaly detection module) from the trace database (e.g., Elasticsearch) and feeds

them to the anomaly detection module. The anomaly detection module triggers the root cause localization module as soon as it detects an

anomaly. TraceRank extracts the dependency graph, latency, and process time of each service from the traces. The root cause localization module

first calculates a suspicious score of spectrum analysis for each service instance. Then, another suspicious score is obtained for each service

instance using the personalized PageRank based on the dependency graph and correlation scores. Finally, TraceRank combines these two scores

to generate a ranked list as the result. Please note that the granularity of TraceRank in locating root causes is service instance.

3.2 | Anomaly detection and data preparation

To detect system anomalies, TraceRank continuously monitors the latency of each trace within a sliding time window. The time window is β ∗ Δt

(β¼3 in this paper) in length and moves Δt forward each time, where Δt denotes the time unit (Δt¼1min in this paper). Some requests may not

be completed within a time window, resulting in incomplete traces. Therefore, we set β¼3 to ensure that requests that were not completed in

the previous window can continue to be analyzed in the next window. We use Δt to control the volume of traces to be analyzed at one time. The

Δt can be adjusted according to the workload of microservice systems.

SLOs provide a quantitative approach to define the level of service that customers expect. The SLO may be composed of one or more

service-level indicators (SLI) to produce the SLO achievement value. Engineers need to try their best to keep the SLIs under the SLOs to provide

an acceptable quality of service. Thus, once a SLO violation is detected, the root cause inference should be triggered. Because most microservice

faults manifest themselves in terms of latency increase or request time-out, latency is the most widely used SLI to profile the running

applications.34–36 Hence, we use the request latency as an indication of anomaly. As shown in Figure 1, we can extract the latency of each service

from traces.

Figure 6 shows that different types of traces have different execution paths and their latency varies significantly. The latency variation of the

same kind of traces is a potential indicator of the anomaly. The traces that belong to the same type of trace are similar in structure. It is intuitive

to think of dividing traces with the same structure into a group, and then doing anomaly detection with K-means within the group. However, a

large-scale microservice system may have thousands of types of traces due to the explosion of services. It is ineffective and expensive to maintain

a K-means model for each type of trace.

Fortunately, we found that the different types of traces that have similar structure may have a similar normal latency. For example, types

15 and 16 in Figure 6 have similar latency. This is because most services covered by them are similar. Therefore, it is possible to divide the traces

with structural similarity into the same groups to reduce the number of K-means models. We use the hierarchical clustering method37 to get

F IGURE 5 The workflow and main modules of TraceRank
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different groups of traces. To measure the structural similarity between traces, each trace is encoded into a vector v that embedding its structural

information. The value vi in index i is the number of times that service i is accessed in the trace. For example, the trace 1 in Table 1 can be

encoded as [1, 1, 0, 0, 0]. A clustering tree is built by inserting each vector next to its nearest neighbor in the tree. The distance between two vec-

tors is measured by the Euclidean distance. The number of groups mostly depends on a distance threshold t, which is the maximum intercluster

distance allowed. The value of t (t¼2 is this paper) is a trade-off between the efficiency and accuracy of the anomaly detection module. If the

threshold t is set less than 1, the anomaly detection module needs to maintain a K-means model for each type of trace. If the threshold t is set too

large, it will allow for all traces to be merged together.

We apply the K-means based anomaly detection method to each group. In TraceRank, we adopt an unsupervised K-means clustering method

to conduct anomaly detection. We set k as 2 and determine the distance between two centroids of corresponding clusters to detect anomalies.

The idea behind our approach is that, when an anomaly happens in the time window, the pattern of abnormal latency is supposed to be different

from normal latency. Once the distance between two centroids of these two clusters exceeds a certain level, an anomaly likely occurs. A parame-

ter σ that usually ranges from 2 to 3 is adopted as the threshold. The pseudocode of anomaly detection module is shown in Algorithm 1. To avoid

the influence of the outliers which are not caused by anomalies but by random fluctuation, we drop the smaller cluster and perform K-means clus-

tering again if the number of elements in the smaller cluster is less than 1% of the number of elements in the group.

As for data preparation, the overall service dependency graph G, which is generated based on the invocation relationships recorded in traces,

is prepared for the random walk algorithm. Table 2 shows the definition of the spectrum statistics. The statistics ef, ep, nf, and np of each service

can be extracted based on the coverage of normal and anomalous traces. Moreover, the mean and standard deviation of latency of each service

extracted from the normal traces and mean latency of each service in anomalous traces are provided for Algorithm 2.

F IGURE 6 The number of visited services and the latency of different kind of traces
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3.3 | Ranking with spectrum

We leverage the spectrum analysis to calculate the score of each service based on normal and anomalous traces. Intuitively, all the services in the

normal traces are normal. But there is at least one anomalous service in anomalous traces. The four spectrum statistics ef, ep, nf, and np have been

prepared in the previous step. Our algorithm chooses Ochiai38 SBFL technique because prior work have proved its effectiveness,38 which is

defined as:

efffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðef þepÞ∗ ðef þnfÞÞ
p ð2Þ

The spectrum analysis will provide a suspicious value for each service based on trace coverage. The service with the largest suspicious value will

be identified as root cause. We use the example in Section 2.4 to show how spectrum analysis calculates suspicious scores. In the reference 3 in

Section 2.4, as shown in Table 3, the spectrum analysis delivers the largest suspicious value for the service D. This example shows the effectiveness

of spectrum analysis. However, when some services have the same coverage information like the reference 4 in Section 2.4, the spectrum

analysis delivers the same suspicious score for them. As shown in Table 4, services C and D have the same suspicious score. The spectrum analysis

cannot distinguish which service is the real root cause. Therefore, we introduce the PageRank algorithm to enhance spectrum analysis in the

next section.

3.4 | Ranking with random walk

As shown in Section 3.3 the spectrum analysis cannot pinpoint the real culprits when multiple services with closely dependent relationships

co-occur in anomalous requests because it does not consider the service dependency relationships. The spectrum analysis only considers

successful and failed requests, whereas the latency of services is ignored. Therefore, we introduce the PageRank-based random walk algorithm to

leverage service dependency topology and latency of services to further refine RCA.

TABLE 2 Definition of statistics for a specific service svc

Statistic Definition

ef Number of anomalous traces that visit svc

ep Number of normal traces that visit svc

nf Number of anomalous traces that do not visit svc

np Number of normal traces that do not visit svc

TABLE 3 Suspicious scores of reference 3 in Section 2.4

Container ef ep nf np Suspicious score

A 1 2 0 0 0.58

B 1 1 0 1 0.71

C 1 1 0 1 0.71

D 1 0 0 2 1

E 1 1 0 1 0.71

TABLE 4 Suspicious scores of reference 4 in Section 2.4

Container ef ep nf np Suspicious score

A 2 1 0 0 0.82

B 1 2 0 0 0.58

C 2 0 0 1 1

D 2 0 0 1 1

E 1 0 1 1 0.71
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Microservice systems typically have one or more front-end services that interact with users. The front-end services are the entrance to the user

traffic and the beginning of the traces. Inspired by the Microscaler,2 the latency of front-end services and abnormal services observe similar patterns

in latency when an anomaly is. In TraceRank, we adopt the processing time rather than latency of each service to calculate the correlation score

between each service and the front-end service. Compared with the access latency, the processing time can eliminate the propagated anomalies

from dependent services, which can show the health status of service more precisely. To address the issue of multiple front-end services, TraceRank

records all anomalous traces through them. Then, we construct service call graphs for these front-end services. TraceRank conducts random walk on

these service call graphs. For each service si, the correlation score Ci, with respect to its front-end services sf, is described as follows:

Ci ¼ Simðsi ,sfÞ ð3Þ

Sim(� , �) is the Pearson correlation coefficient (PCC)39 between the processing time of si and sf. This correlation score Ci signifies the relevance

of the service si to the given sf. PCC compares the trend of the processing time of si and sf without considering their absolute values. TraceRank

does not use the absolute values because the values of different services are various. For example, the processing time of one service is 100 ms,

whereas another service may be 10 ms. It is not fair to consider the increment of the absolute value of the above two services. Moreover, we find

that considering the trend of the processing time is enough to root cause localization.

Inspired by MonitorRank,33 we adopt a random walk algorithm to find root causes. The basic idea of our approach is to do a random walk over

the service call graph weighted by the correlation score. Intuitively, the longer staying on a certain service during the random walk, the more

suspicious this service is. TraceRank adopts the personalized PageRank algorithm40 with an additional teleportation probability (i.e., preference

vector) to rank each service. If there are multiple front-end services, all of them will be analyzed simultaneously by our algorithm.

3.4.1 | Forward transition

The random walk algorithm starts from the front-end services and walks along the service call graph. Let the whole service call graph be

G¼ <V,E > , where each node in V indicates a service instance and each edge eij is set to 1 when node ni calls node nj, excluding any self edge

(e.g., eii =2 E).

The correlation score of each node Ci in the service call graph is another input to the algorithm. Let n1 be the front-end, {n2, … , nk} are the

nodes visited by n1. The correlation scores of all nodes in the trace of n1 are denoted by C¼ C1,…,Ck½ �� ð0,1�k . For the random walk, each node ni

is accessed according to its correlation score Ci, and the strength of each edge eij indicating node ni calls node nj is assigned to Cj. The transition

probability matrix P of this part is defined as follows:

Pij ¼ AijCjP
jAijCj

ð4Þ

while i, j¼1,2,…, Vj j and A is the adjacency matrix of the service call graph G.

3.4.2 | Backward transition

If there are only forward transitions along the service call graph, the random walker can not take other actions when the current service or its

parent service shows a high correlation with the front-end while all other neighboring nodes do not. In other words, when the random walker falls

into services that look less relevant to the given abnormal service, there is no way to escape until the next teleportation. Accordingly, we set up

the backward transition to help the walker find more routes and make its random walk more heuristic. For each pair of nodes ni and nj, eij indicates

that node ni calls nj, whereas the strength of eij is equal to Cj, the strength of eji is set as ρCi to transit backward, where ρ � [0, 1). A higher value of

ρ allows more flexibility to search some new paths.

3.4.3 | Selfward transition

In this section, we add a self edge to every service to avoid forcibly moving to another service. The random walker is encouraged to stay longer

on the service if none of its in and out-neighbor services are of high correlation score. Specifically, for each node ni, the strength of the

corresponding self edge eii is equal to the correlation score Ci subtracted by the maximum correlation score of child nodes, namely, maxj:eij � ECj.

The entry-point node is an exception as we do not add a selfward transition on it, namely, e11 ¼0.
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To combine both backward and selfward transitions, we define a new adjacency matrix A0 with the service call graph G and the correlation

score C as follows:

A0
ij ¼

maxðCjÞ if eij � E

maxðρCiÞ if eji � E,eij =2 E

maxðmaxð0,Ci�maxk:eik � ECkÞÞ if i¼ j, i>1

8><
>:

ð5Þ

Notice that a node may be visited by different entry points, we take the max value in each execution path. With A0 , the new transition

probability matrix P is defined as follows:

Pij ¼
A0
ijP
jA

0
ij

i, j¼1,2,…, Vj j ð6Þ

As for the teleportation vector v
!

of the random walk algorithm, the personalized teleportation probability for node ni is set as Ci except for

the entry-point node. That is, vi ¼Ci for i¼2,3,…, Vj j. Hence, the random walker is more likely to jump to anomaly related nodes when random

teleportation occurs. Staying in the entry-point node is meaningless for the random walker. Therefore, the value in the preference vector

corresponding to the entry-point node n1 is assigned 0. Above all, the personalized PageRank vector x
!
can be computed as follows:

x
!¼ d �Px!þð1�dÞ � v! ð7Þ

where d is the damping parameter in [0, 1], indicating the probability to move in the transition matrix P. Consider an extreme case when d¼0, the

random walker is equivalent to using only the correlation score.

3.5 | Result calibration

TraceRank uses the scores obtained from the spectrum analysis to calibrate the ranked list of the random walk algorithm. Although the random

walk algorithm gives a relatively accurate ranked list, it does not consider any information of a single trace and the latency of each node. As for

the spectrum method, it may rank some services with the same rank scores, because those tightly coupled services may share the same spectrum

score. Thus, inspecting the latency of one node to check whether it deviates from the normal state is necessary. Considering the relatively

accurate ranked list that the random walk algorithm provides, we use the spectrum score and the anomaly degree to correct the ranked list. The

algorithm is summarized in Algorithm 2, and the parameter γ usually ranges from 2 to 3. For example, let Sa, Sb, and Sc be the Top@3 services in

the ranked list obtained by the random walk algorithm. Although Sa is not in the Top@3 obtained by the spectrum method, it is put behind. We

assume that the latency of anomalous traces on node Sc does not exceed the range given by the latency of normal traces and parameter γ.

Therefore, the final ranked list is Sb, Sa.
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4 | EXPERIMENTAL EVALUATION

Platform setting. TraceRank is evaluated in two microservice benchmarks and an open-source trace dataset. The platform is deployed on a cluster

with 10 virtual machines on 5 physical nodes. Each virtual machine has a 2-core 1.7 GHz CPU, 8 GB of RAM, and the operating system is Ubuntu

16.04. The network between the physical nodes is a Gigabit network through the switch. We evaluate TraceRank on the Kubernetes platform,¶ an

open-source system for automating deployment, scaling, and management of containerized applications. The parameter σ in Section 3.5 is set as

3 in all experiments. All experimental codes are written in Python 3.6.

Benchmark. (I) TrainTicket# is a train ticket seller application implemented by a microservice architecture, including more than 40 kinds of

microservices. Due to the limitation of resource, we set one instance for each service. The function of tracing has been enabled in TrainTicket by

default. (II) BookInfo is a sample microservice application that displays information about a book, similar to a single catalog entry of an online book

store, containing six kinds of microservices. To get the tracing data, we enable tracing by Istio.k (III) To mimic actual requests to the application, a

load generator is built to simulate a number of clients keeping the query per second (QPS) about 20 for both benchmarks. The experimental time

window is set to 3 min and the time window slides forward per minute. The faults are injected at the last minute. TrainTicket contains more

services than other microservice benchmarks, for example, Sock-shop** and Hipster Shop.†† BookInfo is simple and stable, which enables us to

test the scalability of TraceRank.

Fault injection. According to Occam's razor theory, a complex situation is of low probability. Thus, we inject our system with two simulta-

neous root causes at most. Figure 7 illustrates the effect of fault injection. Our work focuses on locating the root cause service instances, which

are pods in Kubernetes. To mimic real performance problems, we inject faults into containers belonging to specific pods randomly. In microservice

environments, the service-level agreement (SLA) has the highest priority. To mimic SLA violations, we inject three kinds of faults such as CPU

exhausting, network delay, and I/O burn with ChaosBlade,‡‡ which is a chaos testing tool for dockers. We inject each kind of fault 20 times in

one root cause scenario. We random select two of three kinds of fault 20 times in two root causes scenarios. In order to reduce randomness, we

repeat each injection 20 times and calculate the average result as the final result. Each injection would cause the latency of benchmark to violate

the corresponding SLO for 5 min.

Real-world microservice system. We also use a trace dataset released by the 2020 AIOps Challenge Event§§ to evaluate TraceRank. This

dataset is generated by a real-world production microservice system in China Mobile Zhejiang, which is the biggest communications provider in

China. In particular, the workload of the microservice system is a replica of the real-world workload. Note that because this event does not only

focus on microservice applications, in this paper, we only selected those faults related to microservices. Only one fault is injected one time and

every fault lasts for 5 min in this dataset.

4.1 | Evaluation metric

We use the Top@K score to evaluate TraceRank. If all the root causes are included by the Top@K ranking list, we say the inference result is correct.

In other words, even only one root cause is not included in the Top@K list, the result is considered to be wrong. To quantify overall performance,

we use the standard Precision and Recall metrics. Let Ntp, Nfn, and Nfp denote the number of true positives, false negatives, and false positives,

respectively. We calculate the Precision and Recall metrics in the standard way as follows:

Precision¼ Ntp

NtpþNfp
,Recall¼ Ntp

NtpþNfn
: ð8Þ

4.2 | Effectiveness evaluation

To verify the effectiveness of TraceRank, we leverage TraceRank to detect and localize the injected faults.

F IGURE 7 The effect of fault injection on different services

YU ET AL. 11 of 21



4.2.1 | Effectiveness of anomaly detection module

Table 5 shows the results of the hierarchical clustering with different thresholds in the TrainTicket benchmark. We find that there are 21 kinds of

requests in TrainTicket after analyzing the traces of TrainTicket. From Table 5, we can find that when t is less than 1, the same kind of requests

are clustered into multiple groups. This is because some kinds of requests may have multiple structures. For example, one kind of request in

TrainTicket may have 144 or 145 or 146 spans. In addition, the number of groups in the hierarchical clustering decreases with increasing t, and

the accuracy of anomaly detection decreases as well. In this paper, we select t¼2 because compared with t¼0, t¼2 reduces the number of

K-means models by 32% at a cost of only 3% decrease in accuracy of anomaly detection.

Figure 8 presents the results of the anomaly detection module in TrainTicket, BookInfo benchmark, and a real-world system. We find that

TraceRank has high Precision and Recall in all five scenarios. TraceRank has a higher Recall when we inject two faults at one time. This is because

injecting two faults at one time makes the system's anomalous behavior more severe. The Recall in real-world system is higher than TrainTicket

and BookInfo because the anomalies in the real-world system are more severe than our injected faults.

4.2.2 | Effectiveness of root cause localization module

Table 6 shows the fault localization results of specific services in TrainTicket and BookInfo when one fault is injected at a time. From this table,

we first observe that TraceRank can find the root cause services with high Precision and Recall no matter whether in TrainTicket or BookInfo. We

can also observe that the localization results are quite different from service to service. For example, TraceRank can achieve 100% in Precision

and Recall in order service when a CPU fault is injected, but get a low Precision and Recall in notify service. The result is relevant to the service

dependency and the anomaly degree when a fault occurs. Another observation is that the localization result is better on BookInfo than on

TrainTicket. The possible reason is that the topology of BookInfo is much simpler than TrainTicket. It is easier to localize root causes in BookInfo.

We do not show the result of the real-world system because the its faults are rare and widely distributed. We cannot achieve the same statistics

in this system just as the other two systems. Therefore, we show the overall results of real-world system in Figure 9 separately.

TraceRank relies on the service call graph to conduct a random walk algorithm, which can be acquired from traces. For the TrainTicket applica-

tion, TraceRank achieves a high recall in Top@{1,2,3} score with one root cause as presented in Figure 9 due to the relatively simple impact caused

by a single root cause. In the two root causes case, the result decreases. However, TraceRank gives a relatively good result when tolerating one or

TABLE 5 The results of hierarchical clustering with different thresholds in the TrainTicket benchmark

Threshold t Kind of requests Groups Precision of detection (%)

0 21 25 99

1 21 25 99

2 21 17 96

3 21 15 90

4 21 15 90

5 21 14 86

F IGURE 8 The Precision and Recall of anomaly detection module in TraceRank
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two mistakes in Top@3 and Top@4. The reason for the decrease in Top@2 is that two different services are abnormal simultaneously affecting a

number of other services and adding complexity to the fault propagation. Moreover, we also observe some cases where the anomaly detection

module is mis-triggered. These cases result in a decrease in Precision.

TABLE 6 The fault localization results of specific services in TrainTicket and BookInfo when only one fault is injected at each time

TrainTicket BookInfo

Travel Order Route Station Train Pay Notify User Seat Basic Product Details Ratings

CPU exhausting

PR@1 86 100 78 92 88 76 64 80 96 86 90 90 92

PR@2 94 100 80 92 90 80 68 80 100 88 90 94 94

Recall@1 85 100 75 90 90 65 65 75 80 85 85 85 90

Recall@2 95 100 75 90 100 70 75 85 85 90 90 85 90

Network delay

PR@1 100 100 88 60 100 80 75 84 90 92 88 92 86

PR@2 100 100 88 60 100 86 80 88 90 92 92 96 90

Recall@1 100 100 90 50 100 90 80 85 85 90 90 85 85

Recall@2 100 100 90 55 100 95 90 85 90 95 95 85 85

IO burn

PR@1 90 95 86 74 90 82 78 86 90 96 88 90 90

PR@2 100 100 90 77 96 90 82 90 90 100 92 92 93

Recall@1 85 100 90 65 75 90 75 80 90 90 85 80 90

Recall@2 95 100 90 65 90 100 85 85 100 90 85 90 95

F IGURE 9 The Precision and Recall of RCA in TrainTicket, BookInfo benchmark, and real-world application

F IGURE 10 Impact of parameter d and ρ on Precision and Recall of Top@1 score in the Trainticket benchmark when one root cause is
injected
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As for the BookInfo benchmark, we set five replicas for each service. However, the simple service dependencies in the BookInfo do not lead

to significant growth of Recall and Precision. That is because the services in BookInfo application simply return plain values without conducting

any business logic, which results in a high correlation score between each service and the front-end service. Nevertheless, the anomaly detection

module works better in BookInfo than in TrainTicket due to the simplicity of the BookInfo application.

Figure 10 demonstrates the impact of parameters d and ρ on Precision and Recall in Top@1 score when a single root cause is injected in the

TrainTicket application. Intuitively, TraceRank achieves the best Precision and Recall when the damping parameter d is low, indicating the random

walker takes teleportation frequently. It shows that the correlation score that comprises the teleportation vector is of high precision. However, it

does not mean that the random walk method is useless. To our observation, the random walk method provides crucial information when multiple

root causes co-occur or the root causes appear in intermediate services along the execution path. Figure 10 also presents that TraceRank achieves

the highest when ρ equals 4 and 5 on high d, showing that the balanced flexibility and restriction on the service call graph improves the random

walk algorithm.

4.3 | Comparisons

To validate the effectiveness of TraceRank thoroughly, we compare it with several state-of-the-art methods including MicroRCA,7 Automap,17

MS-rank,18 MicroHECL,41 GMTA,42 TraceLingo,43 TraceAnomaly,22 Roots,44 CauseInfer,9 MonitorRank,33 Microscope,20 and T-Rank.45

• To compare with MicroRCA, we first construct the attributed graph (i.e., system dependencies) with CPU and memory utilization metrics by

the method provided by MicroRCA.7 Then, we use a personalized PageRank approach to help locate the root causes.

• To compare with Automap17 and MS-rank,18 we leverage PC-algorithm9 to construct the dependencies of service instances with the service

latency and throughput metrics. Then, a second-order random walk approach is applied to pinpoint root cause service instances.

• To compare with MicroHECL,41 we use the end-to-end tracing data to construct the dependency graph of service instances. Then, we localize

the root cause by calculating the correlation between the target abnormal services and the downstream service instances in the dependency

graph.

• To compare with GMTA,42 the end-to-end tracing data are adopted to construct the execution paths of requests. The root causes are identi-

fied by comparing the execution paths under normal and abnormal situations, which is also used in GMTA.42

• To compare with TraceLingo,43 we directly leverage the provided source code to localize root causes.¶¶

• To compare with TraceAnomaly,22 we directly leverage the provided source code to localize root causes.##

• To compare with Roots,44 we implement the four root cause identification approaches mentioned in Roots.

• To compare with Microscope,20 we leverage the method presented in Microscope to locate root cause services.

• To compare with CauseInfer,9 we capture the network packets and leverage lag correlation to find service dependencies. Then, we leverage a

depth-first search (DFS) based traversal approach to infer root causes.

• To compare with MonitorRank,33 we use a random walk approach to find the root cause services, which has been implemented in our previous

work.46

• To compare T-Rank,45 we use the Ochiai spectrum-based approach to localize root cause services.

Figures 11 and 12 show the comparisons between different systems in one root cause situation and two root causes situation in the

TrainTicket, respectively. From these two figures, we observe that TraceRank achieves a consistent better result in Precision and Recall no matter

when one fault is injected or two faults are injected simultaneously. TraceRank outperforms Microscope by 6% higher in Precision and 7% in

Recall in one root cause situation and by 5% higher in Precision in the situation of two root causes. Compared with Roots, we have over 20%

F IGURE 11 The comparison results of different systems with Top@1 when one root cause is injected at a time in the Trainticket benchmark
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higher in Precision. Roots identifies the service which contributes to the most variance of the abnormal service as the root cause. However, in our

experiments, we observe that Roots always finds the first upstream service as the culprit rather than the real root causes. That is why its result is

not so promising. Similarly, MonitorRank also puts the first upstream service in the first rank. Compared with MicroRCA, MS-Rank, AutoMap,

MicroHECL, and GMTA, TraceRank not only leverages the service call graph but also the dis-aggregated end-to-end request tracing data. The

fine-grained tracing data can provide more direct hints to locate root causes. That is a key point to help TraceRank outperform other approaches.

Compared with our work, T-Rank45 only uses the spectrum analysis to find root causes. It cannot distinguish the suspiciousness of the services

with the same coverage information. Figure 11 shows that TraceRank outperforms T-Rank by more than 10% in Precision when injecting one

fault. These results prove that the random walk algorithm can enhance the spectrum analysis. It is necessary to combine the spectrum analysis

and the PageRank-based random walk methods.

Figures 13 and 14 show the comparisons between different systems in one root cause situation and two root causes situation in the Book-

Info, respectively. TraceRank achieves a better result because the BookInfo is simpler than TrainTicket. Overall, TraceRank achieves a consistent

better result in Precision and Recall than other approaches. Figure 15 demonstrates that comparison results of different systems with Top@1 in

F IGURE 12 The comparison results of different systems with Top@2 when two root causes are injected at a time in the Trainticket
benchmark

F IGURE 13 The comparison results of different systems with Top@1 when one root cause is injected at a time in the BookInfo benchmark

F IGURE 14 The comparison results of different systems with Top@2 when two root causes are injected at a time in the BookInfo benchmark
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the real-world system. We do not compare TraceRank with the approaches (e.g., CauseInfer and Microscope) that require other information that

the dataset do not have. From Figure 15, we find that most approaches have better performance in the real-world system than in benchmarks.

This is because the faults in the real-world system are simpler and more obvious than in benchmarks. Moreover, TraceRank achieves a consistent

better result in Precision and Recall than other approaches in the real-world system.

4.4 | Scalability

TraceRank is easy to scale when new services are added in large microservice systems. We have discussed the scalability of TraceRank when the

system scales out with higher complexity in Section 4.2. In this experiment, we use the BookInfo benchmark and scale all the services replicas to

15 due to limited resources in our platform. The results are presented in Figure 16. We do not find a significant descending trend on both in Recall

and Precision: about 5% decrease when replicas are scaled out from 5 to 15. Scaling out a system does add a burden to our random walk method

due to more connected nodes are added to the service call graph. However, more replicas can improve the spectrum method by adding different

request paths (e.g., some requests visit replica A, whereas other requests visit replica B). It is obvious that scaling out service replicas only adds up

the node complexity of the service call graph. In short, due to the detailed information provided by the end-to-end tracing, increasing the number

of services slightly affects the Precision and Recall of TraceRank.

F IGURE 16 The impact of service replicas on Precision and Recall in two root causes case

TABLE 7 Overhead statistics for different modules in TraceRank

System module Overhead (single node)

Client instrumentation 2% ± 1% CPU utilization

Latency extraction 4% ± 1% CPU utilization

Anomaly detection 2.5% ± 1% CPU utilization

Data preparation 2.8 s

Root cause analysis 500 ms

F IGURE 15 The comparison results of different systems with Top@1 in the real-world application
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4.5 | Overhead

Table 7 shows the overhead of TraceRank. It takes about 4% CPU utilization to extract latency and process time from traces. When the RCA is

triggered, TraceRank computes the spectrum and Personalized PageRank score then combines these scores, which consumes 2.5% CPU utilization.

The process consumes about 3 s to format tracing data and 500 ms to compute the final score. Obviously, the computation process of TraceRank

is relatively simple. The overhead of TraceRank can be controlled when the request volume is large in production systems.

5 | THREATS TO VALIDITY

In this part, we conduct additional discussions with TraceRank from different angles. The threat to validity mainly refers to the generalizability of

our approach.

Mount of traces. In Section 3.2, we use a time window Δt to control the volume of traces to be analyzed at one time. The Δt can be adjusted

according to the workload of microservice systems. The principle of tuning Δt is to allow as many types of traces as possible to be fed into the

model. Moreover, we can also input the trace data that we want to analyze into TraceRank rather than using the traces in a time window.

Type of requests. In Section 3.2, we divide traces with a similar structure into a group and do anomaly detection with K-means within the

group. The core assumption behind this idea is that the traces with a similar structure have similar latency. However, the latency of requests may

depend not only on its path but also on the parameters of the requests. When facing such complicated workloads, we need to add more features

(e.g., parameters of requests) to the hierarchical clustering model to distinguish this problem.

Number of clusters. In Section 3.2, we use a threshold t to control the number of trace clusters. The value of t is a trade-off between the

efficiency and accuracy of the anomaly detection module. If the threshold t is set less than 1, the anomaly detection module needs to maintain a

K-means model for each type of trace. The results of anomaly detection are accurate, but it is expensive to maintain thousands of models. If the

threshold t is set too large, it will allow for all traces to be merged together. This will decrease the accuracy of the anomaly detection module.

6 | RELATED WORK

Anomaly detection and RCA in large distributed systems are vibrant but challenging topics. Extensive methods have been proposed to resolve the

two problems. Here, we present the related work as follows.

6.1 | Anomaly detection

Liu et al47 proposed an approach based on a spatiotemporal feature extraction scheme built on the concept of symbolic dynamics for representing

causal interactions. Then, a restricted Boltzmann machine (RBM) is used to learn system-wide patterns to detect anomalies. Nedelkoski et al48 inte-

grate gated recurrent unit with variational autoencoder to learn a prediction model, which detects anomaly by determining the reconstruction error

of the input response time series exceeds an adaptive threshold. In another literature,49 they propose a method to merge two single-modality LSTM

networks, which make use of different modalities of tracing data (i.e., the event sequence and the response time series) to detect anomalies, into

one multimodal LSTM model. The multimodal architecture enables the detection of structural and temporal anomalies simultaneously.

TraceAnomaly22 utilizes a service trace vector (STV) to unify the invocation pattern and the response time pattern in a trace and designs a deep

Bayesian network with posterior flows to learn the distribution of the normal STV. Anomalous traces are detected if their STVs do not follow the

distribution. Scheinert et al50 present a neural graph method to detect and localize anomalies. It models the components in the distributed cloud

application as nodes and their dependencies as edges. Then, they learn the feature vector of each node by applying the graph convolutional neural

network. The calculated feature vectors are used to train a classification model. The topology of a distributed system is helpful for anomaly detec-

tion. TopoMAD51 uses the topological information and metrics collected from different components of the cloud system to build an unsupervised

multivariate time series anomaly detector. It takes a stochastic seq2seq autoencoder model to evaluate the anomaly score of a component according

to the reconstruction error. These anomaly detection approaches can substitute our clustering based method in different scenarios.

6.2 | Root cause analysis

There are numerous RCA methods in the literature. We introduce two main categories of them: the tracing-based methods and the metric-based

methods.
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6.2.1 | Tracing-based work

Various tools and systems26,52–54 for end-to-end tracing have been proposed. They build tracing systems to instrument the source code and

collect traces. Due to sufficient information tracing data provides, Spectroscope55 and TraceCompare56 pinpoint performance problems by com-

paring requests flows. However, performance problems may be common in a microservice environment due to agile development, auto scaling,

and so forth. That fails these approaches to diagnose root causes in such an environment. Magpie52 constructs causal paths based on OS-level

event tracing and clusters those by a string-edit-distance algorithm to help understand complex system behavior. By annotating applications or

platforms, Pinpoint53 uses a probabilistic, context-free grammar to detect anomalies on a per event basis rather than considering whole paths.

GMTA42 is built for microservice trace analysis, supporting streaming data processing, flexible data access, and efficient data storage in the

industrial-scale microservice system. It can help site reliability engineering (SRE) teams narrow down the root cause scope of a production prob-

lem and retrieve and visualize the error propagation chain. TraceRCA57 performs RCA with tracing data based on the insight that a microservice

with more abnormal and less normal traces passing through it is more likely to be the root cause, which is just like the intuition behind TraceRank.

MicroHECL41 constructs service graph dynamically based on traces. It analyzes possible anomaly propagation chains with a pruning strategy to

get the candidate root causes, which are ranked based on the service graph and correlation analysis. T-Rank45 proposes a lightweight spectrum-

based performance diagnosis tool to find root causes. However, it cannot handle the services with similar coverage information. Compared with

these works, TraceRank automatically monitors the microservice system and pinpoints the root causes timely with a good performance when

more than one root cause emerge simultaneously.

6.2.2 | Metric-based work

Approaches in this category usually build a dependency graph of services in distributed systems with different approaches. Besides, these works

commonly utilize monitoring metrics to detect anomalies, then diagnose problems with the combination of metrics and the dependency graph.

CloudRanger46 takes a heuristic investigation algorithm based on a second-order random walk through the causal relationship of services.

NetMedic58 constructs the component dependencies of programs with predefined templates. Then, it does random walk along with the depen-

dency graph to infers the root causes. Microscope20 intercepts system calls on network sockets and builds the dependency graph with network

information and then finds root cause candidates by comparing the similarity between SLO metrics and the abnormal services. MicroRCA7 con-

structs an attribute graph, which including service dependency and performance metrics, to represent the anomaly propagation. Based on the

detected anomalies, an anomalous subgraph is extracted from the attribute graph. The personalized PageRank40 method is used on the anomalous

subgraph to locate the root causes. Ma et al. propose MS-Rank18 and AutoMap17 to conduct RCA. The main steps of these two methods include

generating a causality graph between services dynamically, selecting the appropriate diagnosis metric automatically and identifying the root cause

by random walking. MicroDiag59 constructs a component dependency graph that describes the relationship between entities at different levels

and derives a metric causality graph. It weighs the metrics causality graph and ranks culprit metrics. This kind of work does not need to instrument

the source code. However, they are not able to provide fine-grained data for analysis compared with end-to-end tracing-based work and that is

part of the reason why TraceRank performs better.

7 | CONCLUSION AND FUTURE WORK

This paper designs and implements TraceRank, a novel system to pinpoint root causes in microservice environments by analyzing end-to-end trac-

ing data. TraceRank extracts the latency and processing time for each service from tracing data to conduct the anomaly detection procedure. By

combining the personalized PageRank-based random walk algorithm and spectrum analysis, the suspicious root cause services are ranked with

higher scores. The experimental evaluation result shows that TraceRank achieves a promising precision and recall for RCA. It also can scale out

readily in large-scale microservice systems. With the help of TraceRank, the operation of microservice systems can be more efficient and effective.

As part of future work, we plan to extend TraceRank to pinpoint different types of faults by combining more types of metrics. Moreover, other

anomaly detection approaches are also planned in future work.
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ENDNOTES

* https://opentracing.io
† https://www.jaegertracing.io/
‡ https://github.com/istio/istio/tree/master/samples/Bookinfo
§ https://www.elastic.co/
¶ https://kubernetes.io/
# https://github.com/FudanSELab/train-ticket
k https://istio.io

** https://github.com/microservices-demo/microservices-demo
†† https://github.com/GoogleCloudPlatform/microservices-demo
‡‡ https://github.com/chaosblade-io/chaosblade
§§ https://iops.ai/competition_detail/?competition_id=15&flag=1
¶¶ https://github.com/serina-hku/TraceLingo
## https://github.com/NetManAIOps/TraceAnomaly
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