
T-Rank:A Lightweight Spectrum based Fault
Localization Approach for Microservice Systems

Zihao Ye
School of Computer Science

and Engineering
Sun Yat-sen University

Email: yezh8@mail2.sysu.edu.cn

Pengfei Chen*
School of Computer Science

and Engineering
Sun Yat-sen University

Email: chenpf7@mail.sysu.edu.cn

Guangba Yu
School of Computer Science

and Engineering
Sun Yat-sen University

Email: yugb5@mail2.sysu.edu.cn

Abstract—The cloud-native system is shifting from traditional
monolithic architecture to microservice architecture because of
loosely coupling, better maintainability and availability, faster
deployment, and richer ecology brought by it. Except for these
advantages, it still has an inevitable weakness–the communication
over RPC (Remote Procedure Call) between services makes the
system performance more unpredictable. Moreover, the complex
interactions amongst services make it hard to reveal the root
cause of performance issues. To address this challenge, we
propose a lightweight spectrum-based performance diagnosis
tool, named T-Rank. T-Rank provides the ranked suspicious score
in a list of microservices to localize root causes with very few
resources. We demonstrate the high accuracy and the low cost
of T-Rank by conducting experiments with the data collected
from a real-world production microservice system. Moreover,
comparison results show that T-Rank outperforms other state-
of-the-art approaches.

Keywords-Tracing; Microservice; Root cause analysis; Spec-
trum Analysis;

I. INTRODUCTION

Nowadays, it is hard for traditional monolithic software
architecture to satisfy the requirement of the IT business
since it is time-consuming and laborious to maintain and
extend. With the popularity of cloud computing, more and
more newborn applications are cloud-native. Driven by these
IT tendencies, the microservice architecture has been widely
chosen. The microservice architecture decomposes an applica-
tion into many services that run individually and communicate
with each other by network [1], and this brings the application
with larger scalability, faster development, and richer language
ecology [2]. For microservice irresistible charm, many com-
panies deploy their production as a large-scale microservice
system, such as Overleaf 1, Netflix 2, and Uber 3 [3].

However, there are still some problems with microservice.
The decomposition of the application makes it easier to extend
but also weakens the reliability of connection because of net-
work fault, meaning its reliability is inferior to the application
using in-memory calls. And the network latency also degrades
the performance of the microservice-based application for the
reason that it takes more time in communication. According to

1Overleaf, https://www.overleaf.com/
2Netflix, https://www.netflix.com/
3Uber, https://www.uber.com/global/zh/sign-in/

the previous study [4], even for a small e-commerce company
with a daily sales of $100, 000, a 1-second page delay could
lead to about 7% loss in sales annually. Besides the network
delay, internal features such as program bugs and source
exhaustion will result in undesirable performance. The costs
of modifying services and fixing errors are much lower in the
microservice-based system because the “you build it, you run
it” principle strengthens its maintainability [1]. But the most
time consuming and laborious problems are anomaly detection
and root cause localization. The loosely coupled structure and
multi-instance services for load balance and tolerance lead
to complex system topology. The challenges it brings are as
following aspects.

• Complex service dependency. In the microservice-based
system, the services are decomposed into fine-grained
components that communicate by the network. For load
balance and availability, most of the services run multiple
instances at the same time. The calls between these
instances construct a complex service dependency graph.

• Dynamic system architecture. The characteristic of
the microservice is that its updates are frequent. And
the logical dependencies between services also change
with updates. New services will be added and outdated
services will be abandoned, resulting in a more dynamic
architecture. How to adapt to the frequent updates and
deployments will be an important breakthrough.

• Various and large-volume monitoring metric. To di-
verse services, there is a diverse set of metric such as
configuration metric (e.g., MemoryLimit and CpuLimit),
resource metric, and so on [5]. But some metric are
helpless when analyzing the root cause. It needs a great
deal of preliminary domain knowledge for operators to
distinguish the relevant metric from so many kinds of
metric, but obviously it is impractical.

Many existing methods try to construct the real-time ser-
vice dependency graph and analyze the root cause based on
it. To build the real-time service dependency graph, many
approaches [6]–[8] have proposed different methods in their
model based on conditional independence. However, they
take plenty of computing resources to construct the service
dependency graph, and a little noise during the construction

may make a great difference in the final result. And the
method, such as TABC [9], relies on the static system topology
can not adapt to the dynamic and complex dependency in
microservice-based system. The neural network method [3]
has low robust facing the frequent iteration.

To address the challenges above, we propose a lightweight
and fast diagnosis system, namely T-Rank, to localize root
causes in microservice systems. T-Rank works based on the
spectrum based fault localization (SBFL) algorithm and only
relies on the most common metric (i.e., the latency in com-
pleting the request), which overcomes the various metric and
dependency graph building challenge. And the core of the
T-Rank, the SBFL algorithm, is a statistical algorithm that
does not need any prior training and the causal graph of the
system. T-Rank is a tool that gives a hint to system operators
by providing a ranked suspicious score list of service instances
helping them to localize the root cause more effectively when
an anomaly happens. It takes a little time for T-Rank to give
the ranked suspicious score list of all service instances in the
systems. T-Rank will update the list constantly along with the
system running. Our contributions are as follow.

• We apply the SBFL algorithm in microservice root cause
localization and build a diagnosis system, T-Rank, which
can analyze the root cause without the service depen-
dency graph in real-time.

• We verify the effectiveness of T-Rank by setting the
experiments with the metric data with injected faults
collected from a production microservice system. T-Rank
can achieve 93% recall when work online at a low cost
and it outperforms other state-of-the-art methods.

The organization of the paper is shown as follows. Section
2 is about the background of tracing and SBFL algorithm,
and the motivation why we select SBFL to diagnose the
performance problems of microservice-based systems. Section
3 is the design of T-Rank. Section 4 is the experiment to verify
the effectiveness of the system. In Section 5, we will introduce
the related work in the microservice root cause localization.
Section 6 concludes the paper.

II. BACKGROUND AND MOTIVATION

A. End-to-end Tracing
Tracing [10] is an excellent method for system operators

to understand how the system running and which component
joins in the program execution, especially when the system
architecture is quite complex. The most common example of
tracing is the Linux command traceroute [11], which shows
the gateways passed between the source host of the packet and
the target host. Tracing in the microservice-based system is
similar. Utilizing the sidecar [12] model of microservice, we
can record some data when a service instance calls another
one or the caller’s request is done. These recorded data are
tracing data and we can know a lot of valuable information
that helps us understand the system behavior, such as the call
relationship between instances. The extremely famous tracing
tools like X-trace [13], Zipkin [14] and Jaeger [15], are well
popular and widely used in many systems.

For utilizing the tracing tool, the system developers need
to add the call of tracing API to the code. However, if the
standards of the tracing API are different in different tracing
tools, it will bring great trouble to the system developer for
the reason that they have to replace the code of calling tracing
API when they try to use another tracing tool. To deal with the
possible problem brought by this logical coupling, the open-
source project OpenTelemetry 4 of the CNCF provides a single
standard and dominates the microservice end-to-end tracing
landscape. There are already a lot of tracing tools supporting
its standard.

B. Spectrum Based Fault Localization

The Spectrum Based Fault Localization(SBFL) [16]–[18]
algorithm is a statistic algorithm utilized in program debug-
ging. Collecting coverage information over different elements
during test execution, SBFL calculates the suspicious score of
each element with a risk evaluation formula. The spectrum is
the coverage of the element in the test case. The basic idea
of SBFL is that the element most frequently executed in the
failed test cases should be responsible to the program fault.
Different test cases have different spectrums. If an element is
always in the different spectrums of the failed test cases, it
is so suspicious that the programmer should inspect whether
there is a bug in it. According to the suspicious score, the
elements are sorted into a list. To fix the bug, the programmer
excludes the suspicious elements according to this list, which
could save them a lot of effort.

C. Motivation

Comparing the architecture of the program and the
microservice-based system, we find that they are quite similar.
Every component in the microservice-based system provides
its special service and call other components when in need,
just like the function in the program. The main difference
between them is that the components of the microservice-
based system communicates by network and the functions by
memory. The management of the microservice-based system is
growing more complex because of functionally decomposing
large systems into a set of independent services [1]. But its
nature is still a software, meaning that the fault localization
approaches for program debugging may work well on its
performance diagnosis. The SBFL algorithm has achieved
great success in software debugging [19], [20]. When looking
for the appropriate fault localization approach based on tracing
data, we notice the SBFL and think it is worth a try. Thus we
select a spectrum-based approach to diagnose the performance
problems of microservice-based systems.

III. SYSTEM DESIGN

A. System Overview

Our main purpose is to make use of tracing data between
different services in the system to build up a lightweight fault
localization tool at the container level. Therefore we propose

4OpenTelemetry, https://opentelemetry.io

T-Rank. T-Rank consists of four parts: tracing data collection
from the microservice-based system, tracing data preprocess,
anomaly tracing data detection and container suspicious score
calculation. Fig. 1 shows the architecture of T-Rank. First,
we collect the tracing data into the tracing database (DB)
when a service instance calls another one. And then, we group
the tracing data by the TraceId. The same TraceId means
those tracing data are generated by the same client’s service
request to the microservice-based system. All the tracing data
from the same client’s service request form a tracing chain.
After tracing data integration, we classify the tracing chain
by the type and quantity of the containers in it. And then,
after calculating its theoretical latency time and comparing
the result with its truth latency, we will label the tracing chain
as normal if its truth latency time is close to the theoretical
one, otherwise it will be labeled as abnormal. Finally, the
system will statistic 4 parameters of every container which the
SBFL algorithm needs, and then calculate the suspicious score
of every container to localize fault containers. The system
will provide the ranked suspicious score list of containers
to support the system operators to eliminate fault as soon as
possible.

 client

 Service
Request

 Front
end

 ServiceA

ServiceC

 ServiceB
 Req

 Req

 Req

 Tracing

DBMicroservice-based system
 Tracing Collection

 tracing

 tracing tracing

 tracing

 Data Preprocessor

 Anomaly Detector

 Spectrum Ranker

 Raw tracing data

T-Rank

 Groups of labeled tracing chains

 Groups of tracing chains

 Operator

1.Container..
2.Container..
3.Container..

Suspicious
list

Fig. 1. T-Rank Overview

B. Tracing Collection

In T-Rank, we trace the call between services by deploy a
sidecar container for every service instance which is respon-
sible to generate tracing data when an request is launched
and done. Once a service calls another service, the sidecar
container of caller service will record this call as one piece of
tracing data and when the call is done, it records the request
completion latency time. Then the generated tracing data will
be collected and stored in the Tracing DB. The process of
recording tracing data and sending the request to callee service
are asynchronous, so it costs little recourse and does not
interrupt the system work. The detailed compositions of the
tracing data collected are as follow Table. I:

The tracing data consists of StartTime, ElapsedTime, is-
Success, TraceId, Id, Pid and Cmdb id. TraceId is the tag
we use to correlate the pieces of tracing data scattered on

TABLE I
TRACING DATA SAMPLE

StartTime ElapsedTime isSuccess TraceId Id Pid Cmdb id
2020.05.11.00.12.32 200 TRUE 47 21a 7b os 021
2020.05.11.00.12.40 17 TRUE 58 61a 12c docker 07
2020.05.11.00.13.32 41 TRUE 47 80s 21a docker 01

. .

different servers. The initial TraceId is always generated by
the front-end service instance when a client issues a request
to the microservice system. And then, all the request derived
by this client request will use it as their TraceId. Id is the
unique symbol that distinguishes one tracing data itself from
others in the tracing chain and it is generated when the request
happens. Pid is the Id of the caller. Cmdb id is the id of the
container where the service instance is running. StartTime is
the 13-bit timestamp that records when the call happens and
ElapsedTime is the time the call takes to finish the request.
isSuccess is the label marking whether the call is successfully
processed. However, it is always True because of system fault
tolerance which makes it helpless when detecting the anomaly.

In T-Rank, TraceId, StartTime, ElapsedTime and Cmdb id
are the most important items we rely on. By making use
of these items, T-Rank implements the next integration and
classification of tracing data.

C. Data Preprocessor

The tracing data is stored in a Tracing DB (e.g., Elas-
ticsearch) and sorted by the timestamp, which means that
it is separated and every piece of the data only represents
one component state. T-Rank continuously draws the tracing
data whose timestamp is in the current time window W from
Tracing DB to analyze. However, in the SBFL algorithm,
it needs a large number of test cases that cover different
components for further analysis. The separated tracing data
in DB does not meet SBFL’s requirement obviously.

To apply the SBFL algorithm on the tracing data, T-Rank
treats every client service request as a test execution. T-Rank
integrates the separated tracing data in the current time window
W (default 5 minutes) according to their TraceId. The tracing
data with the same TraceId are from the same client service
request. T-Rank calls the integrated tracing data with the same
TraceId as tracing chain T . During the integration, T-Rank
also filters the useless information like Id to reduce cost of fol-
lowing process. The tracing chain has the following property:
Container Dict, StartTime and ElapsedTime. Container Dict
is a key-value list storing the type and quantity of containers
in tracing chain, such as {docker 01:5,docker 06:2,os 22:3}.
StartTime is the time when the front-end service receive
client’s service request and ElapsedTime is the sum of time to
complete client service request.

T-Rank classifies the tracing chains by their Container Dict.
In the microservice system, one service is always deployed in
several containers at the same time for load balance and fault
tolerance. Although their service topologies are the same, two
client requests may go through different containers. What is
more, most of the time, every service only provides one special
function, so every container always completes the request

Tracing
Intergration

Tracing

DB

 Tracing Chain A
Container Dict:{..}

StartTime:..
ElapsedTime

 Tracing Chain C
Container Dict:{..}

StartTime:..
ElapsedTime

 Tracing Chain B
Container Dict:{..}

StartTime:..
ElapsedTime

 Tracing Chain D
Container Dict:{..}

StartTime:..
ElapsedTime

 Classification

 Tracing Chain C
Container Dict:{..}

StartTime:..
ElapsedTime

 Tracing Chain A
Container Dict:{..}

StartTime:..
ElapsedTime

 Tracing Chain D
Container Dict:{..}

StartTime:..
ElapsedTime

 Tracing Chain B
Container Dict:{..}

StartTime:..
ElapsedTime

...

 TraceID:111
Container:docker01

StartTime:2020.05…
ElapsedTime:10ms

 TraceID:121
Container:docker01

StartTime:2020.05…
ElapsedTime:10ms

 TraceID:111
Container:docker01

StartTime:2020.05…
ElapsedTime:10ms

 TraceID:121
Container:docker01

StartTime:2020.05…
ElapsedTime:10ms

 TraceID:111
Container:docker01

StartTime:2020.05…
ElapsedTime:10ms

 TraceID:121
Container:docker01

StartTime:2020.05…
ElapsedTime:10ms

 TraceID:111
Container:docker01

StartTime:2020.05…
ElapsedTime:10ms

 TraceID:121
Container:docker01

StartTime:2020.05…
ElapsedTime:10ms

Group
1

Group
2

 Extract tracing data

Fig. 2. Data preprocessor.After integration and classification, the raw tracing
data become tracing chains and are divided into different group G according
their Container Dict.The tracing chains with same color have the same
Container Dict

within a time range. But affected by some extra features,
for example, the host capacity, some containers providing
the same service may have a difference in the latency time.
Therefore, the time range of a client service request is more
concerned with the containers it passes through.

For above reasons, it is better to classify tracing chains
by containers they pass through. The Container Dict of a
tracing chain is an important metric to detect the anomaly.
In T-Rank, the tracing chains are divided into groups, G =
{G1, G2, ..Gn}. The tracing chains which have the same
Container Dict are divided into one group Gk, just like the
right part of the Fig. 2.

D. Anomaly Detector

In order to calculate different containers’ suspicious scores,
the SBFL algorithm analyzes the proportion of them in all
failed client service requests. A balanced and well-design test-
suit makes a great difference in SBFL’s effectiveness [21].
Test-suite consists of two parts: the design of test cases (which
containers are covered) and their outcomes (which test case
fails). In a microservice-based system, it is impossible to
design the container coverage of test case which is decided
by detailed request and system management. Therefore the
only way to enhance the performance of the SBFL algorithm
is to provide more precise outcomes.

However, the label isSuccess in the tracing data is not
reliable and ineffective because it is always True, although
there is a fault happening. Sometimes some faults in container
like network latency will not change the isSuccess from True
to False for the reason that the request is finished at last but
spends too much time. Therefore besides the isSuccess label, it
is necessary to detect the anomaly in another way. We compare
an attribute of tracing chain, ElapsedTime, in the fault injection
period with the one in the normal period. From Fig. 4 we
find that the ElapsedTime obviously increases in some tracing
chains when a fault is injected. Considering that the most
direct phenomenon when most the faults happen is timeout, we
think the tracing chain with an outlier in ElapsedTime should
be labeled as abnormal.

To find the outlier, T-Rank utilizes a simple and rough
anomaly detection based on the ElapsedTime. We assume that

the ElapsedTime of different groups conform to the normal
distribution. In the normal distribution, the possibility that
abs(ti − tmean) > 3 ∗ tstd is 0.0026. Hence the ElapsedTime
out of this range can be considered as an anomaly. To confirm
the assumption is valid, we label the tracing chains which are
out of range by this method. In Fig. 3,5 represents the labeled
outlier and almost all outliers are labeled precisely.

For anomaly detection, T-Rank uses the Equ. 1 and Equ. 2 to
label the tracing chain. Gk is a group of the tracing chains with
same Container Dict. ti is the tracing chain Ti’s ElapsedTime.
tkmean is the mean of Gk’s ElapsedTime and tstd is its standard
deviation. They are calculated from the historical tracing data.
Although the success label is ineffective when working alone,
it is still worthy of reference. Therefore we get GAbnormal,
the group of abnormal tracing chains and GNormal, the group
of normal tracing chains by the Equ. 3 and Equ. 4.

Gk
Normal = {Ti ∈ Gk|abs(ti − tkmean) ≤ 3 ∗ tkstd}, (1)

Gk
Abnormal = {Ti ∈ Gk|abs(ti − tmean) > 3 ∗ tstd}, (2)

GNormal =

i∑
n

Gi
Normal −Gsuccess=False, (3)

GAbnormal =

i∑
n

Gi
Abnormal +Gsuccess=False. (4)

E. Spectrum Ranker

Spectrum Based Fault Localization is an algorithm designed
for program debugging. It has achieved great performance in
previous studies. SBFL diagnoses the program by providing a
list of the suspicious scores. The fault localization component
of T-Rank, Spectrum Ranker, is adapted from the SBFL
algorithm. Take the Fig. 5 as an example, Req1 and Req2
correspond to tracing chain group G1 and G2 respectively.
Intuitively, if a great deal of tracing chains in G1 are abnor-
mal but most ones in G2 are normal, we will suspect the
docker 01 is a fault container. And if both of G1 and G2

have many abnormal tracing chains, there is a high possibility
that docker 04 or docker 05 has a fault. It is a quite simple
thought and Spectrum Ranker is developed from it. Spectrum
Ranker formalizes this thought and provides a risk formula to
evaluate the container’s ratio between the successful requests
covering it and the failed ones.

Spectrum Ranker is a simple statistic algorithm collecting
the coverage information of containers in client service re-
quests and calculating the containers’ suspicious score by the
risk evaluation formula r() . But to the Spectrum Ranker, the
failed case is necessary and it will get nothing if all test cases
are successful, therefore the anomaly detection is significant.
Spectrum Ranker treats every tracing chain as a test case T and
every container c as an element in the test case. The definition
of notations about c in Spectrum Ranker is shown as follows:

1) ef is the number of the failed tracing chain Tf which
include the container c, c ∈ Tf .

Fig. 3. Tracing chains’ ElapsedTime in different groups. 5 is the symbol of an outlier, meaning their ElapsedTime is out of normal range.

Fig. 4. The ElapsedTime of a single trace. The ↑ represents fault injection
at this time. When a fault is injected,for example at 2:00, the ElapsedTime of
some traces is increased significantly.

 front end

 docker_01

 docker_02 docker_03

 docker_04 docker_05

Req1

Req2

Fig. 5. An example of services dependency graph

2) ep is the number of the successful tracing chain Ts which
include the container c, c ∈ Ts.

3) nf is the number of the failed tracing chain Tf which
don’t include the container c, c /∈ Tf .

4) np is the number of the successful tracing chain Ts which
don’t include the container c, c /∈ Ts.

According to the definition of notations, we can describe
the process of Spectrum Ranker as follows.

The process of Spectrum Ranker is quite simple and the
key of Spectrum Ranker is the risk evaluation formula, which

Algorithm 1: SBFL
Input: G: the groups set of tracing chains

r:the risk evaluation
Output: L:the ordered suspicious score list

1 Extract the container set C from G
2 Initial suspicious score list L
3 for c in C do
4 statistic ef , ep, nf , np of c from G
5 L[c] = r(ef , ep, nf , np)
6 end
7 Sort L by suspicious score

decides its effectiveness. Review the research in the SBFL
algorithm, we can find that there are plenty of formulas [22].
For instance, a popular formula in the SBFL algorithm is
Ochiai [23], which is defined as follows.

Ochiai(c) =
ef√

(ef + nf) ∗ (ef + ep)
. (5)

Let’s continue using the Fig.5 as an example. We inject a
fault into docker 01. If the statistic of the collected tracing
data is shown in Table. II. After calculating the suspicious
score of containers with Ochiai, the container with the highest
suspicious score is docker 01, which is the root cause of the
fault.

TABLE II
STATISTIC OF COLLECTED TRACING DATA

Container ef ep nf np Suspicious score
docker 01 100 100 10 190 0.67
docker 02 10 190 100 100 0.06
docker 03 10 190 100 100 0.06
docker 04 110 290 0 0 0.52
docker 05 110 290 0 0 0.52

In T-Rank, we experiment with 25 kinds of spectrum

formulas to find out the most effective risk evaluation formula
as our default formula.

IV. EXPERIMENT

A. Experiment Setup

1) Dataset and Benchmark: A tracing data is provided by a
Chinese company, named China Mobile. The tracing data col-
lected from their real-world production microservice systems
5. From the tracing data, we observe the composition of the
microservices system is shown in Table III. All components
in the table run as containers and are managed by Kubernetes.
The components communicate with each other using gRPC.
There are 9 million pieces of tracing items collected in the
dataset. The size of the dataset is 1.12 GB. In order to simulate
the anomalies, multiple types of faults are injected into the
system, such as network delay, network loss, CPU fault, and
DB connection limited. Only one fault is injected one time
and every fault lasts for 5 minutes.We implement T-Rank in
Python3.7 and run it in a computer with 8-core 3.60GHz CPU
and 16GB memory.

TABLE III
THE COMPOSITION OF EXPERIMENT SYSTEM

Category OSB oracle redis docker virtual machine
Num 1 13 12 8 22

2) Evaluation Metric: To evaluate the effectiveness of the
model, we take Exam Score (ES) and Recall& Precision as
the evaluation metric.

Exam Score [21] [24] is the percentage of suspicious
containers that need to be inspected by an operator among all
candidates before localizing the problem container, reflecting
the effectiveness of a fault localization approach. What’s more,
because most of the time the fault happens alone, ES can better
reflect how helpful the tool is when it works online. The lower
ES, the better performance the model makes, and the faster the
fault is fixed.

Recall & Precision are the metric that evaluates the per-
formance of the model in another way. Precision refers to the
percentage of the True fault containers in the fault containers
we find. The higher Precision is better, meaning our method
can produce less false alarm. Recall refers to the percentage of
true fault containers we find in all fault containers. The Recall
is higher, meaning our tool can find more fault containers.

B. Different risk evaluation formulas effectiveness

The SBFL algorithm has developed for a long time and
previous studies have proposed a lot of formulas. Although
their papers have proved all of those formulas perform well
in Program Debugging, there may be some difference when
SBFL is applied in Microservice root cause analysis. For
examining the formula performance, we use 25 risk evaluation
formulas to calculate the suspicious score of containers and
compare their effectiveness.

5dataset, http://iops.ai/competition detail/?competition id=15&flag=1

TABLE IV
DIFFERENT RISK EVALUATION FORMULAS [22]

Ranking metric Definition Ranking metric Definition

Tarantula
ef

ef+nf
ef

ef+nf
+

ep
ep+np

Ochiai ef√
(ef+ep)(ef+nf)

Jaccard ef
ef+ep+nf

Ample | ef
ef+nf

− ep
ep+np

|

RusselRao ef
ef+ep+nf+np

Hamann ef+np−ep−nf

ef+ep+nf+np

SφremsemDice 2ef
2ef+ep+nf

Dice 2ef
ef+ep+nf

Kulczynski1 ef
nf+ep

Kulczynski2 1
2(

ef
ef+nf

+ ef
ef+ep

)

SimpleMatching ef+np

ef+ep+nf+np
Sokal 2ef+2np

2ef+2np+nf+ep

M1 ef+np

nf+ep
M2 ef

ef+np+2nf+2ep

RogersTanimoto ef+np

ef+np+2nf+2ep
Goodman 2ef−nf−ep

2ef+nf+ep

Hamming ef + np Euclid
√
ef + np

Overlap ef
min(ef ,ep,nf)

Anderberg ef
ef+2ep+2nf

Ochiai2 efnp√
(ef+ep)(nf+np)(ef+np)(ep+nf)

Zoltar ef

ef+ep+nf+
10000nf ep

ef

Wong1 ef Wong2 ef − ep

Wong3 ef − h, where h =

eP if ep ≤ 2

2 + 0.1(ep − 2) if 2 < ep ≤ 10

2.8 + 0.01(ep − 10) if ep > 10

For testing the performance of different SBFL risk eval-
uation formulas we use different formulas to calculate the
suspicious score of containers with fixed sliding time window
sizes to compare their online performance. In the online
performance experiment, T-Rank only analyzes the tracing
data in the last 5 minutes, the sliding time window size. The
sliding stride size of the time window is 1 minute. The formula
we use in the experiment is cited from the paper [22]. All
formulas are show in Table. IV.

Some containers’ ef maybe 0 which leads to the ZeroDi-
videError. To avoid such a situation, we defined the suspicious
score as 0 when ef = 0. Because ef = 0 means that there
is no errors in these containers, their suspicious scores should
be 0, showing that they work well.

From Fig. 6 we find that when the SBFL works online
with fixed window size, different SBFL formulas have a great
difference in performance. The group of formulas making the
best performance have the lowest ES close to 0, such as Ochiai
and Kulcyunski2, meaning that these formulas can localize the
fault containers precisely. Based on the suspicious list they
provide, the system operator only needs to inspect one or two
containers when a fault happens. This helps them save a lot
of effort. The formula Wong3 making the worst performance
whose ES is up to 0.324, almost 25 times of the best one.
Comparing the formulas’ structure, we find that those formulas
performing badly focus less on the parameter ef and reduce
the importance of it, which may be the reason for their poor
performance.

Different formulas have different effectiveness. In this ex-
periment, we find out which formulas are suitable to T-Rank.
When faced with different environments and requirements, T-
Rank can choose the most suitable risk evaluation formula
according to our experiment. This greatly enhanced T-Rank’s
robustness.

Oc
hi
ai

Ta
ra
nt
ul
a

Ja
cc
ar
d

So
re
ns
en
Di
ce

Ru
ss
el
lR
ao

Ku
lcz

yn
sk
il

Si
m
pl
eM

at
ch
in
g

M
1

Ro
ge
rs
Ta
ni
m
ot
o

Ha
m
m
in
g

Oc
hi
ai
2

W
on
g1

Am
pl
e

Ha
m
an
n

Di
ce

Ku
lcy

un
sk
i2

So
ka
l

M
2

Go
od
m
an

Eu
cli
d

An
de
rb
er
g

Zo
lta

r
W
on
g2

W
on
g3

Ov
er
la
p

Formula

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Ex

am
 S
co
re

0.013

0.080

0.0310.031

0.248

0.031

0.2300.2300.2300.230

0.139

0.248

0.133

0.230

0.031

0.081

0.230

0.013

0.031

0.230

0.031

0.187

0.230

0.3240.328

Fig. 6. The performance of different spectrum formulas. Ohiai and M2
achieve best performance

C. The Impact of Tracing Data Collection Time Window Size

SBFL is a statistic algorithm. The sliding time window size
may affect its performance. When the SBFL model works
online, the window size of data collection has a significant
impact on its performance for the reason that the window
size of data collection makes difference in the amount of the
tracing data and failed services, which impact heavily on the
final suspicious score list provided by it. With a too-large
window size, data collection and processing take too much
time, resulting in the model can not catch up with the speed
of the tracing data generation. The longer latency of the T-
Rank’s fault localization weakens its practicality. Eventually,
the online SBFL model will degenerate to offline mode, which
makes the sliding time window meaningless. On the other
hand, too small window size leads to the insufficiency of
tracing data and inaccurate localization. The lack of data may
cause T-Rank to mistake a normal container as a fault one or
even can not find out any fault container.

To balance the data processing speed and data generation
speed, we choose minute level granularity to divide data. And
the tested window size ranges from 1 to 10 minutes. The SBFL
formulas selected in this experiment are Ochiai, Tarantula, and
M2 which achieves excellently performance.

From Fig. 7, it is obvious that the ES is reduced with the
increase of the window size and stabilizes at low levels at
last. When the window size reaches 5 minutes, the Tarantula’s
ES reaches its minimum. After that, even if we continue to
increase the window size, the ES does not decrease any more
after that.

To find out the reason why the best sliding time window
size is 5 minutes, we pick up a few fault injection period data
to analyze different window size’s ES change. The Fig.8 show
their changing trends. We can know from Fig.8 that over time,
the ES of window sizes 1 and 2 have not changed significantly,

2 4 6 8 10
Window Size

0.10

0.12

0.14

0.16

0.18

0.20

Ex
am

Sc
or
e

Ochiai
Tarantula
M2

Fig. 7. The ExamScore under different Window Sizes. The improvement
of Tarantula’s performance is obvious with the increased window size. The
improvement of Ochiai’s and M2’s performance is not so obvious, but they do
become better. When the Window Sizes is 4 or 5 minutes, T-Rank performs
better.

2020-05-31
 03:47:05

2020-05-31
 03:48:05

2020-05-31
 03:49:05

2020-05-31
 03:50:05

2020-05-31
 03:51:05

Time

0.1

0.2

0.3

0.4

0.5
Ex

am
Sc

or
e

1 minute
2 minutes
3 minutes
4 minutes
5 minutes

Fig. 8. The ES of different time window sizes. We use SimpleMatching risk
evaluation formula to experiment and pick up a part of the result of different
window sizes. A larger window size gets better results when the fault lasts
longer.

but the ES of window size 4 and 5 make a great improvement
and become 0 at last. When the fault just happens, the useful
tracing data to localize the fault is limited, so no matter what
the window size is, their performance is close. But when
the fault lasts for a while, the larger window size can get
more useful information by including more historical tracing
data. On account of it, they can provide a more accurate
suspicious score list. If the window size keeps increasing and
even larger than the fault lasting time, the data before fault
happens will be a noise to disturb T-Rank’s judgment, resulting
in worse performance. And the fault injection lasting time is
4-5 minutes. This is the reason why it’s the best that window
size is 5. So it is our conclusion that the best window size
of the SBFL model should learn from the historical data in
practice.

D. Can T-Rank outperform previous work?

To the effectiveness of demonstrate T-Rank, we com-
pare it with several state-of-the-art root cause localization
methods.The methods we select include MS-Rank [25],
CloudRanger [26], NetMedic [8], MonitorRank [27] and Roots
[28]. MS-Rank and CloudRanger are the self-adaptive methods
to localize the root cause by utilizing their random walk
algorithm on the impact graph they build. NetMedic is a
multi-metric diagnosis approach and it establishes the service
dependencies by its correlation approach and locates the root
cause in the graph it builds. We use the metric extracted
from tracing data as its input. Roots mentions four root cause
identification approaches. To compare with it, we implement
all its approaches. To compare with MonitorRank, we use its
batch-mode engine to build the call graph and its random walk
algorithm to localize root causes. We compare these methods
with ours using metric Recall and Precision.

MSR NM Roots CR MR T-Rank0

20

40

60

80

100

Pe
rc

en
ta

ge
(%

)

81
85

75
79

68

84
80

83

74

83 82

93Recall
Precision

Fig. 9. The Comparison Result with Other Root Cause Localization Methods

The Fig.9 shows the comparison result, where MSR, NM,
CR, MR represent MS-Rank, NetMedic, CloudRanger, and
MonitorRank respectively. We inject 3 faults into the sys-
tem and every fault lasts for 5 minutes. The comparison
result shows that T-Rank outperforms the previous methods,
achieving 1% higher Precision and 8% higher Recall than the
best performance method MS-Rank. T-Rank makes a great
improvement. T-Rank can achieve a better result because T-
Rank only relies on the tracing data and only one metric. The
NetMedic and MonitorRank need more data and metrics to
more precisely construct the service dependency graph. Lack
of data makes them can not find the root cause precisely.
Roots prefer to identifies the service close to the front end
service, so it performs badly when a fault is injected in further
service. As for CloudRanger and MS-Rank, they can adapt to
the metric data, so they can still have a good performance.
T-Rank performs better.

But the performance of T-Rank is not as good enough as
we expect. After analyzing the detailed experiment result, we
think the improvement of the Precision is smaller than the

Recall is on account of that there are a few false alarms. T-
Rank generates the suspicious score only when the anomaly is
detected. And the anomaly detection of T-Rank is too sensitive
for its purpose is labeling as much as possible tracing data
for localization. But if there is a fault container, T-Rank can
localize it precisely. Combined with other anomaly detection
tool, T-Rank can achieve better performance. We will make
further research in this way.

E. Discussion

In the experiments above, T-Rank has different performance
with different risk evaluation formulas and window size. When
using the formula like M1 and Ochiai, T-Rank can accurately
localize the root cause most time with collection data window
size as 5 minutes. From the table V and table VI, we can find
that processing the tracing data within 5 minutes only takes 6
seconds at most with one CPU core, which is much less than
the window size. And only a little CPU resource is consumed.
The advantage of T-Rank is that it is lightweight and needs
less data and metric, but has enough high accuracy. However,
its limitation does exist. If two or more root causes are existing
at the same time, T-Rank maybe only localize one exactly and
the container having the second-highest suspicious score may
be innocent, just affected by the root cause container in the
same tracing chain. And the false alarm should be reduced.
But T-Rank as a support tool to help operators exclude the
fault is quite effective and practical. Using T-Rank can save
a great deal of effort and T-Rank does not occupy too much
system resource because of its low cost.

TABLE V
THE COST OF DIFFERENT DATA SIZE

window size/minute Number of trace processTime/s
1 41246 1. 163
5 133254 6. 24

10 255602 13. 38
60 1606216 96. 13

TABLE VI
OVERHEAD STATISTICS ON BENCHMARK EXPERIMENT

System Module Overhead
Tracing collection 2%± 1% CPU utilization(single core)

Data preprocess and anomaly detection 4%± 1% CPU utilization(single core)
Root cause localization 8%± 1% CPU utilization(single core)

V. RELATED WORK

With the popularity of microservice as the enterprise soft-
ware architecture, the root cause localization attracts so much
attention and a lot of researchers focus on addressing it. In
this section, we will review some related work in this field.

First, there are many fault localization methods for the
microservice system developing from the ones designed for
traditional distributed systems. For example, in the traditional
distributed network, NetMedic [8] captures all components’
state and model the system as a dependency graph. Then it
calculates vertexes’ score and edges’ weight to localize the
root cause. MonitorRank [27] stores the collected metric in
time partitioned database and generates the call graph of the

system periodically. When an anomaly happens, it compares
the similarity of sensors’ metric pattern to find the relevance of
the sensor to the anomaly. Based on this, it provides a random
walk algorithm to localize the root cause.

What’s more, the statistical analysis of software behavior
has been verified as valuable for fault localization in the
traditional distributed system. The TABC [9] follows this idea
to make further development. TABC detects the anomaly and
initializes the anomaly scores of components by comparing
the profile to the one learned from historical timing behavior
and then utilizes three algorithm variants they proposed to
derive anomaly ratings from anomaly scores with the system
topology. CauseInfer [29], [30] automatically constructs a
two layered hierarchical causality graph based on runtime
performance metrics. Then the coarse-grained graph is applied
to locate the causes at service level and the fine-grained graph
is used to find the real culprits of performance problems by
statistical methods. Roots [28] is another statistical method-
ology for web-application performance diagnosis deployed in
Paas clouds. Combining the metadata injection and platform-
level instrumentation, Roots tracks the event in the system
and analyzes the collected data to localize the root cause of
the anomaly.

As for the microservice system, many researches refers
to the basic idea of the tradition distributed system fault
localization and develops more excellent methods.

Microscope [6] presents a system to identify and locate
the abnormal services with a ranked list of the possible root
cause. The Microscope system builds the causal graph by
collecting data from the socket and provides a parallelized
PC-algorithm for service causality graph building. MS-Rank
[25] and CloudRanger [26] constructs the causal relationship
dynamically and then construct the impact topology of the
application system instead of using the given topology. Af-
ter construction, to identify the culprit services which are
responsible for cloud incidents, they put forward a heuristic
investigation algorithm based on random walk and generate
the ranked list of services.

Microscaler [31], [32] constructs the service dependency
graph with the help of Service Mesh, then it locates the
performance bottlenecks of microservice systems along the
graph by Correlation Coefficient. In the paper Automap [7],
they define two notion “+” and “-” and 3 rules to build
the causal graph. By calculating the similarity between the
generated causal graph and historical causal graphs, they set
the weight of different metrics. And then a heuristic random
walk algorithm based on the metric correlation is employed to
localize the root cause.

Machine learning techniques also play an important role.
The Seer [2] build the neural networks combing the CNN
and LSTM. The purpose of CNN is to extract the connection
pattern of the system and the LSTM learns the pattern of
metric changing over time.

Compared to the above work, T-Rank doesn’t rely on the
service dependency graph so that we save the time spent
in rebuilding the dependency graph, which means faster and

lower cost. By analyzing the statistical data of trace to localize
the root cause, T-Rank does not need any domain knowledge
and spends less time and resources in localization, and can
run all the time.

VI. CONCLUSION

This paper proposes a performance diagnosis system, named
T-Rank, for microservice-based system. To address the root
cause localization problem, T-Rank collects the tracing data
in a sliding time window and integrates them into tracing
chains which represent the whole process of a client service
request. T-Rank labels the anomaly tracing data by the metric,
ElapsedTime. The purpose of T-Rank is to offer a ranked
suspicious score list of the containers based on the spectrum
algorithm. We demonstrate the effectiveness and efficiency of
T-Rank with a dataset collected from a real-world production
microservice system. T-Rank has high accuracy, low resource
cost, and low time consuming, which is quite practical. More-
over, as the scale of a microservice system becomes large,
T-Rank can also help operators localize root causes due to its
lightweight property.

ACKNOWLEDGMENT

The work was supported by the National Key Research
and Development Program of China (2019YFB1804002), the
Research Development Plan of Key Areas in Guangdong
Province (2020B010165002), the Natural Science Foundation
of China (U1811462, 61802448), the Basic and Applied Basic
Research of Guangzhou (202002030328), and the Natural Sci-
ence Foundation of Guangdong Province (2019A1515012229).
The corresponding author is Pengfei Chen.

REFERENCES

[1] N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: Yesterday, today, and
tomorrow,” in Present and Ulterior Software Engineering. Springer,
2017, pp. 195–216.

[2] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and
C. Delimitrou, “Seer: Leveraging big data to navigate the complexity
of performance debugging in cloud microservices,” in Proceedings of
the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2019,
Providence, RI, USA, April 13-17, 2019. ACM, 2019, pp. 19–33.

[3] J. Thalheim, A. Rodrigues, I. E. Akkus, P. Bhatotia, R. Chen,
B. Viswanath, L. Jiao, and C. Fetzer, “Sieve: actionable insights from
monitored metrics in distributed systems,” in Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference, Las Vegas, NV, USA, De-
cember 11 - 15, 2017. ACM, 2017, pp. 14–27.

[4] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth, “Performance
anomaly detection and bottleneck identification,” ACM Comput. Surv.,
vol. 48, no. 1, pp. 4:1–4:35, 2015.

[5] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang, and C. He, “La-
tent error prediction and fault localization for microservice applications
by learning from system trace logs,” in Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,
Tallinn, Estonia, August 26-30, 2019. ACM, 2019, pp. 683–694.

[6] J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint performance
issues with causal graphs in micro-service environments,” in Service-
Oriented Computing - 16th International Conference, ICSOC 2018,
Hangzhou, China, November 12-15, 2018, Proceedings, ser. Lecture
Notes in Computer Science, vol. 11236. Springer, 2018, pp. 3–20.

[7] M. Ma, J. Xu, Y. Wang, P. Chen, Z. Zhang, and P. Wang, “Automap:
Diagnose your microservice-based web applications automatically,” in
WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24,
2020. ACM / IW3C2, 2020, pp. 246–258.

[8] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and
P. Bahl, “Detailed diagnosis in enterprise networks,” in Proceedings of
the ACM SIGCOMM 2009 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, Barcelona,
Spain, August 16-21, 2009. ACM, 2009, pp. 243–254.

[9] N. Marwede, M. Rohr, A. van Hoorn, and W. Hasselbring, “Automatic
failure diagnosis support in distributed large-scale software systems
based on timing behavior anomaly correlation,” in 13th European
Conference on Software Maintenance and Reengineering, CSMR 2009,
Architecture-Centric Maintenance of Large-SCale Software Systems,
Kaiserslautern, Germany, 24-27 March 2009. IEEE Computer Society,
2009, pp. 47–58.

[10] A. Parker, D. Spoonhower, J. Mace, B. Sigelman, and R. Isaacs, Dis-
tributed Tracing in Practice: Instrumenting, Analyzing, and Debugging
Microservices. O’Reilly Media, 2020.

[11] Traceroute. [Online]. Available: https://wikipedia.org/wiki/Traceroute
[12] Sidecar. [Online]. Available: https://docs.microsoft.com/en-us/azure/

architecture/patterns/sidecar
[13] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-trace: A

pervasive network tracing framework,” in 4th Symposium on Networked
Systems Design and Implementation (NSDI 2007), April 11-13, 2007,
Cambridge, Massachusetts, USA, Proceedings. USENIX, 2007.

[14] Zipkin. [Online]. Available: http://zipkin.io/
[15] Y. Shkuro, “Evolving distributed tracing at uber engineering,” Uber

Engineering Blog, 2017.
[16] J. A. Jones, M. J. Harrold, and J. T. Stasko, “Visualization of test

information to assist fault localization,” in Proceedings of the 24th
International Conference on Software Engineering, ICSE 2002, 19-25
May 2002, Orlando, Florida, USA. ACM, 2002, pp. 467–477.

[17] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2005), November
7-11, 2005, Long Beach, CA, USA. ACM, 2005, pp. 273–282.

[18] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in Testing: Academic and Industrial
Conference Practice and Research Techniques-MUTATION (TAICPART-
MUTATION 2007). IEEE, 2007, pp. 89–98.

[19] X. Xie, T. Y. Chen, F. Kuo, and B. Xu, “A theoretical analysis of the risk
evaluation formulas for spectrum-based fault localization,” ACM Trans.
Softw. Eng. Methodol., vol. 22, no. 4, pp. 31:1–31:40, 2013.

[20] T. B. Le, F. Thung, and D. Lo, “Theory and practice, do they match? A
case with spectrum-based fault localization,” in 2013 IEEE International
Conference on Software Maintenance, Eindhoven, The Netherlands,
September 22-28, 2013. IEEE Computer Society, 2013, pp. 380–383.

[21] P. Chatterjee, A. Chatterjee, J. Campos, R. Abreu, and S. Roy, “Diag-
nosing software faults using multiverse analysis,” in Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI 2020. ijcai.org, 2020, pp. 1629–1635.

[22] J. Xuan and M. Monperrus, “Learning to combine multiple ranking
metrics for fault localization,” in 30th IEEE International Conference on
Software Maintenance and Evolution, Victoria, BC, Canada, September
29 - October 3, 2014. IEEE Computer Society, 2014, pp. 191–200.

[23] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “An evaluation
of similarity coefficients for software fault localization,” in 12th IEEE
Pacific Rim International Symposium on Dependable Computing (PRDC
2006), 18-20 December, 2006, University of California, Riverside, USA.
IEEE Computer Society, 2006, pp. 39–46.

[24] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” CoRR, vol.
abs/1803.09939, 2018.

[25] M. Ma, W. Lin, D. Pan, and P. Wang, “Ms-rank: Multi-metric and self-
adaptive root cause diagnosis for microservice applications,” in 2019
IEEE International Conference on Web Services, ICWS 2019, Milan,
Italy, July 8-13, 2019. IEEE, 2019, pp. 60–67.

[26] P. Wang, J. Xu, M. Ma, W. Lin, D. Pan, Y. Wang, and P. Chen,
“Cloudranger: Root cause identification for cloud native systems,” in
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGRID 2018, Washington, DC, USA, May 1-4, 2018.
IEEE Computer Society, 2018, pp. 492–502.

[27] M. Kim, R. Sumbaly, and S. Shah, “Root cause detection in a service-
oriented architecture,” in ACM SIGMETRICS / International Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS ’13,
Pittsburgh, PA, USA, June 17-21, 2013. ACM, 2013, pp. 93–104.

[28] H. Jayathilaka, C. Krintz, and R. Wolski, “Performance monitoring and
root cause analysis for cloud-hosted web applications,” in Proceedings
of the 26th International Conference on World Wide Web, WWW 2017,
Perth, Australia, April 3-7, 2017. ACM, 2017, pp. 469–478.

[29] P. Chen, Y. Qi, P. Zheng, and D. Hou, “Causeinfer: Automatic and
distributed performance diagnosis with hierarchical causality graph in
large distributed systems,” in 2014 IEEE Conference on Computer
Communications. IEEE, 2014, pp. 1887–1895.

[30] P. Chen, Y. Qi, and D. Hou, “Causeinfer: Automated end-to-end perfor-
mance diagnosis with hierarchical causality graph in cloud environment,”
IEEE Transaction Service Computing, vol. 12, no. 2, pp. 214–230, 2019.

[31] G. Yu, P. Chen, and Z. Zheng, “Microscaler: Automatic scaling for
microservices with an online learning approach,” in 2019 IEEE Inter-
national Conference on Web Services. IEEE, 2019, pp. 68–75.

[32] G. Yu, P. Chen, and Z. Zheng, “Microscaler: Cost-effective scaling for
microservice applications in the cloud with an online learning approach,”
IEEE Transactions on Cloud Computing, pp. 1–1, 2020.

