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Distributed tracing has been widely adopted in many microservice systems and plays an important role in
monitoring and analyzing the system. However, trace data often come in large volumes, incurring substantial
computational and storage costs. To reduce the quantity of traces, trace sampling has become a prominent
topic of discussion, and several methods have been proposed in prior work. To attain higher-quality sampling
outcomes, biased sampling has gained more attention compared to random sampling. Previous biased sampling
methods primarily considered the importance of traces based on diversity, aiming to sample more edge-case
traces and fewer common-case traces. However, we contend that relying solely on trace diversity for sampling
is insufficient, system runtime state is another crucial factor that needs to be considered, especially in cases of
system failures. In this study, we introduce TraStrainer, an online sampler that takes into account both system
runtime state and trace diversity. TraStrainer employs an interpretable and automated encoding method
to represent traces as vectors. Simultaneously, it adaptively determines sampling preferences by analyzing
system runtime metrics. When sampling, it combines the results of system-bias and diversity-bias through a
dynamic voting mechanism. Experimental results demonstrate that TraStrainer can achieve higher quality
sampling results and significantly improve the performance of downstream root cause analysis (RCA) tasks. It
has led to an average increase of 32.63% in Top-1 RCA accuracy compared to four baselines in two datasets.

CCS Concepts: « Software and its engineering — Cloud computing; Software reliability; Software
performance.

Additional Key Words and Phrases: distributed tracing, biased sampling, microservice

ACM Reference Format:

Haiyu Huang, Xiaoyu Zhang, Pengfei Chen, Zilong He, Zhiming Chen, Guangba Yu, Hongyang Chen, and Chen
Sun. 2024. TraStrainer: Adaptive Sampling for Distributed Traces with System Runtime State. Proc. ACM Softw.
Eng. 1, FSE, Article 22 (July 2024), 21 pages. https://doi.org/10.1145/3643748

1 INTRODUCTION

Industrial microservice systems operate in a highly unpredictable and dynamic setting [46, 53]. To
effectively monitor and manage these systems, distributed tracing [37] has been widely adopted.
By implementing frameworks like OpenTelemetry [30] and SkyWalking [38], end-to-end paths
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Fig. 1. The relationship between system runtime state and trace sampling preference.

of requests through service instances can be recorded as trace data. These distributed traces offer
valuable insights for assessing risks, troubleshooting, and comprehending the system’s intricacies (7,
39]. Site Reliability Engineers (SREs) extensively leverage them to profile the environment [14],
detect anomalies [25, 27, 51], and diagnose failures [10, 26, 35, 45].

Although distributed traces are helpful for analysis, their quantities and storage costs are signifi-
cant [21]. Performing subsequent analysis on the complete set of traces is also computationally
expensive [16]. To address this, trace sampling techniques [11, 16, 20, 21, 37, 52] have been intro-
duced to selectively capture traces of interest.

A common sampling approach used by tracing systems like Jaeger [17] and Zipkin [2] is uni-
form random sampling [21]. This method determines whether a trace should be sampled at the
beginning of the trace, thus is also known as head-based sampling. However, different traces
have varying analytical value within the system, and head-based sampling cannot preserve more
valuable traces [16]. To address this, tail-based sampling has been proposed and adopted in previous
works [11, 16, 20, 21]. This method makes sampling decisions at the end of the request, allowing
for the capture of complete trace information to determine if it is valuable. Thus it is also known as
biased trace sampling.

However, previous biased sampling methods [11, 16, 20, 21, 52] have not fully considered sampling
preferences, especially neglect the influence of system runtime state. These methods were only
based on a core intuition: setting sampling preferences based on the specificity and diversity of
traces, tending to keep more edge-case traces and fewer common-case traces. This viewpoint makes
sense because edge-case traces are more interesting and informative [21]. However, common-
case traces are also worth analyzing, as demonstrated in §2.2. Moreover, methods solely based
on trace diversity exhibit the same sampling preference (i.e., favoring rare traces) at any given
point in system operation, disregarding the crucial context of system runtime state. In fact, the
characteristics of a “valuable trace” also change when the system state changes, as shown in Fig. 1.
For example, when there is an exception in the SQL server, SREs are more interested in the traces
that access database because they are more likely to reflect issues and are more worth analyzing.

TraStrainer Approach. To select more valuable traces while reducing storage and computational
costs, we propose an online biased trace sampling approach called TraStrainer. The core idea
behind TraStrainer is to take into account both system runtime state and trace diversity, adaptively
providing a more comprehensive sampling preference. TraStrainer simultaneously takes system
metrics and traces as inputs. Trace Encoder (§ 4.1) automatically encodes the coming trace into
vector representations based on the system metrics. The generated vector representations contain
both structural and state information of the trace, with each system metric corresponding to a
specific dimension in the vector. System Bias Extractor (§ 4.2) determines the valuable dimensions
based on the fluctuations of the system metrics and obtains a preference vector. System-Biased
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Fig. 2. Trace data and system metrics.

Sampler (§ 4.3) and Diversity-Biased Sampler (§ 4.4) online calculate sampling probability from two
different perspectives. Finally, Composite Sampler (§ 4.5) utilizes a dynamic voting mechanism to
make the final sampling decision.

To evaluate the effectiveness and efficiency of TraStrainer, we constructed two datasets, one from
13 real-world production microservice systems and the other from two widely-used microservices
benchmarks, OnlineBoutique [12] and TrainTicket [9]. We conducted a comprehensive evaluation
of TraStrainer, including the quality of sampling results, performance in downstream tasks, and
sampling efficiency. The experimental results demonstrated that compared to four baseline methods,
TraStrainer was able to identify more valuable traces within the same budget and improve the
performance of downstream analysis. Furthermore, TraStrainer exhibited the better efficiency than
two online biased sampling methods.

Contributions. In summary, this study makes the following contributions.

o We present TraStrainer, an online biased trace sampler. By considering both system runtime state
and trace diversity, TraStrainer offers a more comprehensive approach to adaptively determine
sampling preferences.

e We propose an interpretable and automated method for trace representation. The generated trace
vector includes both the structural and state information of the trace, with each system metric
corresponding to a specific dimension in the vector.

o We combined different sampling methods with several classical trace-based analysis approaches
to investigate the impact of different sampling methods on downstream root cause analysis tasks.

e We have implemented TraStrainer and constructed two datasets to validate the quality of its
sampled data and its effectiveness in improving downstream analysis tasks. Moreover, the
experimental results show that our method outperforms state-of-the-art sampling methods.

2 BACKGROUND AND MOTIVATION
2.1 Background

Distributed traces. A trace corresponds to a series of actions triggered by a request within
the system. It consists of a series of service operations (spans), and span events [32] have been
incorporated in some tracing frameworks [30] to enhance the information associated with each
span, as shown in Fig. 2(a). The structure of a trace reflects the order and hierarchy of the invocations
among services. The status information such as invocation latency and event annotations on each
span also provide crucial insights for subsequent analysis [15]. Despite the high analytical value of
traces, the computational and storage overheads are also significant concerns [20].

Trace sampling. Large-scale industrial microservice systems generate millions to billions of
traces daily [18, 37]. Analyzing and storing all traces incurs significant costs, making it impractical
to meet low-latency requirements [3, 33, 37, 55]. Additionally, not all traces hold valuable insights
for analysis [21]. Hence, sampling traces to filter out those with lower analytical value becomes a
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Fig. 3. An example of the importance of system runtime state in trace sampling preferences setting.

crucial aspect of operations in microservice systems. The current sampling methods for traces can
be broadly categorized into two types: head-based sampling [2, 17, 37] and biased sampling [11, 16,
20, 21, 52]. As mentioned in § 1, head-based sampling often results in lower quality traces being
retained. Therefore, our focus lies on biased sampling.

System metrics. The system metrics are a series of time-series data that reflect the runtime state
of the system [19]. They typically consist of four components: timestamp, node or pod affiliation,
metric type, and value, as shown in Fig.2(b). During production, due to inevitable reliability and
performance issues, the system state undergoes real-time changes [44], and these changes are often
manifested by fluctuations in the system metrics [24]. For example, during an overload attack, Node
A’s disk becomes paralyzed, which is manifested by a sharp increase in the DiskUsage metric on
Node A. By analyzing the fluctuations of the metrics, we can infer the runtime state of the system.

2.2 Motivation

As mentioned in § 2.1, distributed traces are extensively helpful in profiling, diagnosing, and
debugging [10, 26, 35, 45]. Therefore, the quality of the sampled traces largely determines the
effectiveness of downstream analysis [47]. Prior to this, several biased samplers [11, 16, 20, 21, 52]
were proposed to improve the quality of sampled traces. However, we found that the previous
biased sampling approaches did not generate truly high-quality traces for downstream analysis, as
demonstrated in our experimental findings (§ 5.5). After analyzing the experimental results, we
concluded that this was primarily due to insufficient settings in the sampling preferences of the
previous approaches. These approaches solely considered trace value based on diversity, favoring
edge-case traces over common-cases.

Solely favoring edge-case traces is not sufficient. This is because: (1) Some common-case
traces can be related to root causes. For instance, if there is an issue where a thread pool becomes
exhausted, the cause may be excessive requests simultaneously issued to the thread pool. The traces
associated to this issue may not exhibit any anomalies and are considered common-case traces. (2)
Common-case traces are also helpful in downstream analysis methods. For example, trace-based
root cause analysis algorithms [26, 45] typically need to collect a certain number of common-case
traces to learn the normal invocation patterns and then identify and locate root causes based on
this normal pattern. Some downstream approaches [23, 43] require common-case traces to conduct
spectrum analysis [34]. (3) When encountering a large number of edge-case traces, it is necessary
to determine which ones are more significant. In actual production scenarios, when system failures
happen, there are often numerous abnormal traces [45]. If the anomaly rate exceeds the budget
sampling rate, it becomes impossible to capture all the edge-case traces. In such scenarios, more
specific rules are required to capture the more valuable portions of these traces.

System runtime state plays an important role in determining valuable traces. As a
real-world issue case of Huawei is shown in Fig.3: () During the time window [a, b], there was an
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Fig. 4. An overview of TraStrainer.

increase in concurrent requests to the MySQL Server on Node A, including some full table queries,
which led to an increase in CPU utilization on Node A. (2) After time b, the CPU utilization reached
full capacity, causing Node A to be unavailable. As a result, all requests passing through Node A
exhibited abnormal behavior, generating a large number of abnormal traces.

The manual analysis process conducted by SREs for this failure is as follows: When receiving a
system alert at time b, SREs examined the system state over a recent period and discovered the
increased CPU utilization on Node A during the time window [a, b]. They further filtered and
analyzed the traces passing through Node A, eventually identifying the root cause as an overload
attack on the MySQL Server during the [a, b] time period.

For previous samplers that only considered trace diversity [16, 21], the structure and status
information of the traces passing through Node A during the [a, b] time window actually appeared
normal. Since these traces were considered common-cases, their sampling probability remained low
during this time period, resulting in insufficient traces available for analysis and potentially missing
the traces related to the root cause event that manual analysis can be aware of. This scenario shows
major shortcomings of existing state-of-the-art samplers. It motivates us to consider the system
state to dynamically increase the sampling probability of traces related to issues within the time
window [a, b], based on the fluctuation of CPU utilization in Node A.

Goal. Given the discussion above, our goal is to implement biased trace sampling in a more
comprehensive way, which considers not only the trace diversity, but also the system runtime state.

2.3 Problem Formulation

We define the problem of biased trace sampling with system runtime state as follows. Given the
current system state metrics denoted as M and the traces collected over a period of time represented
by 7, we aim to determine a sampling function Sp(f, M, T, t) for a given budget sampling rate
B. This function maintains an average rate of § and calculates a biased sampling probability p for
each trace t,

Sp(B, M, T,t) = p,T". 1)

Subsequently, the decision to retain trace ¢ is based on the sampling probability.

3 OVERVIEW

This section presents the design of TraStrainer, an adaptive online biased trace sampler. The
objective of TraStrainer is to capture higher-quality traces based on system runtime state and
trace diversity, and sample them with a higher probability. The overall architecture of TraStrainer
is illustrated in Fig. 4. TraStrainer consists of two main phases: runtime data preprocessing and
comprehensive sampling. In the runtime data preprocessing phase, for each coming trace, Trace
Encoder (§ 4.1) automatically encodes it in an interpretable manner guided by metrics. The generated
vector representation includes both structural and status information of the trace, with each system
metric corresponding to a specific dimension in the vector. Simultaneously, System Bias Extractor
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Fig. 5. The process of encoding traces in two parts: status-related and structure-related.

(§ 4.2) dynamically calculates the anomaly degree of each system metric. This degree serves as the
preference weight for the corresponding metric dimension. The larger the anomaly degree, the
higher the preference weight. The preference weights for each dimension form a preference vector
that determines which dimensions are more valuable.

During the online comprehensive sampling phase, TraStrainer takes into account the current
coming trace vector and a look-back window of previous trace vectors. It makes a sampling decision
that considers both the system bias and the diversity of the traces. On one hand, System-Biased
Sampler (§ 4.3) calculates the sampling probability for the coming trace based on the preference
vector obtained from System Bias Extractor, resulting in a system-biased sampling outcome. On the
other hand, Diversity-Biased Sampler (§ 4.4) determines the diversity-biased sampling outcome by
considering the structural and state differences between the coming trace and the previous traces.
Finally, Composite Sampler (§ 4.5) uses a dynamic voting mechanism to make the final sampling
decision based on the sampling budget and the current sampling frequency.

4 DETAILED DESIGN
4.1 Trace Encoder

Trace is not originally machine-readable and requires encoding into a machine-friendly format
(e.g., vector) for next-step analysis (e.g., clustering, sampling) [16]. However, previous approaches
suffered from insufficient manual intervention and a lack of interpretability. In order to address
these issues, Trace Encoder proposes an automated trace encoding method guided by system metrics,
which ensures that the dimensions of the resulting trace vector are interpretable.

As mentioned in § 2.1, a trace is a tree-like topology structure that contains valuable information
in both its status and structure. Therefore, we can divide the encoding of a trace into two parts:
status-related and structure-related, as shown in Fig. 5.

Encode the status-related part of the trace. When disregarding the structure of a trace, we can
perceive it as a bag of spans, denoted as S = {sy, ..., sp }. Each span, denoted as s, represents a unit of
work or operation within the trace. It includes essential information such as duration, status code, the
associated node or pod, as well as additional details provided by event annotations. The information
appended by event annotations can be complex and diverse. Previous approaches [16, 26] mostly
relied on manual selection of relevant information based on human experience. However, this
manual approach is costly and requires redefining rules when new fields are introduced. We leverage
system metrics to automatically determine the features we need.

DEFINITION 1 (RELATED SUB SPAN BAG Sy,;). For a metric m(m.node, m.type) and a trace t, let
S = {s1,...,Sn} to be the span bag of t. We use Sy, = {Sm15 ..., Smn} t0 denote the related sub span bag of
m, where sp,; must satisfy that s;,;.node = m.node and m.type related to s;,;.annotation.
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DEFINITION 2 (FEATURE VALUE f,,). For the related sub span bag Sy, = {Sm1, ---» Smn} Of the metric
m, we use Sq = {Sq1, ---» San} 10 denote the abnormal span in Sy,,, where s,; must satisfy that sq;.status
is abnormal. The feature value f,, of m is calculated as follows:

fm = (Sal +1) = Z Smi.duration. )
i=1

As mentioned in § 2.1, each key of the system state metric m includes the type of the metric and
the node it belongs to (e.g., SQL connection time on node C), which can be represented by a tuple
(m.node, m.type). For a trace t and its corresponding span bag S, we select a subset of spans that
are relevant to the metric m as the related sub span bag S,,,. S, represents the set of all behaviors in
trace t that are related to metric m (e.g., span 3 and 4 are the related spans of m; in Fig. 5). Therefore,
we calculate the statistical analysis of the spans in S, to obtain the feature value f;, of ¢ in the
corresponding dimension of m. We measure f;, by calculating the total duration and the number of
exceptions in the spans of S,,.

Encode the structure-related part of the trace. The trace structure shows the order and
hierarchy of service operations. We call it an invocation tree. Because there are many asynchronous
calls in the production environment, the order of spans at the same level on the trace can change [15].
Therefore, we focus on the invocation hierarchy of spans on the trace, rather than the strict order
of spans at the same level. For a trace t, each layer of its invocation tree is encoded as a feature in
the vector representation. Each span in a layer is represented by its parent span, method name, and
argument (referred to as pma). If there is no span for a trace at a certain depth, the corresponding
position is filled with null.

Dimension scalability and reduction. When new metrics are added or additional traces occur,
Trace Encoder can automatically expand the vector dimensions without the need for additional
manual intervention. For example, for newly introduced metrics, it only requires automatically
identifying the related sub span bag as mentioned earlier and performing the necessary statistics.
However, the vector expansion mechanism has a side effect of continuously increasing the dimension
of the trace vector. To address this, we have adopted a dimension reduction strategy. For the status-
related part, if it is observed that two metrics consistently have the same values for their dimensions
over a period of time, those dimensions are merged. For the structure-related part, the reason for
dimension redundancy is that a certain trace has a very deep call hierarchy but no longer occurs in
the future. To address this, we only focus on recent traces. If the dimensions with greater depth
have cleared corresponding values across all recent traces, those dimensions are removed.

4.2 System Bias Extractor

As mentioned in § 2.2, the runtime state of the system has a significant impact on sampling prefer-
ences. System Bias Extractor adaptively determines which metrics are more worthy of attention. It
assesses the anomaly degree of various metrics by comparing the current system metric values with
the expected values. It then generates a dimension preference vector that represents the preference
score of each metric at the present moment.

Assess the anomaly degree of metrics. As described in § 2.1, each metric m consists of a series
of time-series data, represented as m = {(t1,01), ..., (4, v,)}. Our goal is to calculate online the
anomaly degree « of each metric at the current time #, based on the historical time-series data within
a look-back window [#1, ..., fx_1]. We consider two alternative approaches: (i) statistical methods
and (ii) neural network models. Given that business operations in real production environments
often exhibit periodic patterns, it is crucial to learn the historical variations of the metrics in order
to better assess the current degree of fluctuations. Statistical methods such as boxplot [8] and
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3-sigma detection [57] can only provide certain statistical measures based on historical data, which
fail to learn the historical patterns. Therefore, we opt for the neural network model approach,
which can better learns the waveform patterns in historical data.

Due to the online nature of the System Bias Extractor, complex models such as LSTM [36] and
Transformer [41] variants are unable to meet the low latency requirements [11]. Therefore, we
need a lighter model to fulfill this task. Taking inspiration from recent advancements in time
series forecasting (TSF) [5], we have opted for a linear forecasting model. Zeng et al. [49] have
demonstrated that linear models outperform Transformer-based methods in time series prediction
tasks. We have adopted the DLinear algorithm [49], which combines a Decomposition scheme used
in Autoformer [42] and FEDformer [54] with linear layers, and made adjustments for our specific
task. This model takes a historical time series data window of a certain metric as input and outputs

the expected value of the current time point, denoted as v;. The difference between the actual

value v and the expected value v} is used to measure the degree of the anomaly, represented as
ool
~ max(op,0k)
Form the preference vector. After obtaining the current anomaly degree «; for each metric

m;, we consider «; as the preference score p; for that metric. The preference scores of all metrics

M form the preference vector P for the current moment, which is represented as = [ps, ..., pn].

. An example of assessing the anomaly degree of metrics is shown in Fig. 6.

4.3 System-Biased Sampler

The intuition behind System-Biased Sampler is that we prioritize traces that are more relevant to
the fluctuations within the system. To achieve this, we maintain a look-back window consisting
of recently collected traces. Based on the statistical measures of the traces within the look-back
window on each dimension, we calculate an attention score vector for the coming trace. We then
take the dot product of this attention score vector with the current system preference vector to
determine the system-biased sampling probability.

Calculate the attention score vector. During the sampling process, we maintain a dynamic
look-back window, denoted as ‘W = [ty, ..., fx], which consists of the most recent k trace vectors.
Here, we only consider the status-related part of each trace vector, denoted as t; = [ fij, ..., fni]. For
each dimension i, we calculate the mean y; and standard deviation o; of the values taken by the
previous k trace vectors in that dimension. When considering the coming trace f4;, the attention
score a; measures the increase in resource utilization in dimension i compared to the historical
traces, using Equation 4.3. The attention scores for all dimensions on the coming trace form the
attention score vector, denoted as A = [ay, ..., an].

a = M 3)
Oi
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Calculate the system-biased sampling probability. When a coming trace obtains a higher
attention score in dimensions with higher preference scores, it is more deserving of being kept.
Once we obtain the attention score vector A(ty,;) for the coming trace t,1, we perform a dot
product with the current preference vector #, and then apply a tanh function to map the dot
product result to the [0, 1] range. This yields the system-biased sampling probability ps(tx+1)-

2
Ps(ticer) = Tro 2P Al 1V ©

4.4 Diversity-Biased Sampler

The goal of Diversity-Biased Sampler is to identify edge-case traces and assign them a higher
sampling probability. To achieve this, we cluster the trace vectors within the look-back window
and calculate the mass of each cluster. When a new trace arrives, we locate the closest cluster and
calculate the diversity-biased sampling probability for the coming trace based on its similarity to
the closest cluster and the mass of the cluster.

Cluster traces within the look-back window. To calculate the uncommon degree of the
coming trace, we first establish patterns for previous traces. For a look-back window ‘W = [, ..., ],
we cluster the trace vectors within it. Assuming we obtain n clusters C = {cy, ..., ¢, } after clustering,
we calculate the number of traces included in each cluster, which serves as the mass of each cluster,
denoted as Ma = {maj, ..., ma, }.

Calculate the diversity-biased sampling probability. For the coming trace i, we calculate
its Jaccard similarity [29] with each cluster and consider the cluster with the highest similarity as
the closest cluster, denoted as cl’C o The mass of c,’c e denoted as ma;C " reflects the commonality of

The Jaccard similarity si(fx+1) between fx4; and ¢ | reflects their matching degree. Therefore,
the smaller the value of ma; | and si(tk+1), the larger the uncommonness of the coming trace fx+;.
We use the following equation to calculate the diversity-biased sampling probability pg(tx.1)-

’
ck+1'

1
may, #si(t1)

palten) = 7 ®)

i=1 majxsi(t;)

4.5 Composite Sampler

Composite Sampler provides a more comprehensive measure of the importance of a trace by taking
into account both system state and trace diversity. It also considers the impact of the budget on the
sampling strategy and utilizes a dynamic voting mechanism to make the final sampling decision.
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Table 1. Experiment Datasets Overview.

Dataset Microservice Trace Metric Batch | Uncommon | Problem-related | Fault Types
atase Benchmark Number | Number | Number | Label Rate Label Rate Number
A _ 13 Production 909,797 ‘ 121 ‘ 62 ‘ 2.5% ‘ 2.5% ‘ 6
Microservice systems
B ‘ OnlineBoutique and ‘ 112,000 ‘ 32 ‘ 56 ‘ 5.0% ‘ 5.0% ‘ 5

TrainTicket

After System-Biased Sampler and Diversity-Biased Sampler provide their respective sampling
probabilities ps(t) and p4(t) for the coming trace t, TraStrainer generates a random number between
[0, 1]. It then compares this random number to ps(t) and p4(t) separately. If the sampling probability
p(t) for a certain aspect is greater than the random number, the sample result for that aspect is
considered "True", otherwise it is considered "False".

Dynamic Voting Mechanism. In order to align the overall sampling rate with the expected
budget, we have implemented a dynamic voting mechanism to combine the sampling results from
the two previous samplers. Using a look-back window, we dynamically track the recent sampling
frequency, denoted as 6, and compare it with the budget sampling rate, denoted as f. If 4 is greater
than S, we need to enforce stricter sampling rules. In this case, we utilize an AND gate as the voting
mechanism, meaning that TraStrainer will only sample the trace when both samplers yield a "True"
result. On the other hand, if 0 is smaller than f, we can relax the sampling rules. In this scenario,
we employ an OR gate as the voting mechanism, indicating that TraStrainer will sample the trace
as long as at least one sampler produces a "True" result, as shown in Fig. 7. The sampling decision
ultimately determines whether the coming trace ¢ will be stored or discarded.

5 EXPERIMENT EVALUATION

We conducted experiments to evaluate how well TraStrainer performs in biasing sampling towards
problem-related and edge-case traces. We also assessed its effectiveness for downstream root cause
analysis tasks and analyzed the contribution of considering both sampling factors simultaneously.
Through these studies, we aim to answer the following research questions(RQs).

¢ RQ1: How does the quality of the traces sampled by TraStrainer compare to the baseline ap-
proaches?

e RQ2: How effective is TraStrainer in downstream trace-based root cause analysis compared with
baseline approaches?

e RQ3: How much does considering both system runtime state and trace diversity contribute to
the effectiveness of TraStrainer?

e RQ4: How efficient is the sampling of TraStrainer?

5.1 Datasets

We evaluated TraStrainer using two datasets, namely A and $B. Dataset A consists of real-world
data generated from 13 production microservice systems of Huawei. Dataset B is derived from two
widely-used microservices benchmarks, OnlineBoutique [12] and TrainTicket [9]. Table 1 shows
the detailed information of the two datasets.

Dataset A Setup. The dataset is generated from 13 real microservice systems provided by
Huawei. It involves 284 services and 1327 nodes. We collected trace data and metric data from 62
incidents that occurred between April 2023 and August 2023, resulting in 62 batches. The incidents
include various types of failures such as high CPU load, network delay, slow SQL execution, failed
third-party package calls, code logic anomalies, and thread pool exhausted. The dataset comprises
a total of 909,797 traces and 121 metrics. SREs and technical experts annotated the uncommon
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and problem-related traces, with an average label rate of 2.5%. They also annotated the actual root
causes for each batch to evaluate the accuracy of downstream root cause analysis.

Dataset 8 Setup. The dataset is generated from two open-source microservice benchmarks:
OnlineBoutique [12] and TrainTicket [9], which have been widely used in previous studies [6, 22,
45, 48, 50, 56]. We deployed them on a Kubernetes [1] platform consisting of 12 virtual machines.
Each virtual machine is equipped with an 8-core 2.10 GHz CPU, 16GB memory, and runs on Ubuntu
18.04 OS. To collect traces, we utilized Opentelemetry Collector [31] and stored them in Grafana
Tempo [13]. In order to simulate latency or reliability issues in the microservice system, we injected
a total of 56 faults using Chaosblade [4] into these two microservice benchmarks. We collected
corresponding trace data and metric data, resulting in 56 batches. The fault types included CPU
contention, CPU consumed, network delay, code exception, and error return. The dataset comprises
a total of 112,000 traces and 32 metrics. We annotated the uncommon traces and problem-related
traces based on the injected fault positions and types, with an average label rate of 5.0%.

5.2 Baselines

Baseline Sampling Approaches. To evaluate the effectiveness and efficiency of TraStrainer, we
compare it with four baseline sampling methods as follows.

e Random is the head-based sampling approach that decides whether to capture each trace with
equal probability.

e HC [20] is an offline tail-based sampling approach using hierarchical clustering, which group
traces by label counting to conduct sampling.

o Sifter [21] is an online tail-based sampling approach, which approximates the distributed system’s
common-case behavior and samples new traces based on how well represented they are.

e Sieve [16] is an online tail-based sampling approach, which uses robust random cut forest (RRCF)
to detect uncommon traces and sample them with a high probability.

Baseline Downstream Analysis Approaches. Root cause analysis (RCA) is a common task
performed in downstream analysis. To evaluate the impact of sampling methods on the analysis
results, we combined the following three state-of-the-art trace-based RCA methods with different
sampling approaches.

e TraceAnomaly [26] leverages deep learning to learn normal trace patterns offline, and then
detects abnormal traces and identifies root causes online.

o TraceRCA [23] utilizes spectrum analysis to identify root cause services by analyzing the propor-
tion of normal and abnormal invocations.

e MicroRank [45] identifies and ranks root causes by combining personalised Pagerank method
and spectrum analysis.

Variants of TraStrainer. To evaluate the impact of combining system state and trace diversity,
we create the following two variants and conduct ablation experiments.

o TraStrainer w/o M is a variant that only considers trace diversity to set sampling preferences.
We achieve this by using the sampling results from the Diversity-Biased Sampler as the final
sampling outcome.

e TraStrainer w/o D is a variant that considers only the system runtime state to set sampling
preferences. We achieve this by using the sampling results from the System-Biased Sampler as
the final sampling outcome.

5.3 Evaluation Metrics

To evaluate the quality of the sampling results, we rely on two metrics: proportion and diversity.
Both of them have been widely utilized in previous studies [11, 16, 51] and are defined as follows.
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e Proportion (PRO) reflects the ability of an approach to bias towards valuable traces. Let T be
the total number of labeled traces, and ¢ denote the number of labeled traces that are sampled.
The proportion of labeled traces can be calculated as: PRO = %. In our experiments, we had
three variants based on different labels: the proportion of uncommon traces, the proportion of
problem-related traces, and the proportion of traces that are both uncommon and problem-related.

e Diversity (DIV) reflects the ability of an approach to provide a representative sample. We denote
the sampled traces obtained after sampling as ST = {sti,...,st,}. Clustering them based on
execution path yields trace patterns TP = {tpy, ..., tp; }. The diversity of the sampling results is
simply the number of trace patterns obtained, which is denoted as DIV = m.

To assess the effectiveness of downstream root cause analysis, we employ three commonly used
evaluation metrics: A@1, A@3, and MRR. These metrics serve as standard measures for evaluating
the performance of RCA methods [25, 45] and are defined as follows.

o Top-k accuracy (A@k) represents the probability that the true root cause is included in the
top-k positions of the results. Let rc; be the root cause of the i-th issue, Rankl’.c be the top-k result

list for the ith issue. A@k can be calculated as: A@k = ﬁ Zm (rci € Rankf). Higher values of

i=1
A@*k indicate better accuracy.

e Mean reciprocal rank (MRR) represents the inverse of the rank of the first identified root cause.
If the actual root cause is not present in the result list, the rank is considered to be infinity and
its reciprocal is zero. Let r; be the rank of the root cause in the returned list for the ith issue. The
calculation for MRR is: MRR = |—}| Zul L Higher values of MRR indicate better accuracy.

i=1 rs;

5.4 RAQ1: Sampling Quality of TrasTrainer.

To evaluate the sampling quality of TraStrainer, we compare its sampling results with four base-
line methods. Our evaluation of sampling quality is divided into two aspects: bias sampling and
representative sampling.

54.1 Bias Sampling. Our first set of experiments evaluates TraStrainer’s ability to bias towards
uncommon traces and problem-related traces. We conducted experiments on both dataset A and
8. To investigate the impact of different budgets, we set five gradient budget sampling rates: 0.1%,
1%, 2.5%, 5%, and 10%. These rates encompass budgets that are both higher and lower than the label
rate. As the online sampling approach does not allow for precise fixed sampling rates, we followed
the approach used in previous study [16]. If the final sampling quantity exceeded the budget, we
removed a portion of the sampled traces in reverse order until the sampling result met the budget.
Conversely, if the sampling quantity fell short of the budget, we randomly selected additional traces
from the unsampled ones to match the budget. We conducted repeated experiments with the same
settings for each batch and recorded the average proportion of the results.

Bias towards uncommon traces. Fig. 8 (al) and (b1) show the proportions of uncommon traces
sampled by different approaches across various budget settings in two datasets. TraStrainer and
Sieve exhibit similar performance, outperforming the other three approaches. Random sampling,
with no specific preference, achieves proportions roughly equivalent to the budget sampling rate.
HC and Sifter, which solely consider trace structure while disregarding time delays, lack the ability
to identify uncommon traces that only differ in execution time. Therefore, their proportions on
both datasets do not exceed 0.7.

We conducted a detailed comparison between TraStrainer and Sieve, both of which consider
both time delays and structure during encoding, resulting in superior recognition of uncommon
traces compared to other methods. When the budget is low, TraStrainer performs better, thanks to
its metric-based encoding approach, which effectively distinguishes anomalies. However, when
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Fig. 8. Proportions of uncommon, related, and uncommon-related traces sampled by different approaches
across different budget settings in two datasets.

the budget is around the label rate (2.5% in dataset A and 5% in B), TraStrainer’s proportion is
lower than Sieve. This is because, in addition to bias towards uncommon traces, TraStrainer also
exhibits a bias towards problem-related traces, which include some common traces. When the
budget exceeds twice the label rate, both TraStrainer and Sieve achieve a proportion of 1, meaning
all uncommon traces are captured.

Bias towards problem-related traces. Fig. 8 (a2) and (b2) show the proportions of problem-
related traces. TraStrainer outperforms the four baselines in both datasets significantly. Sieve, Sifter,
and HC exhibit similar proportion growth to random when the budget is high, with proportions
below 0.5 in both datasets. TraStrainer takes system runtime state into account when setting
sampling preferences. When the budget equals the label rate, the proportion for problem-related
traces is around 0.6. When the budget is twice the label rate, the proportion approaches 1.0, meaning
that all problem-related traces are captured.

Bias towards uncommon problem-related traces. Fig. 8 (a3) and (b3) show the proportions
of traces that are both uncommon and problem-related. TraStrainer outperforms the baseline
methods with better results even at lower budgets. When the budget rate equals the label rate (1%
in dataset A and 2.5% in B), TraStrainer achieves a proportion above 0.9 in both datasets, while
the other baselines remain below 0.55. <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>