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Abstract—Modern industrial systems are often large-scale
distributed systems composed of dozens to thousands of services,
leading to difficulty in anomaly detection and localization. KPIs
(Key Performance Indicators) record the states of different
services and are presented as time series, which reflect the status
of the system. However, due to the dynamic and complex periodic
patterns embedded in KPIs, pinpointing anomalous behavior of
these multivariate time series data quickly and accurately is a
challenging problem. The current state-of-the-art deep-learning-
based anomaly detection methods model global inter-KPI depen-
dency, causing the limited ability to detect local subtle anomalies
and poor interpretability. In practice, interpreting anomalies can
accelerate problem localization and further troubleshooting. In
this study, we propose TS-InvarNet, an interpretable end-to-end
anomaly detection and diagnosis framework based on tempo-
spatial KPI invariants. Extensive empirical studies on three
real-world industrial datasets and a widely-used open-source
system demonstrate that TS-InvarNet can outperform state-of-
the-art baseline methods in detection and diagnosis performance.
Specifically, TS-InvarNet increases best F1-scores by up to 27%
compared to the baselines.

Keywords-Anomaly detection; Root cause analysis; Invariant
network; KPIs; Correlation;

I. INTRODUCTION

Modern industrial systems are often large-scale distributed
systems composed of dozens to thousands of services running
in different machines. For instance, there are more than 3000
services in the WeChat system, which are running over 20000
machines [1]. Each service in the system runs as a set of
instances and communicates with other services through HTTP
or RPC. Such a massive quantity of services and the complex
dependencies among them render distributed systems often
fail due to various reasons, such as network delay, hardware
failures, and application faults [2]. Once a fault occurs, it may
affect the user experience and even cause economic losses and
other unexpected consequences. For example, the cost of a 7-
hour DNS outage at Facebook is estimated to be as high as
$47 billion [3]. Therefore, it is essential to detect the anomaly
and locate the root cause at ultra-fast speeds.

The status of the system can often be reflected in KPIs,
which record the states of different services and present them
as time series. Therefore, closely monitoring and analyzing
various KPIs (e.g., CPU load and network usage) collected
from each instance of services is a mainstream approach to
detect and locate anomalies in academia and industry [4]–
[11]. However, anomaly detection is becoming increasingly
challenging in large-scale systems due to the increasing data
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Fig. 1: Some real-world KPI data collected from a larger-scale
distributed system in a big company.

volatility and data modality. In particular, the diverse and
complex periodic patterns arise in KPIs, leading to difficulty
in anomaly detection and further trouble-shooting. Further,
the periodic patterns may be dynamic and sometimes de-
flect from the normal status. Taking online retailers as an
example, the sales amount presents a daily cycle but can
change significantly when there are big promotions such as
black Friday [12]. Moreover, interpretability, which is often
overlooked, should be a key capability for anomaly detection.
In practice, anomaly detection is not a separate part but serves
for root cause analysis and trouble-shooting. The detailed
interpretation helps critical decision-making and speeds up the
process for operators to diagnose performance issues.

Recent work on time series anomaly detection can be
categorized into multivariate anomaly detection [4], [13]–[15]
and univariate anomaly detection [9], [16]. Univariate anomaly
detection approaches, mainly based on one specific KPI,
model the temporal dependency but cannot capture complex
spatial relationships [4]. They are more prone to identify the
normal changes as anomalies, causing more false alarms. In
contrast, multivariate anomaly detection approaches can learn
the intrinsic connections among KPIs, well representing the
system’s overall status. Recent popular multivariate anomaly
detection are based on deep learning approaches, such as
Variational Autoencoders(VAE) [4], [14], [17] and Genera-
tive Adversarial Network(GAN) [5], [18], [19]. While deep
learning based approaches obtained competitive performance
on public datasets, there are concerns about their practical
ability for critical decision-making or trouble-shooting because
of their limited interpretability [7], [8], [20]. Moreover, the
feasibility of deploying and serving computationally expensive
VAEs or GANs independently for each server is challenging
for the technology companies operating thousands of servers



[7].
In addition, deep learning based approaches mainly focus

on the global multivariate time series and learn inter-KPIs
dependency while may neglect the importance of subtle local
information. As shown in Fig. 1, not every KPI performs
abnormally when an anomaly appears in a large system. The
value of KPI 0 and KPI 2 just perform some sudden increase
in Anomaly 2, which may not be detected by methods based
on modeling global inter-KPI dependency. This is because the
Anomaly 2 is determined as a normal fluctuation of the overall
status in those methods. Further, ignoring local information
may lead to the limited ability to interpret an anomaly. Though
some recent deep learning based methods have provided
interpretation based on some raw values generated by the deep
neural networks (e.g., the reconstruction probabilities used in
[4], [21]), these methods may cause some misinterpretations
since anomalies may bring bias to the learned embeddings [8].
They still lose insights into the underlying root causes.

To address the drawbacks of existing work, this paper
proposes an interpretable multivariant anomaly detection and
localization framework based on tempo-spatial KPI invariants,
named TS-InvarNet. Our key idea is based on the existence of
a stable relationship between KPIs (details shown in Sec.II).
TS-InvarNet primarily comprises four procedures, including
shape-based clustering, invariants mining, anomaly detection
and anomaly localization. Considering the increasing amount
of KPIs, the shape-based clustering module first adopts shape-
based clustering to exclude repetitive and redundant invariants
to accelerate the construction of an invariant network. Invari-
ants mining then learns complicated global and local depen-
dencies by tempo-spatial models. Finally, anomaly detection
detects anomalies by the evolution of the global invariant
network while anomaly localization performs anomaly local-
ization based on interpreting the changes of local invariants.

In general, our contributions of this paper are four-fold:
• We propose an interpretable end-to-end framework for

anomaly detection and localization based on tempo-
spatial KPI invariant network in distributed services.

• We introduce a shape-based clustering and a tempo-
spatial model to accelerate the build procedure of accurate
invariant networks.

• We adopt causal analysis to locate the root cause KPI
among many abnormal KPIs. The abnormal KPIs are
determined by our method based on the variation of the
invariant network without system topology or other extra
information.

• We design and implement TS-InvarNet to evaluate the
effectiveness of our approach with real-world data. The
experiment results show that our approach achieves the
best F1-score higher than 94.7%, which outperforms
state-of-the-art approaches by up to 27%. The ablation
studies further demonstrate the great effectiveness of
shaped-based clustering in reducing the complexity of
mining invariants. The training time of TS-InvarNet takes
only 1/3 of the time of the original TS-InvarNet without
clustering.
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Fig. 2: An example of KPIs’ change on fault of Instance 2 in
Service A. The red lines signal the occurrence of the anomaly.

The rest of the paper is structured as follows. Section II
presents our motivation. Section III introduces the overview of
TS-InvarNet framework and depicts the design of TS-InvarNet.
Section IV shows the experimental evaluation. we review the
previous related work in section V and Section VI concludes
this paper.

II. MOTIVATION

In this section, we first observe the KPIs of different services
in a distributed system. Studying the changes in KPIs offers
insights to design our anomaly detection and localization
framework. Fig. 2 shows three KPIs’ changes belonging to
three service instances. We present a typical case where a
fault occurs at time t on Instance 2 of Service A.

Stable relationships, namely invariants, exist among
KPIs. We observe some stable relationships among the KPIs
of the distributed services. If the stable correlation holds all the
time, it is considered an invariant. More formally, an invariant
can be defined as:

Definition 1: Given two variables, X and Y , if there exists
a function f(·), which makes Y = f(X). If the equation does
not change, X ↔ Y is defined as an invariant.
As shown in Fig. 2, Service B is a down-streaming service of
Service A. As more users visit the Service A, the workload
of Service A increases and its CPU usage varies with the
workload. The Service A will send more requests to its
downstream Service B, leading to an increase in CPU usage
of Service B. Thus there exist stable correlations between
CPU usage of Service A’s instances and Service B’s instances.
Because of the load balancer, there also exists an invariant
between CPU usage of two instances in service A. Therefore,
we get three invariants, namely:
(Instance 1 of A).CPU usage↔ (Instance 2 of A).CPU usage,
(instance 1 of A).CPU usage↔ (Instance 1 of B).CPU usage,
(Instance 2 of A).CPU usage↔ (Instance 1 of B).CPU usage.

When a fault occurs, the invariant between KPIs will be
broken. Without more information about systems, a solution
to settle the fault is to find the change of patterns between
two instances’ KPIs compared with history. There used to
be three invariants among the three instances’ CPU usage.
But when a fault occurs in Instance 2, two invariants of
Instance 2’s CPU usage are broken while the third one still



exists. Thus we can determine the Instance 2 failed. There are
more subtle anomalies that only manifest locally in distributed
services. If not taken seriously, those anomalies will lead to
serious failures. The subtle anomalies can be ignored and are
hard to interpret from the view of the overall system. While
with invariants, we can capture both the global and local
relationships amongst KPIs to tackle these problems.

Invariants can identify anomalies and interpret them.
Univariate anomaly detection methods are more prone to raise
an error alert and cannot capture the complex spatial relation-
ship. Three KPIs in the case will be detected as anomalous
but they cannot figure out where the most anomalous KPI
is, not conducive to trouble-shooting. Multivariate anomaly
detection methods model the global inter-KPI dependency,
well representing the system’s overall status. But they pay little
attention to local information. The output of these methods is
only the overall status of the system. So the three KPIs are also
all detected as anomalous but it is hard for them to identify
a critical anomalous KPI or to conduct further root cause
analysis. An invariant network can be generated by capturing
pairwise stable relationships amongst KPIs. The evolution of
invariant networks provides some potential global information
about abnormal system behaviors, which can help to identify
an anomaly. In addition, the violation of the local invariants
helps to find the underlying correlation among anomalous
KPIs. Invariant network represents the information of the sys-
tems’ overall status while invariants provide local information
to detect subtle anomalies and interpret them. It can further
perform root cause analysis based on the interpretation.

III. APPROACH

A. Overview of TS-InvarNet

Fig. 3 provides an overview of our TS-InvarNet framework.
TS-InvarNet consists of offline and online procedures. In the
offline procedure, we adopt a similarity measure to conduct
shaped-based clustering, which obtains several groups of KPIs.
For univariate time series in each group, we apply a tempo-
spatial model to model each pair of time series. Then we use a
probability distribution-based judgment method as a threshold
to automatically check whether the model will hold all the
time. After that, we get an invariant network and we store
the invariant network in the form of a compressed sparse
row to reduce storage space. The model only needs several
observations of each KPI to implement diagnosis in the online
procedure. With the threshold obtained in offline procedures,
the system will generate an invariant network for every ob-
servation. Compared with the network in the normal state of
the system, we can obtain a series of evolution networks. We
filter the false alarms by discarding the invariants with only
a very small proportion of the corrupted ones and we can
obtain accurate alarms. For the detected anomalies, we can
utilize causal analysis to get the root cause KPI.

B. Invariant reduction

Since the amount of KPIs are tens of thousands, it takes
much time to mine invariants in a pairwise way. Some in-

Shaped-based 
clustering

Similarity
Measure

Tempo-Spatial
Modeling

OFFLINE

Invariant 
Check

Threshold

Yes

ONLINE

Model database

historical 
KPIs

Flow Data 
KPIs

Difference

titi

Clustering

Data

Localization

Detection
FilteringAnomaly

Root 
Cause

t0t0InvariantsInvariants

Rank list

1

Alert time

2
3
4

Store

Fig. 3: The Overview of TS-InvarNet.

variants are repetitive and redundant, resulting in more time
to observe the evolution of the invariant network. Considering
that some time series may be characterized by similar time pat-
terns, we adopt a shape-based clustering approach to classify
KPIs. Then we can mine invariants in each cluster to compress
the invariant network and reduce the time consumption.

1) Shaped-based Similarity Measure: We adopt Shaped-
based Distance (SBD) to measure the distance between each
two KPIs [22]. For two time series ~x = (x1, ..., xm) and
~y = (y1, ..., ym), the similarity of them can be measured well
with cross-correlation even if ~x and ~y are not properly aligned.
Keeping ~y static, slide ~x over ~y to compute their inner product
for each shift s of ~x. The shift of ~x can be denoted as follows:

~x(s) =


(

|s|︷ ︸︸ ︷
0, . . . , 0, x1, x2, . . . , xm−s), s ≥ 0

(x1−s, . . . , xm−1, xm, 0, . . . , 0︸ ︷︷ ︸
|s|

), s < 0
. (1)

Considering all possible shifts s ∈ [−m,m], the inner-
product CCs(~x, ~y) is defined as Eq.(2). The max value of
CCs(~x, ~y) means that the similarity of ~x and ~y reaches
the greatest at the optimal shift s. To normalize the cross-
correlation, NCCc(~x, ~y) is defined as Eq.(3), limited in
[−1, 1]. The value 1 represents two time series are perfectly
similar.

CCs(~x, ~y) =

{∑m−s
i=1 xi · ys+i, s ≥ 0∑m+s
i=1 xi−s · yi, s < 0

, (2)

NCCc(~x, ~y) =
CCs(~x, ~y)

|~x| ∗ |~y|
. (3)

According to NCCc(~x, ~y), SBD is defined as Eq.(4). The
value of SBD falls in the range of 0 to 2, where 0 indicates
a perfect similarity and the smaller value means the higher
shape similarity.

SBD(~x, ~y) = 1−NCCc(~x, ~y). (4)

2) Clustering: To extract the most significant clusters from
KPIs, an efficient and automatical clustering algorithm is in
need. We use HDBSCAN as the base clustering algorithm due
to its insensitivity to parameters and no need to predetermine
the number of clusters [23]. More importantly, HDBSCAN



can automatically extract the most significant clusters by the
simplified clustering hierarchy it generates.

Density-based methods, like DBSCAN [24], use core dis-
tance and min points to measure the density of a cluster,
requiring a proper global density threshold to obtain mean-
ingful clusters. The threshold is set too low causing too many
objects to be considered as noise while too high only one
cluster can be obtained. Besides, it is inaccurate to measure
the density with a global threshold since the density of clusters
is not always the same in a classification problem. HDBSCAN
transforms the density space to spread apart objects with low
density. It first uses an inexpensive and simple method, the
distance from object x to the kth nearest neighbor, Nk(x),
to estimate density. Then it defines a new core distance
and distance metric between objects as Eq.(5) and Eq.(6),
respectively:

corek(x) = d(x,Nk(x)), (5)

dmreach−k(a, b) = max{corek(a), corek(b), d(a, b)}, (6)

where d(a, b) means the origin distance of a and b. After being
transformed, the dense objects keep the same distance but
sparse objects are pushed away from at least the core distance
of any other objects. When the clusters have varying local
densities, it is hard to obtain proper clusters with the global
threshold. HDBSCAN builds the cluster hierarchy over various
thresholds. The step can be optimized by Minimum Spanning
Tree(MST), which produces a clustering tree containing all
partitions in a hierarchical way.

The large and complicated cluster hierarchy can be con-
densed down into a smaller tree with a little more data
attached to each node using minimum cluster size [25]. Then
considering the stability of the cluster as a way to determine
if it is prominent, define λ = 1

distance . Specifically, λmin(Ci)
and λmax(Ci) are the value when the cluster Ci is generated
and when the cluster is split into smaller clusters, respectively.
Define λmax(xj , Ci) as the value when the object xj no longer
belongs to the cluster Ci. So the stability of each cluster can
be computed as Eq.(7). Traversing the tree bottom-up, update
the total stability ŜCi based on Eq.(8),

S(Ci) =
∑

xj∈Ci

(λmax(xj , Ci)− λmin(Ci)), (7)

Ŝ(Ci) = max{S(Ci),
∑

Cij∈Cichildren

Ŝ(Cij)}, (8)

where Cichildren is the children of Ci. To select Ci or Ci’s
subtrees depends on the result of updated total stabilities.
Concretely, the cluster’s stability will be updated as the sum of
the children‘s stabilities if the latter is greater than the former.
If the cluster’s stability is greater, it will instead be declared
as the selected cluster ignoring all its descendants. Once the
root node is reached, the currently selected set of clusters is
returned as the result. Fig. 4 shows the results of clustering
on a dataset of KPIs. We can observe that there are similar
variations in the same cluster while the shapes of KPIs in
noises are different. We search for invariant relationships in the
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Fig. 4: The results of shaped-based clustering on KPIs col-
lected from an Internet company.

same cluster. Then select a representative KPI from different
clusters to further build invariants with the noise KPIs.

C. Invariant mining

1) Invariant Model: To acquire accurate invariant relation-
ships, the model chosen to evaluate whether two KPIs hold
the invariant relationship is essential. Different from the work
[26]–[29], TS-InvarNet constructs invariants using SARIMAX
(Seasonal AutoRegressive Integrated Moving Average with
eXogenous regressors model) rather than autoregressive model
with exogenous input. SARIMAX can effectively mine the
Tempo-Spatial relationship between KPIs with multiple peri-
ods and complicated trends. It is a state-space model that not
only reflects the internal state of the system but also reveals
the relationship between the internal state of the system and
external input variables.

SARIMAX model consists of 5 parts: the seasonal term
(S), the autoregressive term (AR), the integrated term (I), the
moving-average term (MA), and the eXogenous term (X). The
AR term means the value at one time is considered as a
weighted sum of past values while the MA term is a weighted
sum of past residuals. The S term and the I term are used
to differentiate the time series for stationary. For the natural
interpretations of the estimated parameters [30], the model is
specified as follows:

yt = βtxt + ut, (9)

φp(L)φ̃P (Ls) ∆d∆D
s ut = A(t) + θq(L)θ̃Q (Ls) εt. (10)

The Eq. (9) is a linear regression and the Eq.(10) simply
describes the SARIMAX process followed by the error com-
ponent. In the Eq.(10), the definition of the parameters is as
follows:
• L is an operator which finds the past n observations of

the current moment. For example, yt−2 = L2yt.
• φp(L) and φ̃P (Ls) represent the non-seasonal and the

seasonal autoregressive lag polynomial, respectively.
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Fig. 5: The Q-Q plot of fitness scores of two pair of KPIs.

• ∆d∆D
s ut is the result of differencing the time series d

times and seasonally defferencing D times.
• A(t) represents the trend polynomial.
• θq(L) and θ̃Q (Ls) denote the non-seasonal and the

seasonal moving average lag polynomial, respectively.
• εt represents the residuals between the observed value

and estimation for the current period.
The parameters are solved mainly by maximum likelihood

estimate (MLE) [31]. For two time series ~x = (x1, ..., xt) and
~y = (y1, ..., yt), We can obtain parameters Φ as follows:

Φ = (βt, φ1, . . . , φp, φ̃1, . . . φ̃q, θ1, . . . , θP , θ̃1, ..θ̃Q). (11)

2) Invariants Extracting: Based on parameter Φ and new
observations, we can calculate the estimation ŷ(Φ|t). To
evaluate how well the learned model fits the observations,
we use RMSE (Root of Mean Square Error) to calculate a
fitness score. Here we use a sliding window technique and
set the length of a window as m. When the window slide w
observations, the RMSE will be calculated once as Eq.(12)
shows:

Fscore = RMSE =

√√√√ 1

m

m∑
i=1

(yi − ŷi)2. (12)

A static threshold does not work well to determine whether
an invariant relationship exists since the scales of different
KPIs differ and the fluctuation of origin data would have an
influence on Fscore. We employ the Quantile-Quantile (Q-Q)
plot of fitness scores to assess the appropriate fit and find
the optimal distribution is normal distribution. So we assess
an invariant relationship by checking whether the distribution
of the fitness scores follows the normal distribution. In more
detail, if the points on the Q-Q plot are approximately in the
vicinity of a straight line, the scores conform to the normal
distribution and thus there exists an invariant. The slope of the
straight line is the standard deviation and the intercept is the
mean. Fig. 5 shows the Q-Q plot of the fitness scores of two
pair of KPIs. We can determine whether they are an invariant
or not with Q-Q plot.

D. Anomaly Detection

The combination of a large number of invariants could ef-
fectively characterize large, dynamic, and complex distributed
systems. When new observations arrive, we compute an
anomaly score for each pair of invariants. If new scores belong
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Fig. 6: The invariant network in different states of a system.

to the extreme value of distribution we identified in the offline
process, we determine that the invariant is violated. However,
one broken invariant may not imply an occurring anomaly
because of noise or some sudden fluctuation of time series. So
it is quite straightforward to consider observing from the whole
invariant network. Only when a certain number of invariants
are broken can the whole system be considered anomalous.
The Eq.(13) illustrates how to determine an anomaly, where
Invart0 is the invariant network obtained from offline process,
Invart1 is the invariant network at time t1 in the online
process, sum is the number of invariants and τ is the preset
threshold.

sum(Invart1 − Invart0)

sum(Invart0)
> τ. (13)

E. Anomaly Interpretation and Localization

It is beneficial for problem localization to interpret a de-
tected anomaly by finding a group of anomalous KPIs. Some
KPIs may be affected by failures and perform abnormally,
while some will not. The fault may break most invariants
of an anomalous KPI. So we interpret the anomaly based
on the proportion of broken invariants to the total invariants.
Fig. 6 shows an invariant network in different states of a
distributed system, where the dark green in the anomalous
graph represents broken invariants. Most broken invariants
present a continuous trend while some appear sporadically.
The latter may be false alarms, which should be discarded
to reduce the complexity of subsequent analysis. Specifically,
we calculate the percentage of broken invariant of each KPI,
εi and rank εi. Consider a higher ranking of εi as a more
anomalous KPI and the εi below the average as false alarms.

The solution to localize the root cause KPI cannot be
simply converted to find the anomalous KPI appearing earliest
in the entity. Fig. 7 shows the evolution of an invariant
network after a failure occurred. From Fig. 7(a) we can
observe the red edges around nodes 4, 6, 29, and 46 are
more than others, indicating they are the first to show the most
anomalous behaviors. However, as the anomaly spreads, the
broken invariants of nodes 76, 38, 23, and 49 exceed others,
implying they have a strong association with the failure. In
fact, they are the KPIs monitoring the root cause service.
The above observation validates our claim and we can further
explain the observations. For one thing, the duration of some
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Fig. 7: The evolution of an invariant network when a failure occurred. The broken invariants of node 76 and 23 grows
with time indicating there are strong correlation between them and the failure. In fact, Node 76 represents CPU of a service’s
instance injected with CPU fault and 38 represents its workload. Node 23 and 49 represent workload of another two instances
of the service. The rapidly propagating failure makes it difficult to distinguish the true root cause KPI.

failures is relatively short but failures can rapidly propagate.
Since KPIs are sampled at a coarse granularity, it seems like
the root cause KPI and the affected KPIs behave abnormal
simultaneously. For another, as there is possibility of false
alarms, it is difficult to distinguish between a root cause KPI
and a false alarm. Another significant conclusion that can be
drawn from the above observations is that the invariants of the
root cause service’s KPIs are indeed broken most.

We can determine the probable root cause KPIs based on
the number of broken invariants. But it is difficult to further
determine the root cause KPI because there are strong corre-
lations between the probable root cause KPIs. In Fig. 7, the
nodes 38 and 76 represent the KPIs monitoring workload and
CPU of the root cause service’s instance, respectively. While
the nodes 23 and 49 represent the KPIs monitoring workload
of another two instances of the root cause service. To identify
further which KPI is more likely to be the root cause, we
use Granger causality test [32], a hypothesis testing statistical
method, to capture causality among anomalous KPIs.

Granger Causality test is informally defined as follows. If
with the history of Y, the error δxy in predicting X is less
than the error δx in predicting X only with the history X,
we can say the KPI Y is Granger-causing the KPI X. We
check whether the test is valid via F-test [33]. If the p-value
is below a critical value (i.e., 0.05), the null hypothesis (i.e.,
Y does not granger-cause X) is rejected [34]. After applying
the Granger Causality tests to anomalous KPIs, we can obtain
a causality graph. In the causality graph, nodes denote KPIs
and edges represent causal relations among KPIs. We rank the
nodes according to outdegree centrality. The probability that
the node is a root cause KPI depends on the outdegree of the
node. After the step, the root cause KPI 76 in Fig. 7 can be
determined.

IV. EXPERIMENT

A. Experiment Setup
1) Dataset: We conduct experiments on three real-world

industrial datasets to illustrate the performance of anomaly

TABLE I: The detailed infomation of Industrial Datasets

Dataset Services KPIs Training Days Testing Days Anomaly Ratio(%)

Dataset1 30 19 20 25 5.25

Dataset2 30 19 20 25 20.26

Dataset3 13 11 5 2 0.55

detection. Since few open-source datasets cover scenarios
where the anomaly propagates widely with labels of root cause
KPIs, we use one open-source microservice system to validate
the performance of anomaly interpretation and localization.

Industrial Datasets: Two datasets, namely Dataset1 and
Dataset2, are open-source datasets 1, which are collected from
30 online service systems. They are sampled once every five
minutes and collected for 5 weeks. Dataset3 is collected from
online cloud servers in a game business of a big company,
which are selected from 13 cloud servers that suffered from
failures. A total of 11 KPIs are monitored, such as CPU usage,
disk usage, and memory usage. The KPIs are collected at
the interval of one minute for 7 days. We did not use the
well-known dataset SMD from [4] since it is of low quality
as [7], [8], [20] claimed. Its labeled anomalies are Gaussian
outliers of high acuteness, which can be easily detected [20].
The detailed information of each dataset is listed in Table I.

Hipster-shop microservice system: Hipster-shop is an
open-source microservice system, which is a widely-used
benchmark designed to aid demonstration and testing of mi-
croservices technologies [35], [36]. It contains 10 microser-
vices, such as product, cart and currency, where users can
browse products, add them to the cart and purchase them.
Equipped with a workload generator, Hipster-shop simulates
concurrent users of that application. The service of front end
and product receive more requests while checkout and payment
fewer, which is conformed with the workload law.

To mimic anomaly propagation issues, Hipster-Shop is

1dataset, https://github.com/NetManAIOps/JumpStarter



injected with two types of faults. To simulate the latency prob-
lem and CPU exhaustion problem, we delay service instance’s
network packets to stimulate Network Jam and consume CPU
heavily to stimulate CPU exhaustion by Chaosblade2, a chaos
engineering tool. In our experiments, each fault is injected for
5 minutes. The interval between injection operations is nearly
60 minutes to reduce the mutual influence of different injection
operations. We injected 32 faults, including 12 CPU faults and
20 latency faults to Hipster-Shop.

2) Benchmark Model: We compare TS-InvarNet with two
state-of-the-art models based on deep learning, Omnianomaly
[4] and USAD [5]. The former model adopts a stochastic
recurrent neural network to deal with temporal dependence and
learn representations of input data. The latter model adopts
encoder-decoder architecture within an adversarial training
framework. We also select a novel anomaly detection model,
RANSynCoders [7], which uses an architecture of multiple
encoders-decoders to infer anomalies. To compare with meth-
ods not based on deep learning, we select JumpStarter [6],
a multivariate time series anomaly detection approach based
on Compressed Sensing (CS). As for the problem localization
part, we are not going to compare TS-InvarNet with other
approaches [37]–[39] because they all require system topology
or other information to generate a dependency graph while TS-
InvarNet only uses KPIs.

3) Evaluation Metrics and Threshold Selection: For each
observation in multiple time series, an anomaly detection
approach generates a result indicating whether an anomaly
has occurred. We use Precision (P), Recall (R), and F1 score
(F1) to evaluate anomaly detection performance of all models:

P =
TP

TP + FP
,R =

TP

TP + FN
,F1 =

2 · P ·R
P +R

. (14)

where TP is the True Positives, FP is the False Positives and
FN is the False Negatives.

Practically, an anomaly occurs at one timestamp but its
impact of it will last for some time. So it is more important
to identify anomalies in a contiguous segment than point-wise
anomalies. Thus we adopt a point-adjust approach [4], which
is widely used to evaluate the anomaly detection [4]–[6], [8],
[40], [41]. In this approach, if any observation of an anomalous
segment in the ground truth is detected, we consider the whole
anomalous segment as detected correctly.

4) Implementation: The TS-InvarNet is implemented using
Python 3.7. The parameters of S,AR, I,MA in SARIMAX
model are set as 1440, 3, 1, and 3, respectively. These
parameters can be tuned in different services. The sliding
window size w = 50. We conduct our experiments on a server
with Intel CPU @ 2.10GHz and 128GB memory.

B. Overall Performance

1) Anomaly Detection: To demonstrate the overall perfor-
mance of TS-InvarNet, we compare it with benchmark models.
To distinguish anomaly detection methods’ performance using
different threshold selection methods, we first try various

2Chaosblade, https://github.com/chaosblade-io/chaosblade

thresholds on the detection results and select the posterior
optimal threshold. This approach, called best F1 score, can
help to determine a preset threshold and provide feedback for
deploying anomaly detection method, which has been widely
adopted as an ideal threshold selection [4]–[8]. Table II lists
the obtained results with best F1 score on different datasets.
We note that TS-InvarNet yields superior performance for most
datasets. The exception is for Dataset2, where JumpStarter
performs 1.64% better, which we will further discuss below.
On the averaged performance over all datasets, TS-InvarNet
is the best performing approach exceeding by 7% over the
state-of-the-art [4], [5].

As we mentioned before, the best F1 score is just an ideal
threshold selection, only theoretically serving to help. But
not all the baseline models provide a mechanism to select
thresholds in practice. While considering a good anomaly
detection method does not overly rely on a posteriori threshold
selection, we use a simple widely used threshold, 3-sigma rule
with a sliding window [6], to evaluate the actual performance
of all models in practice. Table II lists the average best
F1 scores, F1 scores, Precision and Recall of TS-InvarNet,
and baseline models on different datasets. As expected, the
results show that there is a discrepancy between the best F1
scores and dynamic 3-sigma scores. We note a significant drop
in performance of OmniAnomaly [4] by using dynamic 3-
sigma scores. We try the automatic threshold selection method
POT, adopted by OmniAnomaly. It still underperforms and we
conjecture the difficulty in selecting an optimal threshold leads
to its different performances between with and without best
F1. And as [7] said, OmniAnomaly’s superiority in the SMD
dataset does not carry over to other datasets. As for high recall
of OmniAnomaly with POT, we do not think it is worthwhile
because we find POT tends to achieve high recall at the price
of quite low precision. Most F1 scores in Dataset3 are lower
than 30% while some even are 5%. Practically, it is of little
help for operators to analyze failures. In fact, we can adjust
threshold selections to adapt to the goals of high recall or F1
score in different scenes. Here we primarily consider the F1
score.

All methods, especially Jumpstarter, present the lowest
performance on Dataset3 without the best F1. The anomaly
ratio of Dataset3, 0.55%, is far lower than 5.25% and 20.26%.
The sampling in Jumpstarter completes data compression
while weakening the features of anomaly, leading to bad
performance in datasets with a low anomaly ratio. Besides,
Jumpstarter obtains a worse F1 score without optimal thresh-
old on Dataset3 while TS-InvarNet can still perform well.
Another reason for the poor results of deep learning methods
on Dataset3 is the short training time. The training time of
Dataset3 is 5 days, 1/4 of the others while deep learning
methods require a long period of training time, indicating it is
unsuitable for newly updated systems. RANSynCoders shows
relatively poor results in all datasets. We attribute it to two
reasons. Firstly, it uses a network to learn the phase shifts
across signals and generate a synchronized representation
of the raw time series. However, the phase shifts among



TABLE II: Performance Comparisons of TS-InvarNet and Baselines on Different Datasets

Dataset1 Dataset2 Dataset3 Average
Method

F1-best F1 P R F1-best F1 P R F1-best F1 P R F1-best F1 P R

TS-InvarNet 96.96 75.35 70.30 84.19 92.59 91.71 93.00 94.81 94.59 61.81 59.83 67.34 94.71 76.29 74.38 82.11

JumpStarter 86.85 71.92 68.04 83.98 94.23 82.81 91.79 78.26 74.40 28.76 21.25 56.79 85.16 61.16 60.36 73.01

OmniAnomaly 69.59 11.57 60.46 14.34 88.43 35.34 49.28 22.94 88.62 9.12 46.51 10.40 82.21 18.68 52.08 15.89

OmniAnomaly(POT) - 31.38 27.51 88.61 - 60.99 53.01 99.95 - 44.1 34.45 1001 - 45.49 38.32 96.19

RANSynCoders 56.00 48.84 57.91 49.77 85.00 59.57 73.02 53.82 61.00 54.50 52.73 64.52 67.33 54.30 61.22 56.04

USAD 92.00 70.26 93.09 78.48 92.00 90.32 81.40 85.28 79.00 60.45 86.91 67.83 87.67 73.68 87.13 77.20

1 High recall can be obtained easily by setting low threshold. Low precision indicates more false alarms, hindering subsequent troubleshooting.
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Fig. 8: Examples of fault injections and the root cause KPIs ranks of candidates on Hipster-Shop.
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Fig. 9: Average F1 for TS-InvaNet and its variants.

different signals may be the same due to similar business
behaviors. Secondly, the spectral analysis may lose part of the
temporal information due to extracting dominant frequencies.
Meanwhile, it may drop spatial dependence to minimize the
reconstruction losses through feeding random subsets of syn-
chronous time series to the autoencoders. The lack of temporal
and spatial information leads to its bad performance. Overall,
USAD performs good performances on all datasets. But TS-
InvarNet still outperforms it by 7% with best F1 scores and 3%
without it. The relatively low best F1 score of USAD indicates
its limited potential to achieve very high accuracy in anomaly
detection.

2) Anomaly Interpretation and Localization: We evaluate
the problem localization on hipster-shop, which provided a
ground-truth of root cause KPIs. We detected 31 faults in 32
and the root cause KPIs all are interpreted as the most anoma-
lous KPIs. The remaining one shows a slight abnormality and
it does not propagate to other instances. We further analyze the
root cause and the results show TS-InvarNet can locate 75%
root cause KPIs within the top 5 candidates. Fig. 8 shows
some examples of fault injections and the root cause KPIs
ranks output by TS-InvarNet.
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Fig. 10: Change in time and scores after clustering.

We take one of the injected faults as an example to illustrate
our approach in detail. A CPU fault was injected into one
instance of a product catalog service. After 2 observations,
we detected the number of broken invariants increasing from
0 to 511, accounting for more than ten percent of the total
invariants. We ranked the KPIs by the number of broken
invariants and filtered the KPIs whose broken invariants were
far below the average. The KPIs in the top ranking are
interpreted as the most anomalous KPIs. We found those KPIs
mainly monitor the workload and CPU of ProductCatalog
service and its downstream services, such as Recommendation
service or FrontEnd service. With outdegree centrality in the
casual graph, we ranked the anomalous KPIs and the first in
the ranking is the KPI monitoring the CPU of the instance we
injected a CPU fault.

C. Ablation Study

In this section, we conduct an ablation study using several
variants of TS-InvarNet to further demonstrate the effec-
tiveness of the designs. As shown in Fig. 9, TS-InvarNet
outperforms without-SARIMAX on all datasets, which demon-
strates the capabilities of SARIMAX model to learn temporal



TABLE III: Average storage of different methods on datasets

TS-InvarNet OmniAnomaly RanSynCoder USAD

Storage 292K 4.9G 390K 36M

TABLE IV: Maximum computing time of one observation on
different datasets

Dataset1 Dataset2 Dataset3

time(s) 1.92 1.92 0.2253

and spatial relationships from complicated multivariate time
series. Moreover, TS-InvarNet has a similar performance with
without-cluster. It indicates the spatial information discarded
by shaped-based clustering may be redundant and clustering
does not have an influence on the performance of TS-InvarNet.

Fig. 10 presents the change in time and scores after shaped-
based clustering on each entity of all datasets. In the left box
plot, most points are around 0.3-0.4 and a small amount around
1. This validates clustering significantly faster TS-InvarNet. In
the right violin Plot, most points are around 1. It indicates
clustering has little influence on the performance in anomaly
detection, which further validates our conclusion that shaped-
based clustering not only does not weaken the performance
of anomaly detection but also remarkably reduces the running
time.

D. Feasibility Study

The implementation of TS-InvarNet can be divided into
two phases, namely Offline and Online. The Offline step
stores invariant models of an entity, invariant check thresholds,
which are used for online anomaly detection and problem
localization. Compared with state-of-the-art methods [4], [5],
[7], TS-InvarNet can perform with less storage as Table III
shows. Though the storage of RanSynCoder is close to TS-
InvarNet, its overall performance is much worse than TS-
InvarNet. We need to emphasize that despite the costs of hard
disks and storage capacity consumed seems to be of little
importance, there are some specific scenarios where storage
space of the model becomes particularly important such as
Edge Computing and IoT (Internet-of-Things).

In the Online step, as a new observation xt arrives, we can
obtain anomaly scores of the entity by the models and utilize
the invariant check threshold to count the number of broken
invariants. If the number is higher than a preset threshold,
then we declare the observation xt an anomaly. For a detected
anomaly, we can apply anomaly interpretation to know specific
anomalous KPIs and causal analysis to find the root cause KPI.
If the faults are not repaired in time, it will cause enormous
economic losses and serious consequences. So it is more
crucial to know the online computing time. Table IV shows
the maximum computing time of anomaly detection of one
observation on different datasets, which illustrates the ability
of TS-InvarNet to respond quickly.

In Fig. 11, we show TS-InvarNet’s sensitivity to some
key parameters that can have an impact on the performance

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 00 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

F1
 Sc

ore
s

W i n d o w  S i z e  ( o b s e r v a t i o n s )

 F 1 - s c o r e s
 P r e c i s i o n
 R e c a l l

2 3 4 50 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5

1 . 0 0

F1
 Sc

ore
s

L a g s

 F 1 - s c o r e s
 P r e c i s i o n
 R e c a l l

Fig. 11: F1-score of TS-InvarNet with different parameters.

of TS-InvarNet. As the window size increases from 10 to
80 observations, each evaluation score gradually stabilizes.
Before the window size reaches 50 observations, the F1 score
increases and after that it becomes stable. Thus the window
size is preset as 50. In the meantime, we also note that when
the window size reaches 30, the F1 score is more than 0.9. As
for the order, we set the non-seasonal AR order and MA order
to be equal and resize them at the same time. We find the order
has little influence on the performance. When we increase the
order from 2 to 4, each evaluation score has slight variations.
When the order is 3, the F1 score is slightly higher than the
others. Therefore, we set the order to 3.

V. RELATED WORK

A. Anomaly detection

Anomaly detection is a complex task, which has been an
active topic. Traditional anomaly detection approaches mainly
includes SVM [42], KNN [43], HMMs [44], Kalman filters
[45], which are unable to handle with complex dynamic time
series. The shapelet learning-based approaches learn features
that are representative of the normal class from a training set
[46], which shows good performance when the subsequences
indeed contain relevant information. However, it is limited in
scenarios where statistics or spectral features over the whole
time series determine the class. Traditional invariant-based
approach for anomaly detection uses ARX model to mine
invariant relationship [26], which is time-consuming and not
applicable for time series with periodicity and trend. Besides,
it is not robust to check invariants with a fixed threshold.
We adopt shaped-based clustering to reduce the complexity
of mining invariants and use SARIMAX to model accurately
invariants in complicated KPIs. A probability distribution-
based helps to automatically check invariants. JumpStarter
[6] is a jump-starting anomaly detection approach based on
Compressed Sensing (CS) with a short initialization time.

Recently, deep learning approaches attract widespread in-
terest. Donut [17] proposed a univariate anomaly detection
method based on VAE for seasonal KPIs with local variations.
Microsoft combines SR and CNN models to detect anomalies
in univariate time series [40], proving the possibility of using
visual saliency in anomaly detection. However, these univari-
ate anomaly detection methods only model temporal depen-
dency but cannot consider the overall system’s status, more
prone to false alarms. Omnianomaly [4] adopts a stochastic
recurrent neural network to deal with temporal dependence and



learn robust multivariate time series representations. LSTM-
VAE [47] combined VAE and LSTM by replacing the feed-
forward network in a VAE with LSTM. Combining the ad-
vantages of autoencoders and adversarial training, USAD [5]
adopts an encoder-decoder architecture within an adversarial
training framework. RANSynCoders [7] uses an architecture
of multiple encoders-decoders to infer and localize anomalies.
The methods can well represent the system’s overall status
but lose insights into the local correlations between KPIs,
leading to poor performance in detecting subtle anomalies and
interpretability.

B. Root Cause Analysis
Root cause analysis based on KPIs usually builds a depen-

dency graph with different methods. After monitoring KPIs to
detect anomalies, these works conduct problem localization
with the combination of KPIs and the dependency graph.
CauseInfer constructs a causality graph and infer the root
causes of performance problems along the causal paths in the
graph with statistical methods [48]. Microscope [37] captures
the real service dependency through capturing and parsing the
network-related system calls and locates the root cause by
comparing the similarity between SLO KPIs and the abnormal
service. MicroRCA [38] extracts an anomalous subgraph from
an attribute graph including service and KPIs. Automap [39]
generates a causality graph between services and selecting
the proper KPIs, and identifies the root cause by random
walking. These works all require system topology or other
extra information to build a dependency graph.

VI. CONCLUSION

This paper designs and implements TS-InvarNet, an in-
terpretable end-to-end anomaly detection and localization
framework based on tempo-spatio KPI invariants. Through
shape-based clustering, TS-InvarNet can generate an invari-
ant network quickly. Then TS-InvarNet keeps track of the
evolution of the invariant network to diagnose the system.
When an anomaly is detected, TS-InvarNet can interpret the
anomaly and conduct causal analysis to localize the root
cause KPIs. The experimental evaluations on three real-world
industrial datasets show that TS-InvarNet can identify the
problem accurately, which outperforms some state-of-the-art
approaches. The experiment on one open-source microservice
system shows that TS-InvarNet has the ability to localize the
root cause KPI. Moreover, TS-InvarNet is lightweight enough
to be deployed in large-scale systems.
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